
Dynamic Casts in the Plaid Programming Language

Mark Hahnenberg
Adviser: Jonathan Aldrich

Abstract

Typestate is a new paradigm in programming language design that
allows programmers to explicitly specify state transitions, which include
the addition and removal of the fields and methods of objects at runtime,
within their programs. Plaid, a general-purpose programming language
in development at Carnegie Mellon, reifies this idea of typestate in an
actual implementation. In Plaid, object aliasing complicates the static
verification of state transitions by making it impossible to know with
certainty the state of all other objects after a transition has been per-
formed [1]. Plaid solves this issue with permission kinds, which help
programmers as well as the compiler reason about aliasing in programs.
In most languages, runtime or dynamic casts must be introduced either
explicitly by the programmer or implicitly by the compiler at certain
points in a program in order to ensure that the language is typesafe.
The addition of aliasing information to a gradual type system raises sev-
eral issues in the implementation of these casts. In order to cast some-
thing to a type with a specific permission, aliasing information must be
maintained at runtime to verify that the resulting permission is compat-
ible with all other existing permissions for that object. For my thesis I
defined a static and dynamic semantics for dynamic casts in the Plaid
programming language, incorporated these semantics into the Plaid com-
piler implementation, and examined the impact of this implementation
on the overall performance of compiled Plaid programs.

1



Contents

Contents 2

List of Figures 3

List of Tables 4

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Gradual Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Typestate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Casts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Investigation 13
3.1 Eager Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Lazy Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Implementation 16

5 Evaluation 18
5.1 Benchmarks and Implementation Limitations . . . . . . . . . . 18
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2



Bibliography 20

List of Figures

1.1 Code listing for an example File class. We can see that the state
of the object is implicitly represented by whether or not filePtr is
null. We must check the state at runtime to ensure that the client
of File’s API is using it correctly. . . . . . . . . . . . . . . . . . . . 6

1.2 Code listing for the File example using typestate. . . . . . . . . . . 7
1.3 Client code for the File example . . . . . . . . . . . . . . . . . . . 8

2.1 Method with potential aliasing. . . . . . . . . . . . . . . . . . . . . 11
2.2 Permission splitting judgments . . . . . . . . . . . . . . . . . . . . 12
2.3 Permission compatibility judgments . . . . . . . . . . . . . . . . . 12

3.1 Two aliases to an object with the same (immutable) permission
block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Left: x is cast to a uniquepermission, creating a new block and
forwarding the old block to the new one. Right: y is accessed,
causing the compatibility of the old immutableblock to be checked
against the new uniqueblock, which causes an error to be thrown. 15

4.1 Snippet of Plaid code to demonstrate code generation . . . . . . . 17
4.2 Annotated snippet of resulting Java source code generated from

the earlier Plaid code in Figure 4.1 . . . . . . . . . . . . . . . . . . 17

3



List of Tables 4

List of Tables

1.1 State table for File . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 A table of permissions in Plaid and their meanings . . . . . . . . . 11



Chapter 1

Introduction

1.1 Motivation

One of the primary jobs of programmers has always been the manipulation of
state during the execution of the programs that they write. While some forms
of computation can be expressed in a stateless fashion, there will always be
some programs that are inherently stateful. Until recently, programmers had
to implicitly represent the states of the resources that they were manipulating
within their programs.

There is no way to statically check that the objects being manipulated
within the program were indeed in their expected states; rather, the program-
mers had to manually verify that everything was as it should be. This implicit
representation of state leads to a number of bugs due to the fact that the map-
ping of implicit state to explicit state within a program is maintained within
the minds of the programmers themselves, rather than explicitly in the code.

To demonstrate why this is a problem, let us consider the following exam-
ple, to which we will refer throughout this thesis. Imagine in some program-
ming language that we have a File object. This File object has open(),
close(), and read() methods along with a pointer to the actual resource
that represents the file in the underlying operating system. When the File is
open, the pointer points to whatever operating system resource, and when the
File is closed, the pointer should be null. When the File is closed, calling
read() will throw a runtime error. When the File is open, calling open() will
throw a runtime error. When the File is closed, calling close() will throw a
runtime error.

Due to this behavior, a programmer using this File API should check the
state of the File by examining whether or not the internal File pointer is set

5



CHAPTER 1. INTRODUCTION 6

public class File {

private final String name;

private RawFile filePtr;

public File(String name) {

this.name = name;

this.filePtr = null;

}

public void open() {

if (this.filePtr != null) {

throw new RuntimeException("File is already open!");

}

filePtr = // ...

}

public void close() {

if (this.filePtr == null) {

throw new RuntimeException("File is already closed!");

}

// ...

filePtr = null;

}

public String read() {

if (this.filePtr == null) {

throw new RuntimeException("Cannot closed file!");

}

// ...

