Human-Like Understanding of Two and Three Line Figures

Steven S. Hansen' and David S. Touretzky'>
!Computer Science Department
2Center for the Neural Basis of Cognition
Carnegie Mellon University, Pittsburgh, Pennsylvania

Abstract

We present a computational theory of mid-level vision within
the Line Pair micro-domain, implemented in Mathematica.
The theory assumes that categorization is the fundamental as-
pect of understanding, and that binding, symmetry, regularity
detection, and proportionality detection are the mechanisms
by which we categorize instances. We discuss additional as-
pects of “understanding” the domain, and suggest other do-
mains to which the theory might transfer.

Introduction

Concepts in the Line Pair domain are exemplar sets com-
posed of pairs of line segments . This domain is decep-
tively simple: although an exemplar can be fully specified by
just four points, at least 20 commonly used symbols can be
created, and countless perceptually distinct variations exist
within these classes. Figure 1 shows some common shapes
from this domain, and elaborates on variations one might
perceive for one of them. We claim that our theory solves
the same computational problem, and thus captures the same
type of information, as a human when exposed to an exem-
plar set within this simplified domain.

Our theory aims to not only account for how we differen-
tiate between these two-line structures, but also to demon-
strate how such an account helps a variety of processes typ-
ically associated with understanding. But what does it mean
to understand a set of these structures? We view understand-
ing as a family of processes, each of which widens the range
of situations during which one could be said to "understand’
something. Six such processes are discussed here: cate-
gorization, outlier recognition, outlier correction, prototype
generation, concept extension, and structuring justification.
We argue that the most fundamental aspect of understand-
ing is that of categorization: if one can group instances of
a domain into plausible categories one can be said to under-
stand that domain, and in fact the other 5 processes use the
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We assume an unordered exemplar set to which people have
full access. Modeling serial order effects, meaning exemplars are
presented one at a time and the order of presentation affects the re-
sults people produce, would introduce additional constraints on our
clustering algorithm, but is outside the scope of our investigation.
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Figure 1: Some common shapes in the Line Pair domain.
The expansion depicts a few easily differentiated concept
classes within the range of “T”-like characters.

category representation system as their sole source of infor-
mation without recourse to anything but minimal additions
to the architecture.

In our domain, “plausible” categories are those that are
the most perceptually salient for humans. For example,
looking at Figure 2, one typically groups the exemplars into
“T” and “X” shapes. This isn’t the only possible interpreta-
tion: we could group the instances by their size or relative
angle, or any combination of factors. But since people find
this one division so much more natural than the others, our
theory will always choose it over the other interpretations.
However, in a case where human opinions on the interpre-
tation do differ, our theory will likewise be less confident in
its decision, sometimes picking one over the other based on
random factors.

Looking again at Figure 2, we can go further: the “X”
shapes fall into two groups based on the relative sizes of the
two lines, although they could also be categorized based on
differences in their points of intersection. This raises two
issues with regard to how our theory handles categorization:
categorization is a recursive process of subdivision, and cat-
egorization can be ambiguous even when we strive for the
standard human interpretation.
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Figure 2: Exemplar set in the Line Pair domain, hand drawn
in Mathematica as input to our program.

Content of the Theory
Three Perceptual Phenomena

We claim Reflection, Frames of Reference, and Scale Selec-
tion are perceptual phenomena that must be accounted for in
any feature set sufficient for understanding in the Line Pair
domain.

Reflection within the Line Pair domain consists of a type
of symmetric relation, such that a figure is a reflection of
another if one of their features differs only by its sign; Fig-
ure 3 A depicts this type of relation for the orientation fea-
ture.

While all line pairs could be described solely in the frame
of the viewer, proper generalization may require use of an
object-centered frame of reference. For example, in Fig-
ure 3B, we see a concept class where orientation with re-
spect to the viewer is unimportant.

Finally, while some of the features measurable for two-
line figures express absolute quantities, concepts may also
rely on proportionally scaled relationships between ele-
ments. Figure 3C' shows such a concept, where the stem
of the “T” is always 1/3 of the way along the length of the
hat.

