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Abstract

A new approach to online prediction using nonparametric statistics
is described and analyzed. This approach is based on a sequential local
polynomial regression procedure that has linear runtime complexity.
We provide a theoretical analysis showing that the algorithm achieves
the optimal minimax rate of convergence. Using the mixing experts
framework, we also develop a method that adapts to the unknown
global smoothness of the true regression function.

1 Introduction

Bandwidth selection is a crucial issue in nonparametric statistics. It is well
known that the optimal bandwidth for regression depends on the sample size.
Considering the one dimensional case, let

Yi = m(Xi) + εi, i = 1, . . . , n (1)

where the Xis are identical and independently generated under some distri-
bution, m : R → R is the unknown function to estimate, and εi ∼ N(0, σ2).
Assuming that m′′ is absolutely continuous and

∫

(m′′(x))2dx < ∞, the risk
of a kernel regression with bandwidth h has the form

R(m̂n, m) = c1h
4 +

c2
nh

+O(
1

n
) +O(h6) (2)
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where

R(m̂n, m) = Em[

∫

(m̂n(x)−m(x))2dx] (3)

is defined as the risk of the estimate m̂n on a sample of size n, and where
c1 and c2 are constants that depend on the distribution of X [12]. The
optimal bandwidth that minimizes (2) is h∗ = O(n−4/5), which leads to the
optimal minimax rate of convergence O(n−4/5); see [7]. More generally, if we
assume further smoothness of m, so that the d-th derivative of m exists and
is bounded, the minimax rate becomes n−2d/(2d+1), which can be achieved
by performing local polynomial regression of order d − 1 with the optimal
bandwidth h∗ = O(n−1/(2d+1)) [5].

These classical results assume that a training data set of size n is given,
and formally lets the size n of the data to increase to infinity. In the online
setting, however, the data arrive sequentially, and the size of the data set
is changing. In this case the bandwidth needs to adapt to the changing
sample size. A naive variation of the classical methods would carry out
batch regression with variable bandwidth each time a new data point arrives.
However, this would require quadratic complexity O(T 2) to compute the
estimates after T points are observed. This is prohibitive for large sample
sizes.

This motivates the problem studied in this thesis, to develop an efficient
algorithm for adaptive sequential regression. Significant previous work in
the literature has been devoted to the related problems. For adaptive band-
width selection in the batch setting, Fan et al. [4] considered using Residual
Squares Criteria (RCS) for performing data-driven bandwidth selection in
local polynomial regression; Ruppert et al. [10] proposed the plug-in band-
width selection for local linear kernel estimators. These are effective methods
for adaptive estimation, however, they did not take into account the computa-
tional cost for online updating. Among recent work, Steland [11] investigated
a cross-validation scheme for sequential data and established theoretical re-
sults. Again, however, this does not consider the cost of re-computing the
entire model for each new bandwidth; furthermore, performing the leave-
one-out cross-validation adds extra computation and would be impractical
for many applications.

In the online setting, Kivinen and Smola developed computationally ef-
ficient algorithms for online learning in a reproducing kernel Hilbret space
(RKHS). However, their RKHS analysis does not consider adaptation to the
unknown smoothness of the regression function. The mixing expert frame-
work has been a popular strategy for online prediction, and there is a rich
literature on this topic. Cesa-Bianchi and Lugosi [2] derive regret bounds
under different assumptions. Yang [13] establishes risk bounds under mild
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conditions on the loss function. These results bound the performance of the
combined estimator relative to that of the best expert. Advanced results by
Bunea and Nobel [1] show a risk bound in terms of the generalized simplex
linear combination of a set of fixed estimators. However, this work does not
allow the online situation where the experts change over time. We refer be-
low to the work of Cesa-Bianchi et al. [2], and Yang [13] when using the
mixing expert framework.

In this paper we propose a new algorithm for sequential regression that
requires linear computational cost. Moreover, we prove that the algorithm
achieves the optimal minimax rate of convergence (see Theorem 3.3 and
Theorem 3.5). The essential idea is to avoid recomputation by shrinking the
bandwidth for each new observed data point. A similar algorithm appears in
Kristan et al. [8]. They approach online density estimation using a Gaussian
mixture model, which is updated by adding a new Gaussian component with
adapted bandwidth. The strength of this approach was illustrated with ex-
amples in density estimation and computer vision problems. Although their
examples are encouraging, there are no theoretical results. Our sequential
algorithm is based on the local polynomial regression which is more general
and flexible that kernel density estimation. In addition, we take a different
approach from [8] in selecting the right smoothing parameter in each trial.
Instead of directly picking the bandwidth, we show how the weighted expert
framework can be used to adapt to unknown smoothness. The experimental
results confirm our theoretical analysis and show the approach is practical
for sequential regression.