}

}

Figure 1.1: Code listing for an example File class. We can see that the state
of the object is implicitly represented by whether or not filePtr is null. We
must check the state at runtime to ensure that the client of File’s API is using
it correctly.

State of File open() close() read()

open BAD (go to closed state)

closed (go to open state) BAD BAD

Table 1.1: State table for File



CHAPTER 1. INTRODUCTION 7

state File {

val String name;

}

state OpenFile case of File {

val RawFile filePtr;

method read() {

// ...

}

method close()[OpenFile>>ClosedFile] {

// ...

this <- ClosedFile;

}

}

state ClosedFile case of File {

method open()[OpenFile>>ClosedFile] {

// ...

this <- OpenFile;

}

}

Figure 1.2: Code listing for the File example using typestate.

to null. If the programmer forgets to do so, this could introduce a subtle bug
into the program that may only be found at runtime. In most programming
models, there is no way to catch this error statically, which can drastically
increase the cost of such errors.

1.2 Overview

The Plaid programming language aims to solve this type of problem by in-
troducing the notion of typestate. Typestate takes the notion of the implicit
state of objects at runtime and makes it explicit in the type system of the
language so that the types of transitions and limitations described above in
the File example can be described very naturally in a way that the compiler
can verify statically. For example, one might write the File example in the
manner shown in Figure 1.2.

As we can see from the client code in Figure 1.3, the typechecker can
statically detect state violations. In this code, the client closes the File and
then attempts to call read() on it again. The typechecker will see that the
read() method does not exist for f at this point in the program and raise an



CHAPTER 1. INTRODUCTION 8

var f = new ClosedFile{ val String name = "foo.txt"; };

f.open()

f.read()

f.close()

f.read() // typechecker will raise an error here

Figure 1.3: Client code for the File example

error.



Chapter 2

Background

The Plaid programming language is a gradually-typed typestate-oriented pro-
gramming language being developed at Carnegie Mellon. To provide the nec-
essary context of the contributions of this thesis, we will examine each of these
aspects of Plaid and how they interact with one another.

2.1 Gradual Typing

Historically, one of the defining characteristics of any programming language
was its type system (or lack thereof), and the first thing that anyone learning a
new programming language would worry about with respect to the type system
was which of the two major camps it falls into: statically-typed languages or
dynamically-typed languages.

A statically-typed language checks the types of the expressions a pro-
grammer has entered to make sure they are consistent with the programmers
stated expectations as well as with the expectations of the compiler itself. This
allows the compiler to catch certain types of programmer errors at compile
time, drastically reducing the cost of these errors[insert reference], but at the
cost of some productivity overhead.

A dynamically-typed language does not perform any static checks, in-
stead leaving these checks to be done at runtime. Obviously this removes any
potential for the compiler to catch programmer mistakes at compile time, but
it also provides additional flexibility and dynamism.

There is a significant amount of material detailing the pros and cons of both
statically- and dynamically-typed languages. There is also a third, somewhat
newer camp that is a combination of the two: gradual typing. A Gradually-
typed programming language allows the programmer to omit some type an-

9



CHAPTER 2. BACKGROUND 10

notations, causing the compiler to interpret those objects without type anno-
tations as having a dynamic type (i.e. no type information is known or tracked
for the object). This feature allows the programmer to leverage the benefits
of both statically- and dynamically-typed languages. A gradually-typed lan-
guage must introduce additional casts, which is why its presence in Plaid is
relevant to this thesis.

2.2 Typestate

Many real world programs consist of a number of objects transitioning among
a set of states throughout the life the program. A method call for an object
may make sense when that object is in one state while it would be considered
an error to call the same method when that object is in a different state. For
example, imagine a File object. A File can either be open or closed. The
open() method, when called on a File that is closed, changes the state of
that File to open. However, calling the open() method again on that now
open File would not make sense with respect to the semantics of a typical file
I/O API. Typestate seeks to make these sorts of interactions explicit in the
type system of the programming language so that the compiler can statically
check them.

2.3 Permissions

In Plaid, the types of objects change at runtime. Aliasing makes it impossible
to statically guarantee that a particular object is in the state we think it is [1].
Take, for example, the function foo in Figure 2.1 that takes two arguments,
x and y of type OpenFile. In foo we call close() on x, changing its type to
ClosedFile. What is the type of y at this point? If x and y were aliases of
the same File object, y now has the type ClosedFile. If they were not, then
y is still has the type OpenFile. For the compiler to statically check this kind
of situation it needs at least some guarantees as to the type of y or all bets
are off. Plaid solves this problem through the use of permission kinds.