Four Distinguished Points

Features within our domain can be regarded as relations be-
tween four distinguished points on a line segment: the two
endpoints, the midpoint, and the point formed by projecting
the closest endpoint of one line onto the other (this becomes
the intersection point if the lines intersect). Initially only
the endpoints seem relevant, as they are all that is needed
to draw any line pair, but they aren’t sufficient to describe
all possible line pair concepts. For example, in the case of
the capital “T”, the fact that the midpoint is bisected is one
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Figure 3: Three concept classes of “T”’s which highlight
different perceptual phenomena. A: Figures either upright
or inverted. This aspect of the concept class involves re-
flective symmetry. B: Figures whose angle from stem to
hat remains nearly constant, but whose orientation relative
to the observer is irrelevant, and whose stem length varies
considerably. All such regularities, or lack thereof, must be
captured in the concept’s representation. C: Figures whose
distance from stem to hat remains constant, but whose stem
is a fixed proportional distance along the length of the hat.

of the most salient features. Additionally, the canonical “X”
and “+” rely on the relationship between midpoint and inter-
section point to be described in a natural manner.

Three Types of Quantities

The quantities used by our theory are lengths, signed dis-
tances, and signed angles. It is one of the assumptions of
our theory that nonlinear measurements aren’t used by the
human perceptual system for tasks of this nature.

The Binding Problem

When comparing two line pairs, several correspondence
problems arise that require our representation to bind up to
three variables to the pieces of a line pair. The bindings are
determined using heuristic voting, since no one rule is ade-
quate for all situations.

The primary binding problem comes from the fact that
a line pair often has asymmetries between the two lines it
contains, with the canonical example being the capital letter
“T”. Consider Figure 4A, where a “T” shape is compared
to a “T” that has been rotated 90 degrees. To appreciate
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Figure 4: A: Two figures that need to be compared based
on the roles each of their lines play. The stem role is shown
via a dashed line, while the hat is solid. B: Two figures
which need a description of angle between the stem and hat.
Creating a label for the direction of each line disambiguates
this description, and is shown by an arrowhead.

the similarity in these shapes, we must know to compare the
vertical line in the first shape to the horizontal line in the sec-
ond. But without a thoughtfully assigned binding, we might
compare vertical line to vertical line and wind up thinking
the two shapes are entirely dissimilar. We thus created roles
for each line in our theory, with one segment designated the
“stem” and the other the “hat”. Following this intuition, the
binding decision is made on the basis of heuristics, such as
that the stem normally bisects the hat and not vice versa.
Bindings are permitted to remain ambiguous when an ex-
emplar is truly symmetric, such as an “X”, in which case
our algorithm must try both bindings to find which gives the
better match.

The secondary binding problem arises in angular compar-
isons, where one needs to know the direction of rotation.
For example, we might need to compare the relative angle
of two stems with respect to their hats in order to differen-
tiate the two line pairs in Figure 4 B. Without providing the
direction in which the stem points, we wouldn’t be able to
differentiate between cases where only the direction of ro-
tation varies. Two additional bindings must thus be created.
In the case of both the hat and the stem, one end point is la-
beled the start, and the other the finish, so that the direction
can be seen as going from the start point to the finish point.
Again following the intuitive bindings a capital “T” might
have, we arrived at several plausible heuristics, such as that
the stem should point foward the hat.

Combinatorial Feature Set

In order to adequately represent a line pair for purposes of
our theory, we need a set of features that both uniquely iden-
tify the line pair and are plausibly perceivable by humans.
We have identified a set of over 30 required features for
this domain. The feature set is primarily the cross product
of all distinguished points and all possible measurements,
calculated in both reference frames. We assume that the