The organization of this paper is as follows. In §2 we present the algorithm
for sequential local polynomial regression. In §3 we present a theoretical
risk analysis results for both sequential density estimation (Theorem 3.3)
and regression (Theorem 3.5). Full proofs of the results are postponed to
the Appendix. In §4 we introduce the mixing expert framework and show
various bounds used to guarantee adaptation to unknown smoothness. In §5
we present experimental results which show that our algorithm (1) is quite
comparable to the batch algorithm but much more efficient (2) adapts to the
global smoothness of the true regression function.

2 Sequential Local Polynomial Smoothing

The efficient sequential estimator is extended from the standard local poly-
nomial regression. We choose this particular smoother for two reasons. First
among the various nonparametric regression methods, local polynomial re-
gression enjoys desirable minimax properties as well as other features such
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as the automatic boundary treatment [6]. Second, for its generality in ap-
plication and analysis: the sequential version of local constant, local linear
estimation can viewed as a special case of the sequential local polynomial
regression.

Let Z = {(X1, Y1), (X2, Y2), . . . } be a sequence of observation indepen-
dent and identically distributed random variables from some unknown func-
tion m and independent noise εi with mean zero and variance σi.

At time T + 1, an order-d local polynomial regression at the prediction
point x0 = XT+1 is computed by minimizing

T
∑

t=1

(Yt −
d
∑

j=0

βj(x0)(Xt − x0)
j)2K(

Xt − x0

hT

) (4)

where K(·) is a symmetric weight function or kernel, and hT is the smoothing
parameter or bandwidth. Denote by β̂j(x0), j = 0, . . . , d the solution of the
weighted least squares loss function (4).

Let X be the design matrix

X =







1 (X1 − x0) · · · (X1 − x0)
d

...
...

...
1 (XT − x0) · · · (XT − x0)

d







and put

y =







Y1
...
YT






β̂ =









β̂0
...

β̂d









and
W = diag{KhT

(Xt, x0)}1≤t≤T

the n× n diagonal matrix of weights, the solution that minimizes (4) is

β̂(x0) = (XTWX)−1XTWy (5)

It follows from Taylor’s formula that ν!β̂ν(x0) is an estimator for mν(x0).
Therefore the estimation for ŶT+1 = β̂0(XT+1).

From the (5) above, it is clear that if we would adapt hT+1 to the increased
size T + 1, we would have to recompute the entire XTWX matrix. To
save computation, we choose to allow variable bandwidth in W . In other
words, the effect of new bandwidth hT+1 only applies to ZT+1. Based on this
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motivation, we have constructed the Sequential Local Polynomial Regression
(SLPR) as follows. Let

WT = diag{Kht
(Xt, x0)}1≤t≤T

where ht = c · t−1/(2d+1) is the bandwidth with respect to the sample size t,
and c is some constant.

The estimator at time t = n is

β̂(x0) = (XTWnX)−1XTWny (6)

Denote the d+ 1× d+ 1 matrix XTWnX as Sn, with the (i,j) entry

Sn(i, j) =

n
∑

t=1

Kht
(Xt, x0)(Xt − x0)

i+j (7)

where Kht
(Xt, x) =

1
ht
K(Xt−x

ht
).

To update the model after we observed (Xn+1, Yn+1), we discover that

Sn+1 = Sn +Khn+1
(Xn+1, x0)xn+1x

T

n+1
(8)

where xn+1 is the length d+ 1 vector: [(Xn+1 − x0)
i]i=0,...,d.

By Woodbury matrix inverse lemma:

(A+ vvT )−1 = A−1 −A−1v(1 + vTA−1v)−1vTA−1 (9)

and (8), updating S−1 takes O(d2).
Similarly, updating

XT

n+1
Wn+1yn+1 = XT

n
Wnyn +Khn+1

xn+1Yn+1

costs O(d).
Therefore, the total complexity of adapting SLPR to the increased sample

size is O(d2), which is independent of T .
If we were to apply hn+1 to all Z1, . . . , Zn, as doing a batch local polyno-

mial, the cost for updating the model would be O(n2d2).

3 Risk Analysis

In this section, we present our main technical results: the risk analysis of the
sequential density estimation and regression. Our goal is to show that the
asymptotic risk of SPLR has the rate of convergence of n−2d/(2d+1) assuming
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m in Cd, the existence of d continuous derivatives of m. This rate equals the
minimax optimal rate of Local Polynomial Regression.

The main techniques involved in the sequential risk analysis are bias-
variance decomposition and integral approximation.

We first analyze the risk of sequential kernel density estimation (SKDE)
and sequential kernel regression (SKR). These two examples can be viewed
as special cases of the local polynomial regression but they are simpler and
thus more illustrative. Afterwards, we generalized the results to order d− 1
SLPR for m in Cd.