Access permissions are additional information associated with each ref-
erence to an object that give additional static information to the compiler,
allowing it to resolve situations like the one described above. They have three
pieces of information associated with them: how many other aliases to this
object could potentially exist (many or none), what sorts of operations can
be performed on this particular alias (i.e. whether or not we can change the



CHAPTER 2. BACKGROUND 11

method unit foo(OpenFile x, OpenFile y) {

x.close();

y.close(); // is this valid?

}

Figure 2.1: Method with potential aliasing.

Permission Other aliases? Can state change? Others can state change?

unique N Y N

full Y Y N

immutable Y N N

shared Y Y Y

pure Y N Y

none Y N Y

Table 2.1: A table of permissions in Plaid and their meanings

state of this object), and what sorts of operations can be performed on any
other aliases. Table 2.1 shows a listing of permissions and their meanings.

Splitting/Joining

Whenever a method is called, new aliases are created for both the receiver
of the method call (i.e. the o in o.foo() in the form of the this reference)
as well as the arguments that are passed into the method. For each of these
objects we have to give up some of our permission to allow method to be able
to use it. The method specifies what permission it needs in order to fulfill
its duties. We then split the permission into the part that the method takes
and we leave the remainder behind. When the method call has completed and
returns, we join the permissions back together. We define the split judgment
in Figure 2.2 to explicitly specify which permissions can be split into which
other permissions.

Compatibility

In order to determine when a permission cast violates any of the invariants
specified above we define the compatibility judgment. Two permissions for
aliases to the same object are compatible when they can coexist without
contradicting the invariants specified in Table 2.1. These judgments are found
in Figure 2.3



CHAPTER 2. BACKGROUND 12

unique V unique/none

k ∈ {unique, full}
k V full/pure

P ∈ {pure, none}
k V P/k

k ∈ {unique, full, shared}
k V shared/shared

k ∈ {unique, full, immutable}
k V immutable/immutable

Figure 2.2: Permission splitting judgments

P2 ↔ P1

P1 ↔ P2 unique ↔ none

P ∈ {pure, none}
full ↔ P

P ∈ {immutable, pure, none}
immutable ↔ P

P ∈ {shared, pure, none}
shared ↔ P

P ∈ {full, immutable, pure, none}
pure ↔ P

P ∈ {unique, full, immutable, shared, pure, none}
none ↔ P

Figure 2.3: Permission compatibility judgments

2.4 Casts

Casts can be inserted in one of two ways: either the programmer inserts a cast
manually or the compiler generates a cast when invoking dynamically-typed
code. In the implementation, casts are checked eagerly for compatibility with
all other existing permissions for that particular object. The decision of eager
versus lazy semantics for casts is discussed in depth in the next chapter.



Chapter 3

Investigation

One way to broadly categorize the permission casts for Plaid is along the lines
of eager semantics versus lazy semantics.

3.1 Eager Semantics

The eager semantics for casts in Plaid means that the compatibility of
permission casts are checked immediately as soon as they are executed. This
particular method has the advantage that it is obvious to the programmer
where and when a program fails due to a botched cast, i.e. it is fail-fast.
Additionally, no further compatibility checks must be done except for at cast
sites, which should be relatively sparse.

The implementation for the eager semantics is relatively straightforward.
A table of permission references counts must be maintained for each object.
Whenever a cast occurs, the new permission is checked against all other per-
missions. If there are any incompatibilities, an error is thrown. Obviously
this table must be thread-safe to prevent multiple threads from corrupting
the reference counts. This makes heavy casting in a multithreaded environ-
ment potentially very costly.

3.2 Lazy Semantics

The lazy semantics for casts in Plaid means that the compatibility of permis-
sion casts are not necessarily checked immediately when the cast is executed.
This leads to broader interpretations of when checks should be done. One nat-
ural point is whenever an object is accessed we check for any earlier bad casts.
This scheme could be accomplished through pointer forwarding. Instead of a

13



CHAPTER 3. INVESTIGATION 14

Figure 3.1: Two aliases to an object with the same (immutable) permission
block

reference pointing directly to an object, it points at permission pseudo-object
that keeps track of the permission associated with all the references that point
to it. The block itself then points to the object. Figure 3.1 depicts this setup.
Whenever a cast occurs, a new permission block is created and the old block’s
pointer is pointed at the new block. If, at a later time, a different alias ac-
cesses the old permission block, it sees that it has been forwarded to another
block and checks itself for compatibility with the newer block. If the two are
incompatible, a runtime error is thrown. Figure 3.2 demonstrates this process.