human visual system computes these in parallel (Ullman
1984). Figure 5 demonstrates that the perceptually salient
distinctions are immediately apparent in the feature values
shown. Many of the features deal with distances between
two distinctive points, one on the stem and one the hat. A
noteworthy aspect of the feature set is its separation of sign
from magnitude to capture symmetry. Reflective symmetry
is expressed by magnitudes being similar while signs are op-
posite. So, in Figure 3 A the magnitude of the relative angle
and orientation features would have low variance, but the
signs would have high variance. Another noteworthy aspect
of the feature set is its use of redundancy to capture pairwise
covariances between features. (It is an open question as to
whether humans easily perceive covariances between larger
subsets of features.). An example of this would be our ‘dif-
ference of line lengths’ feature, which can be used to see
whether or not the hat and stem are consistently similar in
length. Another invariant captured by our feature set is that
of scale. The magnitude of any length or distance feature is
accompanied by an additional feature encoding the ratio of
the length or distance to the overall size of the figure (de-
fined as the mean of the stem and hat lengths), thus allowing
our theory to express relationships that are scale-invariant,
such as Figure 3C.
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Figure 5: A small sample of the features calculated. a=stem
length, 5 = minimum distance from stem to hat, 6;=hat ro-
tation, and 5 = stem angle relative to hat. Each feature cor-
responds to a dimension that most people would find salient.

Understanding as Hierarchical Concept
Induction

As discussed above, we believe categorization is at the heart
of understanding, and as such, it is at the heart of our theory.
Categorization within our domain is akin to seeing the struc-
ture inherent in an image, so an understanding of the domain
is best thought of as solving unsupervised concept learning
problems, or equivalently as concept induction. This con-
cept induction must also meet various specifications set by
our above discussion of how humans perceive exemplar sets
in our domain. Specifically, the concept induction process
should be performed recursively until no perceivable divi-
sions exist, and at each step the process should choose the
most perceptually salient division as judged by an average
human. It follows that the level at which a distinction is rep-
resented is indicative of the salience of that distinction.




So far, this notion of salience that underlies our theory has
been underspecified. Let us operationalize the “salience” of
a distinction between two line pairs to be the distance be-
tween the pairs in a feature space. Thus, the farther apart the
two line pairs are in some yet to be defined feature space,
the more salient the distinction between them. This defini-
tion was chosen for both its dovetailing with unsupervised
learning theory and its correspondence to our intuitive no-
tion of distinctions being more salient the more “different”
the two objects are.

Categorization-based understanding within our domain
can thus be thought of as a hierarchical process that uses op-
erationalizations of human perceptual tendencies to guide it.
In particular, our theory specifies definitions for the salience
of perceptual distinctions, relevant features for comparison,
and the threshold of automatic categorization in humans.
With these specifications in place the process reduces to a
relatively tractable unsupervised learning problem.

This process is illustrated by Figure 6, which shows the
concept hierarchy produced by categorizing the exemplar
set at the root of the tree. The two main branches of the
tree indicate that the distinction between the “\” shapes and
the others was the first made, since these two instances were
highly similar and distinct from the others along many di-
mensions. The two subdivisions of the non-“\” node show
that this concept class naturally clusters around two points
in feature space. Specifically, these figures can be separated
into “L”, and “=" shapes. Notice that the node containing
“X” shapes has no children; this means that even though the
elements of this concept class aren’t identical, their differ-
ences are not judged to be significant.

Line Triplet Heuristics: Context Sensitive and
Semantically Plausible

The basic task of binding roles to individual lines in a Line
Triplet sounds like a straight extension of the binding prob-
lem in the Line Pair domain. Namely, there is just an ad-
ditional line, so the labels now depict the salient ’odd man
out’, the stem, and the two other lines, the primary and sec-
ondary leaves. All lines must still have an endpoint labeling,
for the same reasons discussed in the Line Pair binding sec-
tion.

However, this surface similarity belies a deep shift in the
way binding must be thought when dealing with more than
two lines. When dealing with a simple dichotomy, there is a
sense in which there needn’t be a ’correct’ answer, so long
as the results of such queries are always consistent, since the
results are merely used for comparing ’stem’ to ’stem’ and
not-stem to not-stem. But with three lines, consistency is
obvious much harder to come by.

The binding heuristics used to solve this problem thus
come in two varieties: Consistent heuristics are rather ar-
bitrary and only promise that similar shapes are similarly
labeled. E.g. lines point from left-to-right, the top-most line
is the primary leaf, etc. These are the only type employed in
the Line Pair domain. The other type is the semantic heuris-
tic, each of which actually correspond to having a salient
property (e.g. symmetry), and thus have meaning even when
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Figure 6: The hierarchical categorization of an exemplar
set. The root of the tree is the original set, and the children
represent sub-concept classes of the parent, with the depth
representing their overall salience.

consistency isn’t needed (even a solitary A’ has a unique
stem).