We assume that the true density function f and the true regression func-
tionm have d ≥ 2 continuous derivatives. The kernel K satisfies the following
properties:

∫

K(u)du = 1,

∫

K(u)udu = 0,

∫

K(u)u2du > 0

We also restrict our bandwidth {ht|t = 1, 2, 3 . . . } to satisfy

limt→∞ ht = 0 limn→∞
1
n2

∑n
t=1

1
ht

= ∞
To simplify the notation, we put the following definitions:

• Kht
(x,Xt) =

1
ht
K(x−Xt

ht
)

• σ2
K =

∫

x2K(x)dx

3.1 Optimal Risk for Sequential Kernel Density Esti-

mation

The sequential kernel density estimator f̂ is given by

f̂n(x) =
1

n

n
∑

t=1

1

ht

K

(

x−Xt

ht

)

(10)

The bias-variance decomposition of f̂n at x is:

Rx(f(x), f̂n(x)) = Bias2(f̂n(x)) + V ar(f̂n(x)) (11)

Lemma 3.1. The point-wise risk of SKDE at time t = n and input x is

Risk(f(x), f̂n(x))

=
1

4
(f ′′(x))2(σ2

k)
2 (
∑n

t=1 h
2
t )

2

n2

+
f(x)

n2

∫

k2(u)du · (
n
∑

t=1

1

hn
) + o(

∑n
t=1

1
ht

n2
) + o

(

(
∑n

t=1 h
2
t )

2

n2

)

(12)
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The proof of Lemma 3.1 is based on the classical bias variance analysis
and is postponed to Appendix §A.1.

Taking integral of the above equation over input x, the risk SKDE esti-
mator at time t = n is as follows:

Risk(f, f̂n)

=
1

4

(
∫

(f ′′(x))2dx

)

(σ2
K)

2 (
∑n

t=1 h
2
t )

2

n2

+
1

n2

∫

k2(u)du · (
n
∑

t=1

1

ht

) + o(

∑n
t=1

1
ht

n2
) + o

(

(
∑n

t=1 h
2
t )

2

n2

)

(13)

Using Lemma 3.1, we can prove Theorem 3.2 by integral approximation
on the sum.

Theorem 3.2. Let ht = t−1/5, t = 1, 2, . . . , n, the risk of online kernel density
estimator is O(n−4/5).

Proof. Let c1 =
1
4
(
∫

(f ′′(x))2dx)(σ2
K)

2, and c2 =
∫

K2(u)du:

Risk(f, f̂n) =
1

n2

[

c1(
n
∑

t=1

h2
t )

2 + c2

n
∑

t=1

(
1

ht

)

]

(14)

Let ht = t−k, k < 0, and plug it in (14).

ˆRisk =
1

n2

[

c1(
n
∑

t=1

t−2k)2 + c2

n
∑

t=1

tk

]

≤ 1

n2

[

c1(

∫ n

0

t−2kdt)2 + c2n
k+1

]

=
1

n2

[

c1
1

(1− 2k)2
n2−4k + c2n

k+1

]

= c1
1

(1− 2k)2
n−4k + c2n

k−1

(15)

Differentiate (15) with respect to k and set it equal to 0, we have that:
when k∗ = −1

5
, h∗

t = tk
∗

, the optimal risk of SKDE Risk∗ = O(n−4/5).

The above analysis uses the assumption that the density function f has
continuous second derivative. In general, this can be extended to the case
where f is in Cd, having d continuous derivatives.

Theorem 3.3. If the density function f has up to d continuous derivatives,
the optimal risk of SKDE is Risk∗ = O(n−2d/2d+1), with h∗

t = O(t−1/2d+1).
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Proof. Suppose the true density function f has up to d continuous deriva-
tives, we take Taylor’s formula of f to order d. By a similar calculation, we
have:

E[[]f̂n(x)] =
1

n

n
∑

t=1

∫

K(u)f(x− htu)du

=
1

n

n
∑

t=1

[f(x) +
h2
t

2
f ′′(x)σ2

K + · · ·+ hd
t

d!
f d(x)σd

K + o(hd
t )]

= f(x) +
1

2
f ′′(x)σ2

K(

∑n
t=1 h

2
t

n
) + · · ·+ 1

d!
f d(x)σd

K(

∑n
t=1 h

d
t

n
) + o(

∑n
t=1 h

d
t

n
)

(16)

By selecting a higher order kernel, we can make σj
K =

∫

ujK(u)du = 0
for all j < d. Hence the resulting bias remains as follows:

Bias =
1

d!
f d(x)σd

K(

∑n
t=1 h

d
i

t
) + o(

∑n
t=1 h

d
i

t
) (17)

and the result of variance in (33) still holds.
Plugging the bias and variance into (11), we derive the general form of

risk

c1
(
∑n

t=1 h
d
t )

2

n2
+ c2

∑n
t=1

1
ht

n2
(18)

Assume ht = tk, k < 0, take the derivative with respect to k and set it
equal to 0, we obtain k∗ = − 1

2d+1
, h∗ = n−1/2d+1, and Risk = O(n−2d/2d+1).

3.2 Optimal Risk for Sequential Kernel Regression

Following the risk analysis for SKDE, similar results can be derived for the
sequential kernel regression (SKR). As a simple but illustrative example in
the regression setting, for d = 2, we based our analysis on the Nadaraya-
Waston estimator.