Unfortunately, the lazy semantics has several downsides. The error report-
ing is very non-local in that a bad cast might not be detected for quite some
time, thereby making the error rather far removed from its actual source.
There are remedies for this, namely blame tracking, but that adds an ad-
ditional level of complexity. Another downside is that this adds an extra
dereference for each object access. The upside is that casts are very fast be-
cause no compatibility checks need be made. This method also suffers from
the apparent concurrency issues mentioned for the eager semantics; however,
the effects are more severe in this case since locking would have to be done
for each object access.



CHAPTER 3. INVESTIGATION 15

Figure 3.2: Left: x is cast to a uniquepermission, creating a new block
and forwarding the old block to the new one. Right: y is accessed, causing
the compatibility of the old immutableblock to be checked against the new
uniqueblock, which causes an error to be thrown.



Chapter 4

Implementation

The Plaid compiler is self-hosting and targets the Java Virtual Machine through
the generation of Java source code. The parser is written using JavaCC and
the runtime is written in Java, while everything else, from the typechecker to
the code generator, is written in Plaid itself. As of now, the Plaid implemen-
tation only includes three permissions: unique, immutable, and none.

I had to modify both the runtime and the code generator to incorporate
casts into the compiler implementation. Since I was implementing the eager
cast semantics, I added a thread-safe reference counting table to each object
created at runtime. I also modified the code generator to insert the correct
calls into the runtime at the various splits, joins, and casts to both maintain
correct reference counts and to do compatibility checks. Figure 4 contains an
example of the corresponding Java code that would be generated for the given
snippet of Plaid code given in Figure 4.1

16



CHAPTER 4. IMPLEMENTATION 17

state Foo {

method unit test() {

java.lang.System.out.println("Hello, World!");

}

}

method unit main() {

var f = (immutable) new Foo;

// Java source snippet starts here

f.test();

// Java source snippet ends here

}

Figure 4.1: Snippet of Plaid code to demonstrate code generation

// lookup the test() method in f (defined earlier)

final PlaidObject vAr1915$plaid;

vAr1915$plaid = PlaidRuntime.getRuntime().getClassLoader().lookup("test", f);

// get a unit value to apply the method to

final PlaidObject vAr1917$plaid;

vAr1917$plaid = plaid.runtime.PlaidRuntime.getRuntime().getClassLoader().unit();

// split the types for the method call

PlaidPermType start = PlaidPermType(immutable(), nominalType("f"));

PlaidPermType end = PlaidPermType(immutable(), nominalType("f"));

PlaidPermType leftover = PlaidPermType(immutable(), nominalType("f"));

vAr1917$plaid.split(start, end, leftover);

// call test()

PlaidObject vAr1918$plaid;

vAr1918$plaid = plaid.runtime.Util.call(vAr1916$plaid, vAr1917$plaid);

// join the types back together

vAr1917$plaid.join(leftover, end, start);

Figure 4.2: Annotated snippet of resulting Java source code generated from
the earlier Plaid code in Figure 4.1



Chapter 5

Evaluation

5.1 Benchmarks and Implementation Limitations

Several benchmarks were ported from Google’s V8 JavaScript benchmark
suite. JavaScript shares many features with Plaid, including the ability of
objects to change types at runtime through the addition and removal of fields
and methods. While the type system of JavaScript provides far fewer guaran-
tees than that of Plaid, the dynamism of the language makes its benchmarks
suitable for testing Plaid.

Unfortunately, as of the writing of this thesis, the Plaid implementation is
not quite mature enough to be able to distinguish any performance difference
between Plaid with casts and Plaid without casts. In fact, the benchmarks
uncovered several deeper issues in the Plaid implementation–its heavy, perhaps
wasteful use of memory and its rather low recursion limit. Each method call
in Plaid translates into three to four Java function calls, making it quite easy
to overflow the stack. These problems are probably simply a limitation of the
JVM, as it was not constructed with such a dynamic language in mind.

5.2 Future Work

There is some additional information that can be tracked by the aliasing per-
missions, namely state guarantees. They guarantee a ceiling state (i.e. the
most general supertype possible) for a particular alias. This extra informa-
tion allows the compiler to more accurately track the state of a particular
object, which in turn allows the type system to catch more errors than it
would without state guarantees.

18



CHAPTER 5. EVALUATION 19

While they have been included in past publications on gradual types-
tate [2], state guarantees are not currently part of the official Plaid language
specification. When the specification matures a little to the point where these
are included, dynamic casts with state guarantees could be examined further.
Additionally, the remaining permissions (full, shared, and pure) need to be
added to the implementation as soon as they are incorporated into the official
language specification.



Bibliography

[1] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of
aliased objects. OOPSLA, 2007.

[2] Roger Wolff, Ronald Garcia, Eric Tanter, and Jonathan Aldrich. Gradual
featherweight typestate. CMU-ISR-10-116R, 2010.

20