The bindings for Line Triplets also have an ordinal re-
lationship with each order with regards to importance: the
stem is more important to bind than the primary leaf, which
in turn is more important to bind than the secondary leaf.
The idea is that the best stem candidate shouldn’t be labeled
a leaf regardless of how much the primary leaf heuristics
want him; it’s always more important to have a good stem
than a good primary leaf. This relationship means that we
can (and should) decide on a stem before deciding on a pri-
mary leaf.
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context-free bindings decide based on the heuristics most
satisfied in the surrounding triplets, such as in Figure 8.
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Figure 7:

In general, heuristics are needed for n-1 of the n labels.
Thus the third label, the secondary leaf, is fixed by the
heuristics for the stem and primary leaf, as the only re-
maining unlabeled line becomes the de facto secondary leaf.
Likewise, the finish point is fixed via heuristics for the start
point.

Now that some of the general properties of Line Triplet
heuristics have been considered, the procedure for select-
ing the best bindings follows rather naturally. The best la-
beling for a specific triplet corresponds to the labeling that
minimizes the weighted sum of the heuristics. The effective
weight of each heuristic is determined by its a priori weight
and the context weight. The a priori weight is simply our es-
timate of how powerful a heuristic is. The context weight is
determined by the distribution of the heuristic’s mismatches
across the locally (bound using just the a priori weights)
optimal labeling of each triplet in the neighborhood. The
higher the mean of that distribution, the higher the average
mismatch in the best case, and thus the lower the weight on
that heuristic.

The rationale behind this is that we see how happy each
heuristic is with the context-free choice of binding for each
of the triplets in the neighborhood. Those heuristics that
were generally very happy (low mean) are weighted higher.
This weighting scheme makes any triplet with ambiguous

Figure 8:

Heuristic List
e Stem Heuristics

— Topological Symmetry - Checks to see how closely
the proposed stem topological feature with the pri-
mary leaf matches the topological feature of the pro-
posed stem and secondary leaf. Here matches’ means
that in addition to the distance measured being similar,
the two topological features should be symmeterical in
some way. Normally this means the same distinguished
points are involved. However, the stem can use differ-
ent endpoints in the two features, as per a sort of re-
flective symmetry (think of the stem in a *Y’ versus an
'H).

— Minimum Distance Symmetry - Dropping the sym-
metry constraint of the topological symmetry heuristic
gives a heuristic that judges similarity based solely on
how large the gaps between lines are (good for finding
a stem in asymmetric cases, such as an "h’ like shape).

— Rotational Symmetry - Checks how closely the pro-
posed stem’s angle with the primary leaf matches the
angle between the proposed stem and the secondary
leaf. The angle is the minimum angle of the leaf relative
to the stem, and can thus vary from 0 to 90 degrees. The
minimum is used to see the symmetry in identical and
reflected angles as being equivalent for the purposes of




binding a stem (think of finding a stem for an isosceles
triangle versus a 7 like shape).

— Length Uniqueness - Checks to see how much the pro-
posed stem’s length differs from the lengths of the
leaves. Ideally, the stem’s length is the *odd man out’.
This check is made by taking the difference between
the lengths of the proposed leaves, as the stem that min-
imizes this distances would be the best candidate.

e Primary Leaf Heuristics

— Length - The longer leaf is judged to be primary.

— Left-of-Stem - The leaf most to the left of the stem is
judged to be more primary.

— Top-of-Stem - The leaf most above the stem is judged
to be primary.

e Endpoint Directionality Heuristics

— Leaves point toward stem - Minimize the distance be-
tween the endpoints of the leaves and the stem.

— Stem points toward leaves - Minimize the distance be-
tween the endpoint of the stem and the closest leaf.

— Points to the right - The most rightward endpoint is the
better finish point.

— Points Upward - The most vertical endpoint is the better
finish point.