The Sequential Nadaraya-Waston estimator trained on sample size n is

m̂t(x) =
1
n

∑n
t=1 Kht

(x,Xt)Yt

f̂n(x)
(19)

where

f̂n(x) =
1

n

n
∑

t=1

Kht
(x,Xt) (20)

It remains to show that the risk of SKR has the same form as (18).
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Lemma 3.4. The risk of SKR at time t is:

R(m̂n, m) =
1

4
(

∫

x2K(x)dx)2
∫

(m′′(x) + 2m′(x)
f ′(x)

f(x)
)2dx(

(
∑n

t=1 h
2
t )

2

n2
)

+ σ2

∫

K2(x)dx

∫

1

f(x)
dx(

∑n
t=1

1
ht

n2
)

+ σ2 + o(

∑n
t=1

1
ht

n2
) + o(

(
∑n

t=1 h
2
t )

2

n2
)

(21)

The proof of Lemma 3.4 is shown in Appendix (A.2) using similar bias-
variance risk analysis.

3.3 Risk Analysis for Sequential Local Polynomial Re-

gression

The same generalization of Theorem 3.3 in density estimation can be applied
in regression setting. Instead of choosing a special kernel to cancel out the
lower order terms in the Taylor’s series, we leverage the minimax optimality
of local polynomial regression as introduced in §2.

Theorem 3.5. If the true function m has d continuous derivatives and let
the bandwidth ht = O(t−1/2d+1), at t = n, the order d − 1 SLPR has the
optimal risk R∗ = O(n−2d/2d+1).

The proof of Theorem 3.5 is shown in Appendix §A.3.

4 Adapting to Unknown Smoothness

The performance of the sequential estimator (SKDE or SLPR) relies on se-
lecting the right order d of local polynomial (also the constant c). Traditional
statistical model selection methods, e.g. the AIC and cross validation, are
less desirable in an online scenario due to their computational cost.

In order to maintain a reasonable computational cost, we combine esti-
mators that use different parameters (order d and constant c) through an
exponential weighting strategy. Various of useful bounds in terms of the re-
gret are summarized in [2]. The risk bound is also proposed by Yang [13].
Furthermore, according to Yang, combining forecasts with proper weights
can outperform the model selection, which often yields an estimator with
large variance.
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Based on these results, we combine the sequential estimators to adapt
to unknown smoothness while keeping the computational cost linear in T
and also in the number of expert. Although there exists applications that
require large size of experts, unlike other model selection methods, with
mixing experts as the top level framework, we can easily leverage on the rising
power of paralleling computing and distributed architecture and therefore
making this approach practical for those applications.

4.1 Procedure

The Mixing Online Expert (MOE) is the exponential weighting of a set of
Sequential Local Polynomial Regression with different orders and constants.
The exponential weighting procedure is defined as follows:

Let C = {ci}1≤i≤m, and D = {dj}1≤j≤n.

Define K = mn SLPRs y = {ŷi,j}1≤i≤m,1≤j≤n. At time t, the bandwidth
of ŷi,j, h

t
i,j = ci · t−1/2dj+1.

The double index i, j is for illustrating the construction of the expert set.
In what follows we will use single index k to index the K expert estimators,
and t to specify the time steps.

Put Lk,t =
∑T

t=1(Yi − ŷk)
2 to be the cumulative loss of estimator k at

time t. Let wk,0 = K−1, and for t ≥ 1 let

wk,t =
exp(−ηLk,t−1)

∑K
k′=1 exp(−ηLk′,t−1)

(22)

where η is a positive constant called the learning rate to be chosen later.
Then the combined estimator at time t is the convex combinations of

candidate estimators at time t using the weights at t− 1:

ŷ∗
,t =

K
∑

k=1

wk,t−1ŷk,t (23)

Note that the weight at time t can be updated in linear time O(K) using

wk,t =
wk,t−1 exp(−η(Yt − ŷk,t)

2)
∑K

k′=1wk′,t−1 exp(−η(Yt − ŷk′,t)2)
(24)
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4.2 Performance bound for general convex loss

The performance of the combined estimator is evaluated in comparison to
the best individual estimator. The literature of combining experts focuses
on deriving bounds on the cumulative loss between the best expert and the
combined expert. Existing results (see, e.g. [2] page 14–45) showed that for
general convex loss function l, the optimal bound on the cumulative loss is

L̂n ≤ min
k=1,...,K

Lk,n +
lnK

η
+

η

8
n (25)

It follows that when η =
√

8 lnK
n

, the additive penalty of the combined expert

is
√

1/2n lnK.

4.3 Time uniform bounds

Note that the optimal learning rate parameter η in the results above depends
on the number of iteration n. When n is very large, a fixed η leads to poor
performance for in the earlier predictions. There are several ways to address
this issue. First, in [2], they consider a so-called “doubling trick”, which
partitions time into exponentially increasing lengths. And in each partition,
they choose the optimal η for the length of that partition. This solution

results in an additive penalty of
√
2√

2−1

√

t
2
lnK for all t = 1, . . . , T . Second,

[2] also shows that choosing a time-varying ηt =
√

8 lnK
t

yields an additive

penalty of 2
√

t
2
lnK +

√

lnK
8
.

A different approach proposed by Freund and Hsu [3] is called Normal
Hedging that does not require choosing a learning rate η. Here, we briefly
introduce this novel approach:
Define the regret of expert k at time t to be Rk,t = L̂t − L̂k,t.
Initially: Set Rk,0 = 0, wt,0 =

1
K
, for k = 1, . . . , K.

For t = 1, 2, . . . :

1. Make prediction: ŷ∗t =
∑K

k=1wk,t−1ŷk,t.

2. Update regret: Rk,t = Rk,t−1 + (lt − lk,t), where lk,t = (Yt − ŷk,t)
2,and

lt = (Yt − ŷ∗t )
2.

3. Find ct > 0 satisfying 1
K

∑K
k=1 exp

(

([Rk,t]+)2

2ct

)

= e.

4. Update weights: wk,t ∝ ([Rk,t]+)2

ct
exp

(

([Rk,t]+)2

2ct

)

.
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They prove that the cumulative loss of the combined estimator using

Normal Hedge is O(
√

t ln 1
ε
+ln2K) worse than that of the εKth best expert.

In the special case when ε = 1
K
, it is O(

√
t lnK + ln2K) worse than the best

expert. Another noteworthy advantage of the Normal Hedging is that it
assigns zero weight to the expert that has larger cumulative loss than the
combined estimator, which reduces the old candidate set to an small subset
of effective experts, and thus achieves better performance.

4.4 Tighter bound for squared loss function

When the assumption on the loss function is more restrictive than convexity,
tighter bound can be derived. For example, a loss function is exp− concave
for a certain η > 0 if the function F (z) = e−ηl(z,y) for all y in the outcome
space. Then, for exp− concave loss function,

L̂n ≤ min
k=1,...,K

Lk,n +
lnK

η
(26)

To qualify the squared loss as exp−concave, we need to pick η to ensure that
e−η(Yt−ŷk,t)

2

is concave in Yt for all t = 1, . . . , T and k = 1, . . . , K. Additional
assumption needs to be made to bound the output space.

4.5 Risk bound for squared loss function

The cumulative bounds above hold for any realization of data. However, to
fit the risk analysis of an individual online kernel estimator, we are more
interested in the statistical risk bound. In other words, we seek an oracle
type inequality in the form of

E[||ŷ∗ − f ||2] ≤ min
k=1,...,K

E[||ŷk − f ||2] + δ(n) (27)

where δ(n) is the additive we receive for the combining strategy. Such risk
bound reflects a more comprehensive view of our combined estimator.

Here, we borrow the result from Yang [13], theorem 5, to illustrate the
performance of our combined estimator.

First we have to make some assumptions on the output of the estimator
and the true outcome. (1) The prediction of individual estimator ŷk,t is
bounded between some constant [−A,A]; (2) there exists 0 < L < ∞ such
that E[exp |ŷk − Y |] ≤ L.
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Under these two assumptions, according to Theorem 5 of Yang [13], we
have the following risk bound for our algorithm using the squared loss func-
tion:

1

n

T
∑

t=1

E[(Yt − ŷ∗t )
2] ≤ min

k=1,...,K

1

n

T
∑

t=1

E[(Yt − ŷt)
2] +

lnK

η
(28)

The (28) above applies to non-stationary sequences. If assuming that the
data (Xi, Yi)i=1,2,... arrives i.i.d, as our setting, (28) can be rewritten as:

E[||ŷ∗ − f ||2] ≤ min
k=1,...,K

E[||ŷk − f ||2] + lnK

nη
(29)

where η is picked to be a small constant depending on A.
Note that the assumption is made only for bounding the estimation out-

put ŷk. As for assumptions on the distribution of Y , other than the strong
moment generating function condition (2), no addition assumption is needed.

The risk bound in (29) shows that the risk of our combined estimator is
within a constant factor 1 of the estimator using the optimal model plus an
error term of O(n−1 lnK). Combining the result of the previous section that
the optimal online kernel estimator has the minimax risk, consequently, our
combined estimator adapts to that optimal rate at O(n−1 lnK).

5 Experiments

To illustrate the performance of the Mixing Online Experts, we have carried
out simulation experiments. In order to demonstrate the adaptation to the
unknown smoothness, we have chosen three regression functions to estimate:

mp(x) = 20(2x− 1)p+1sin(1/(2x− 1)), p = 2, 4, 6

where mp has p continuous derivatives, or in Cp. The sample size is 1200
and the noise has variance 0.25. The input space are normalized to [0, 1].