Topological Feature Space: A Mechanism for
Gross Similarity Distinctions

While the Line Pair domain could be dealt with using a sin-
gle feature space to represent every instance of the domain,
the increased complexity of the Line Triplet domain not only
led to an increase in the size of the total feature space as
expected, but also to the partitioning of the space into two
separate feature sets based on how fine a grain of distinction
they made.

The insight that led to this split was that it made little
sense to use a rich feature set to compare an "F’-like Triplet
to an asterisk-like Triplet - the two shapes aren’t similar
enough to be meaningfully compared within the traditional
feature space. The question then arises as to how one can
determine when two Triplets are similar enough to use this
feature space.

The intuitive answer, which has thus far held up empiri-
cally, is that we compare shapes only when their topologies
are sufficiently similar. By topology, we mean the standard
mathematical notion of what remains constant under con-
tinuous, non-tearing, transformations. We define the topo-
logical structure of a Line Triplet under the assumption that
the two closest important points on each pair of lines in the
Triplet are seen as ’glued together’ and thus preserved under
topological transformations.

Given this definition of topology within the Line Triplet
domain, we can define a topological feature set which rep-
resents this structure and a means of comparing two Triplets
of arbitrary topology. The topological feature set consists of
the three pairs of important points that comprise the ’gluing
spots’ in a Triplet (one per pair of lines), along with the dis-
tance between each pair of points. Notice that this means
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Figure 9:

two Triplets might not have the same topological feature set
when they have different topologies. Thus, in order to com-
pare two Triplets, we compute the union of the two feature
sets for each Triplet and then compute their Euclidean dis-
tance, as shown in Figure 9.

This new feature set can now be used to compare two
Triplets of different topologies, with the rich feature set used
only when all of the Triplets being compared are nearly
identical in topological space. However, this process is re-
fined slightly by noticing that humans don’t find topolog-
ically equivalent shapes to always be similar, such as the
two shapes Figure 10 . Thus the topological feature set is
supplemented by a set of rotational features representing the
minimum angle between each pair of lines in the Triplet.

Fine Grained Feature Space: An Extension of
the Two Line Case

Now that a mechanism is in place for comparing Triplets
with radically different topologies, we can return to the orig-
inal problem of creating a fine-grained feature set that that
can capture the more subtle differences between Triplets.
This majority of this feature space is concerned with cap-
turing the features that relate one line in the Triplet to an-
other. These are a direct extension of the Line Pair feature
set, as the three possible pairings of lines within a Triplet
can be represented by three instances of the Line Pair fea-




Figure 10:

ture set. As noted previously on the Line Pair feature set
section, each Line Pair feature set is built combinatorially
from the following Cartesian product of distances: (impor-
tant point on line A) X (important point on line B) X (x or
y dimension) X (frame of the page or of line A) X (absolute
or proportional to the average line length) X (signor magni-
tude).

While this feature space captures most salient features,
there are some three-way relationships the humans can read-
ily pick up on. The most obvious of these is the illusory
line relationship, in which the three lines of the Triplet "line
up’ in some way. As the top section of figure 11 illustrates,
this ’lining up’ corresponds to three important points, one on
each line, forming a straight line. A feature can encode this
phenomenon by recording the total error that’s keeping the
three important points in question from forming a perfectly
straight line. Since potentially any combination of mid and
end-points could lend itself to such an illusory line, we must
add features corresponding to following Cartesian product
of errors: (important point on line A) X (important point on
line B) X (important point on line C).

It should be noted that an illusory line isn’t the only type
of three-way relationship perceivable. The bottom section
of Figure 11 illustrates depicts the different instance of the
more general relationship, the shared contour. A great vari-
ety of such relationships can be perceived and many can be
captured through the existing feature set via values among
many pair-wise features. However, no explicit representa-
tion exists for these more complex contours within the Line
Triplet feature set.

This omission is not an oversight, but rather a theoretical
claim: non-linear contours (and other advanced three-way
features) have no place within our domain, as they rely on
knowledge outside of our domain. Specifically, most con-
tours rely on implicitly interpreting a Triplet as having sur-
faces, and in some cases, depth values. The surprising de-
pendence of the Line-Triplet domain on various facets of
cognition is explored more generally in the discussion sec-
tion.
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Figure 11:

Demonstrating “Understanding”

Once the hierarchy of concept classes has been formed, there
are many ways to utilize this structured information. The
five discussed here are outlier recognition, outlier correc-
tion, prototype generation, concept extension, and structur-
ing justification. These examples are very closely tied to the
concept representation system, using it as the sole source of
information without recourse to anything but minimal addi-
tions to the architecture.