In the estimation we have used the Gaussian kernelKh(u) = (2π)−1/2e−u2/(2h2).
In this setup, the family of orderD = {1, 2, . . . , 8}, and the family of constant
contains 20 numbers uniformly chosen from the interval [0, 02, 2.5]:

C = {ci = 0.02 + (2.5− 0.02)(i− 1)/19|i = 1, . . . , 20}

The bandwidth of ĥ(t) is defined as

ĥi,j(t) = ci · t
1

2dj+1
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Loss Risk
MOE 202.63 0.004
MBE 200.18 0.0036

Expert (min loss) 201.41 0.00445
Expert (min risk) 201.82 0.00404

Table 1: Loss and risk of MOE, MBE, experts with min loss and min risk

The MOE contains 160 SQLR experts, with degree varying from 1 to 8
and constant varying from 0.02 to 2.5. These experts are indexed by ascend-
ing order, and within the same order, are indexed by ascending constants.

For the purpose of performance benchmark, we compare the MOE against
the expert with minimum loss, the expert with minimum risk, and also the
Mixing Batch Experts (MBE), which employees the batch local polynomial
estimates as the experts. Considering that the MBE is too expensive to
compute, for experiments involving MBE, we reduce the number of experts
to 40.

The performance is summarized in Table 1. It shows that the loss and
the risk of the MOE are quite comparable to those of the best experts and
the BME.

Figure 1 shows the cumulative loss of the MOE (blue), the MBE (red),
the best (green). The loss of the MOE is very close to that of the best online
expert; From Table 1, its loss is higher than that of the MBE which is the
cost for only updating the bandwidth for the latest data point.

To contrast the runtime of MOE and MBE, Figure 2 shows the linear
runtime of the MOE and the quadratic runtime for the MBE.

Figure 3 shows the weights of the experts under three functions with
different smoothness. We run experiments on each of the regression functions
10 times and box plot the weights versus expert index. For m2 in figure 3(a),
the weights are centered in the experts with index 21 to 40, which corresponds
to d = 2. Similarly, for m4 in figure 3(b) and m6 in figure 3(c), the experts
who have the right order get higher weights. This nicely demonstrates the
fact that the MOE adapts to the unknown smoothness.

Hence, the experiments show that while MOE makes trade off between
performance and runtime, its performance is quite comparable to that of the
MBE and the best experts.
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Figure 1: Cumulative loss of the Mixing Online Experts, the Mixing Batch
Experts, the best and the worst experts

6 Summary and Conclusions

We proposed the Mixing Online Experts (MOE) as an efficient approach to
online prediction. The MOE consists an efficient sequential local polynomial
regression procedure, and the mixing expert framework. Our work contains
three main contributions. The first contribution is the efficient online estima-
tor, especially the sequential local polynomial regression (SLPR). An order-d
SLPR has the desirable runtime complexity of O(nd2). Similar approach has
been investigated by Kristan [8]. But we differ in the way of choosing the
variable smoothing parameter. Also they only extended the case of ker-
nel density estimation and does not involve theoretical risk analysis. The
second contribution is that we carry out a risk analysis for the sequential es-
timates, including the sequential local polynomial estimate. The result show
the sequential estimates achieve minimax optimal risk n−2d/2d+1 when the
bandwidth adapts to the optimal bandwidth O(t−1/2d+1) at each time step.
The third contribution is the smoothness adaptation achieved by the mixing
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expert framework. We investigated existing regret bound [2] and risk bound
[13] with their restrictions. Under mild assumptions on the loss function,
the risk bound by Yang [13] shows that we can adapt to the optimal model
at the rate of O(n−1 lnK). The experimental results confirm our theoretical
analysis in 2 aspects. First, both the cumulative loss and risk of our Mix-
ing Online Experts (MOE) are comparable to those best sequential model,
and the batch model. Second, the MOE assigns high weights on the experts
that have the correct order of smoothness. Hence, the MOE adapts to both
the data size and the unknown smoothness of the true function. Last but
not least, the linear runtime makes MOE a practical approach for sequential
regression.

One important future work could be adapting MOE to spatially inhomo-
geneous smoothness. Spatial adaptation is a powerful feature for estimation
in practice, where the true function is often spatial inhomogeneous. Lepski
et al. [9] proposed a variable bandwidth selector for kernel estimation that
achieve optimal rates of convergence over Besov Classes. But for sequen-
tial regression, the problem remains unsolved. For the MOE, although the
mixing expert framework allows the estimate to adapt to arbitrary optimal
model, it is unpractical to have experts on every point of the input space.
Not only is it computationally infeasible, but it also requires too many data
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to train the experts.
More sophisticated online learning problems can be investigated in the

presence of this online estimator which is both efficient for practical experi-
ments and amenable for theoretical analysis. In particular, for the next step,
we are interested in multi-task learning with constrained resources. The goal
is to optimally allocate limited samples for multiple MOEs with different
learning tasks such that the overall loss is minimized.

A Proofs of the results

A.1 Proof of Lemma 3.1

Proof. We first compute the bias of f̂n at a point x.

E[[]f̂n(x)] =
1

n

n
∑

t=1

E[[]Kht
(x,Xt)]

=
1

n

n
∑

t=1

∫

K(u)f(x− htu)du

=
1

n

n
∑

t=1

[f(x) +
h2
t

2
f ′′(x)

∫

K(u)u2du+ o(h2
t )]

= f(x) +
1

2
f ′′(x)σ2

K ·
(

∑n
t=1 h

2
t

n

)

+ o

(

∑n
t=1 h

2
t

n

)

(30)

Thus, the bias of f̂n(x) is

1

2
f ′′(x)σ2

K ·
(

∑n
t=1 h

2
t

n

)

+ o

(

∑n
t=1 h

2
t

n

)

where σK =
∫

x2K(x)dx.

To compute the variance of f̂n(x), we need to compute V ar[Kht
(x,Xt)]:

E[
]

[K2
ht
(x,Xt)

]

=
1

h2
t

∫

K2

(

x− v

ht

)

f(v)dv

=
1

ht

(
∫

K2(u)[f(x) +O(h2
t )]du

)

=
1

ht
f(x)

∫

K2(u)du+ o(
1

ht
)

(31)
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Since the term E[
]

[Kht
(x,Xt)

]

computed above is f(x) + O(h2
t ), we can

include it in O(1).

V ar[Kht
(x,Xt)] = E[

]

[K2
ht
(x,Xt)

]

− E[
]

[K2
ht
(x,Xt)

]2

=
1

ht
f(x)

∫

K2(u)du+ o(
1

ht
)− O(1)

=
1

ht

f(x)

∫

K2(u)du+ o(
1

ht

)

(32)

By rule of independence, the variance of f̂n(x) is:

V ar(f̂n(x)) =
1

t2

n
∑

t=1

V ar(Kt(x,Xt))

=
f(x)

∫

K2(u)du

n2
· (

n
∑

t=1

1

ht
) + o(

∑n
t=1

1
ht

n2
)

(33)

Hence, plugging the bias and variance into (11), we have proved Lemma 3.1.

A.2 Proof of Lemma 3.4

Proof. Note that the denominator in (19) is the SKDE for x, which approx-
imates to the true density function f(x).

Thus, using bias variance decomposition we can write the risk of the
regression function as:

R(m̂t(x), m(x)) = Bias2(m̂t(x)) + V ar(m̂t(x)) + σ2 (34)

where Yt = m(Xt) + εt, εt N(0, σ2). In the context of kernel regression, the
bias and variance are conditional on the observation of X .

First, we compute the bias.

E[[]Kh(x,Xt)Yt] =E[[]Kh(x,Xt)m(Xt)] + E[[]εtKh(x,Xt)]

=

∫

K(u)m(x− htu)f(x− htu)du

=

∫

K(u)[m(x) + htum
′(x) +

h2
tu

2

2
m′′(x) +O(h2

t )]

· [f(x)− htuf
′(x) + o(h2

t )]du

=m(x)f(x) +
h2
t

2
σ2
K · [m′′(x)f(x) + 2m′(x)f ′(x)] + o(h2

t )

(35)
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E[[]m̂t(x)] = m(x)+

∑n
t=1 h

2
t

2t
σ2
K ·[m′′(x)+2m′(x)

f ′(x)

f(x)
]+o

(

∑n
t=1 h

2
t

t

)

(36)

Subtracting m(x) from (36), we showed the bias of m̂(x) is at t = n is

∑n
t=1 h

2
t

2n

∫

u2K(u)du · [m′′(x) + 2m′(x)
f ′(x)

f(x)
] + o

(

∑n
t=1 h

2
t

n

)

(37)

By a similar calculation, the variance of the online kernel estimator is:

V ar[m̂t(x)] =
1

n2f 2(x)

n
∑

t=1

V ar[Kht
(x,Xt)Yt]

=
σ2

n2f 2(x)

n
∑

t=1

[Kht
(x,Xt)]

2

=
σ2

n2f 2(x)

∫

1

h2
t

K2

(

x− u

ht

)

du

=
σ2
∫

K2(u)du

f(x)

∑n
t=1

1
ht

n2
+ o(

∑n
t=1

1
ht
)

n2
)

(38)

Hence, plugging the bias and variance into (34), we proved Lemma 3.4.

A.3 Proof of Theorem 3.5

Notice that the only difference between batch local polynomial regression (5)
and the SLPS (6) is in the diagonal bandwidth matrix W and Wn.

The general idea of extending the existing result for batch to sequential
local polynomial regression is to bound the bias and variance of (XTWnX)−1

with (XTWX)−1 and XTWny with XTWy.
It follows from the solution (6) that the conditional bias and variance of

β̂ are
E[(]β̂|X) = β + (XTWnX)−1XTWn(m−Xβ) (39)

and
V ar(β̂|X) = (XTWnX)−1(XTΣnX)(XTWnX)−1 (40)

where m = {m(X1), . . . , m(Xn)}T , β = {m(x0), . . . , m
d(x0)/(d − 1)!}T , and

Σn = diag{K2
ht
(Xt, xo)σ

2
n}1≤t≤n.
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In (7), we denote by Sn the d × d matrix (XTWnX). Here we denote
(XTWX) as Snusual

, with respect to the usual local polynomial regression
case with fixed bandwidth h.