Outlier Recognition

One hallmark of understanding is the ability to recognize
that which seems to be unnatural or out of place. Exam-
ples of this can be found in a huge range of domains, from
pop-out effects in visual search (as well as search in the
other modalities) to identifying incorrect board positions
amongst chess experts. In our domain, we assume that con-
cept classes are well-supported, so outliers are defined as
those concept classes with very few members (possibly only
one). The property of being an outlier may be further sup-
ported by a large distance to the nearest well-represented
concept. Using these two definitional aspects of outliers, we
can detect outliers within our theory’s framework by scoring
every concept class based on its distance to the other concept
classes and the number of elements it contains. Figure 12
demonstrates a case where one shape can clearly be seen as




an outlier based on the types of support we described.
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Figure 12: An exemplar set where the figure in the dashed
box has been detected as an outlier.

Outlier Correction

Correction of an outlier is achieved by adjusting the feature
values until the exemplars can be incorporated into a more
acceptable concept class. Specifically, each outlier element
is matched to the closest sibling concept class in feature
space. If adding the element to the concept class doesn’t dis-
rupt the coherence of the concept, then it should be added.
If not, we can find the minimal feature deformation neces-
sary for the element to be accepted into the concept class.
This feature deformation can be achieved by repeatedly se-
lecting the feature contributing the most to the distance and
adjusting it to better conform to the concept class.

Prototype Generation

Another dimension of understanding is the ability to form
and use multiple representations of a concept, as the more
plausible representations one has, the greater the confidence
that one truly understands the domain. The most compact
representation examined is to store the prototypical example
of a category as being descriptive of the concept class. This
variety of representation is discussed at length in the litera-
ture on perceiving natural kinds, though its use in mid-level
vision isn’t as widely researched.

A prototype based representation is advantageous in many
situations, such as when new classifications must be made
quickly, or when we simply no longer care about the spe-
cific set of line pairs. Such a representation can be made by
constructing a figure based on the concept class’s distribu-
tions for each feature. Since our feature set over-specifies
the exemplar, at each step in the construction process we
must evaluate how much each of the applicable features
should contribute to the prototype. This contribution is made
through a linear combination of the applicable features’ pre-
dictions, weighted by their variances. Once constructed, this

unique pair of lines is prototypical of its concept class. Note
that while this means assuming a unimodal distribution for
each feature, the hierarchical nature of our theory’s catego-
rization means that at some level of sub-classification, this
assumption is likely to hold.

Concept Extension

An additional way of representing a learned category is to
create a generator capable of producing an infinite number
of new exemplars. Additionally, if one has such a generator
for each concept in a hierarchy, one could generate similar
exemplar sets to the one that led to the hierarchy’s formation,
or add to the set in such a way that extended the concepts it
showcased.

Now all we must do to extend an exemplar set is to gen-
erate instances drawn from the stored distributions such that
each concept class contributes new instances in proportion
to its importance to the global structure. While many meth-
ods for deciding this importance are possible, the one we
have found to yield the best results is to simply draw in-
stances from the second level of sub classified concepts in
proportion to the number of instances already in each class.
The reasoning behind choosing only the second level con-
cept classes to draw from is that drawing from deeper in the
tree tends to yield extensions that too closely follow the ex-
act structure of the initial exemplar set, rather than merely
capturing its theme. Of course, one could always change
what level to draw from depending on how broadly one con-
strues the notion of pattern.

Structuring Justification

The ability to explain one’s choice of categorization, which
consists of being able to explicitly identify the reasoning be-
hind each concept class’s formation, is important for full un-
derstanding. This aspect of understanding can be seen in
various protocol analysis experiments, where the subject is
asked to describe the process and reasoning used to come up
with his conclusion.