Similarly, we denote S∗
n to be the d× d matrix (XTΣnX); and S∗

nusual
to

be (XTWX).
For the simplicity of the derivation, we need some more useful notations

before diving in to the bias variance analysis. First, we denote the moments
of K and K2 respectively by

µj =
∫

ujK(u)du νj =
∫

ujK2(u)du

Second, let S and S∗ denote the Hankel matrix with the kernel moments:

S = (µj+l)0≤j,l≤d−1 S∗ = (νj+l)0≤j,l≤d−1

Following the bias-variance guideline, we need to show that if we choose
ht = O(t−k) for some k ∈ (0, 1), then V ar(m̂) = O(nk−1), and Bias(m̂) =
O(n−dk) respectively, shown in §A.3.1 and §A.3.2. This concludes that the
optimal k∗ = 1

2d+1
and the optimal risk is O(n−2d/2d+1).

A.3.1 Variance bound for SLPR

The (i, j) entry of Snusual
can be approximated its mean plus additional error.

Snusual
(i, j) = nhi+jµi+j{f(x0) + oP (1)} (41)

It follows that the matrix form of Snusual
is:

Snusual
= nf(x0)HSH{1 + oP (1)} (42)

where S is defined in (A.3) and H = diag{hj}(0≤j≤d−1), and h is the constant
bandwidth.

Now, we will show that if the bandwidth for the usual case Snusual
is

h = n−k for some 0 < k < 1, and if we choose the online bandwidth ht =
t−k, 0 ≤ t ≤ n, then Sn is bounded by Snusual

element-wise within a constant
factor independent of n.

By integral approximation,

n× n−(i+j)k <
n
∑

t=1

hi+j
t <

∫ n

0

t−(i+j)kdt = n
1

1 − (i+ j)k
n−(i+j)k (43)

Hence there exists ci,j ∈ (1, 1
1−(i+j)k

) such that ci,j ∗Sn(i, j) = Snusual
(i, j),

provided that 0 < 1− (i+ j)k < 1.
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Using the above fact and (42), we let C1 be the d×d scalar matrix where
C1i,j is some constant bounded within (1, 1

1−(i+j)k
). Hence, Sn = XTWnX

can be rewritten as:

Sn = nf(x0)H(C1 · S)H{1 + oP (1)} (44)

where · is the element-wise multiplication.

Similarly for S∗
n = XTΣnX , we have S∗

nusual
(i, j) = nhi+j−1νi+jf(x0)σ

2HS∗H{1+
oP (1)}. By a similar calculation, we can bound S∗

n:

S∗
n = nh−1f(x0)σ

2H(C2 · S∗)H{1 + oP (1)} (45)

where C2 is d × d scalar matrix with entry C2i,j (1≤i+j<2d−2)
bounded within

(1, 1
1−(i+j−1)k

), and C20,0 bounded within ( 1
1+k

, 1).

It follows immediately, that:

V ar(β̂|X) = S−1
n S∗

nS
−1
n

=
σ2

nf(x0)
H−1(C1 · S)−1(C2 · S∗)(C1 · S)−1H−1{1 + oP (1)}

(46)

V ar(m̂|X) = V ar(eT0 β̂)

=
σ2

nf(x0)h
eT0 (C1 · S)−1(C2 · S∗)(C1 · S)−1e0{1 + oP (1)}

(47)

Given that h = n−k, we derived that

V ar(m̂|X) = O(nk−1) (48)

A.3.2 Bias bound for SLPR

Assume d is even, by Taylor expansion, the conditional bias S−1
n XTW (m−

Xβ) of β̂ can be written as

Bias(β|X) = S−1
n XTWn

[

βd(Xt − x0)
d + oP{(Xt − x0)

d}
]

1≤t≤n

= βdS
−1
n XTWn[(Xt − x0)

d]1≤t≤n{1 + oP (1)}
= βdS

−1
n nf(x0)h

−dH(C1[d] · [µj]d−1≤j≤2d−1){1 + oP (1)}
(49)
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where
[

µj

]

d−1≤j≤2d−1
= [µd−1, . . . , µ2d−1]

T , C1[d] is the dth column of the

scalar matrix C1, and · denotes the point-wise multiplication.

Plug (44) in (49) we get:

Bias(β|X) = βdh
−dH−1(C1 · S)−1 · (C1[d] · [µj ]d−1≤j≤2d−1){1 + oP (1)}

Hence, as we choose h = n−k, the conditional bias of m̂ = eT0 β̂ is

Bias(m̂|X) = βdn
−dkeT0H

−1(C1 · S)−1(C1[d] · [µj]d−1≤j≤2d−1){1 + oP (1)}
= βdn

−dkeT0 ((C1 · S)−1(C1[d] · [µj]d−1≤j≤2d−1)){1 + oP (1)}
= O(n−dk)

(50)
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(a) weights for m2 estimation
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(b) weights for m4 estimation
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Figure 3: Weights of the 160 experts on estimation for m2, m4, m6
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