If, during each categorization step, we eliminate all of
the features with too little variance to be used in breaking
a concept into sub classes, then we have enough informa-
tion to explain our classification decisions in terms of sim-
ilarities and differences in prototypical feature values. In
other words, our theory can give a symbolic justification for
each concept class distinction made by using the information
gained in this new dimensionality reduction step.

This justification can be formed for any sibling concept
classes A and B by defining two sets, ABg and ABp, where
ABg contains the features shared by A and B, and ABp
contains the features which distinguish A from B. Addition-
ally, both sets must only contain well defined features (low
enough variance to not require further sub-classification) so
as to only describe the clearest differences and similarities
between the categories.

We can populate the two justification sets by making a se-
ries of comparisons between the dimensions reduced in the
superclass C' (which we will call F), and those reduced in
A and B (which will be referred to as F)y and Fg). The
important insight that makes these comparisons work is that



eliminating a dimension for clustering is equivalent to say-
ing that that dimension is a common property of the to-be-
clustered concept class, since its elimination was due to its
lack of contribution to the overall conceptual distance be-
tween members. Likewise, if a dimension was selected for
use in clustering, it must be a feature that the current con-
cept class differed on considerably. So, Fv C ABg, since
AU B C C and all elements in C' have similar values for
Fo by definition. We can then complete the set of features in
ABg by adding those features in F4 N Fp that have similar
distributions. Those that don’t will make up ABp.

Figure 13: The top concept class has been split into three
child classes. Since we eliminated the low variance features
before making this split, we can form a justification for this
particular split.

Take, for example, the task of constructing the justifica-
tion for the bottom left and bottom center concept classes
in Figure 13. We can say that these concepts were formed
because, while they had the same hat lengths, relative ori-
entation, and orientation of the stem relative to the horizon-
tal, they were defined by different values of stem length and
placement of the stem along the hat. The first part of this
justification simply stated the features found to be in ABg
and the second part stated the features found in ABp.

Discussion

Our choice of this micro-domain was inspired in part by the
work of Hofstadter and his students on understanding vi-
sual analogies, most notably the Tabletop and Letter Spirit
programs (Hofstadter 1996). We also gained insight from
Feldman’s work on perceptual grouping (Feldman 1997b).

While we claim our feature set gives human-like perfor-
mance for the Line Pair domain, other feature sets might
yield similar results, and possibly generalize better to more
complex domains. A careful investigation of what people
look at when classifying such simple images might lead to
insights into how the human feature set differs from the one
used here, and how those differences differentially affect
performance in various domains.

Our implementation’s judgments on the salience of vari-
ous distinctions should correlate with human subjects’ self-
reported salience values. In other words, if our implemen-
tation labels some distinction as very salient, one should be
able to confirm that most human subjects rate that distinction

as very salient. So, even though our theory relies on human
phenomenology as an evaluation criterion, our claims are
falsifiable.

Additionally, the hierarchal representation used here
seems phenomenologically plausible in the broad sense that
rather than simply making a single classification, humans
seem able to see the differences within each category. How-
ever, some runs of our theory’s implementation go several
levels deep in their sub-categorization. An investigation into
how deeply people typically process exemplar sets in our, or
a similar, domain might lead to important insights into the
validity of keeping such a deep concept hierarchy.

Related micro-domains for theorizing

Our domain is but one of many in which one can form theo-
ries of visual object understanding. It is an open question
as to whether other domains can be handled by the type
of analysis we’ve described, or if the Line Pair domain is
uniquely tractable. If our present theory could generalize to
these other domains, the converging evidence might help de-
termine which parts of our theory are applicable within real
world domains.

A related micro-domain is single continuous lines with a
limited number of curvature changes, which has previously
been investigated by Feldman (Feldman 1997a).This would
include characters such as the letter “S” and the numeral “6”.
We hypothesize that an exemplar set in this domain would
be perceived by human observers in a way similar to our
own domain. That is to say, this new domain lends itself to
being understood based on a hierarchical categorization. So,
while the feature set and the variety of symmetries would
be quite different from that discussed in the current theory,
at least some of the underlying theoretical framework would
remain constant between domains. Moreover, any invari-
ants between the two domains might provide insights into
the general nature of the regularities humans are capable of
detecting.
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