
Online Metric Matching on the Line

Senior Research Thesis

Kevin Lewi
April 2011

Abstract

Given a metric space, a set of points with distances satisfying the triangle inequality,
a sequence of requests arrive in an online manner. Each request must be irrevocably
assigned to a unique server before future requests are seen. The goal is to minimize the
sum of the distances between the requests and the servers to which they are matched.
We study this problem under the framework of competitive analysis.

We give two O(log k)-competitive randomized algorithms, where k is the number of
servers. These improve on the best previously known O(log2 k)-competitive algorithm
for this problem. Our technique is to embed the line into a distribution of trees in a
distance-preserving fashion, and give algorithms that solve the problem on these trees.
Our results are focused on settings for the line, but these results can also be extended
to all constant-dimensional metric spaces.

i

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Our Results . 4

2 Preliminaries 5
2.1 Definitions and Notation . 5
2.2 Constructing an HST from the Line 6
2.3 Assumptions . 10

2.3.1 Colocated Requests and Servers 11
2.3.2 Distances Polynomial in k . 12

3 An hd-competitive Algorithm 17
3.1 Matching Definitions on an HST . 18

3.1.1 Characterizing Optimal Matchings 19
3.2 A Deterministic Algorithm . 20
3.3 Conflict Sequences . 23

3.3.1 Canonical Conflict Sequences 24
3.4 Competitive Ratio . 27

4 The Random-Subtree Algorithm 30
4.1 The Algorithm . 30
4.2 Proof of the One-Level Lemma . 31

4.2.1 Cost Functions Ft . 32
4.2.2 Potential Function Analysis 34

4.3 Bounding the Total Cost . 35

5 An O(log k) Algorithm for the Line 40
5.1 The HST-greedy Algorithm . 41

5.1.1 Analysis via a “Hybrid” Algorithm 41
5.1.2 Defining the Cavities . 43

ii

5.1.3 An Accounting Scheme . 45
5.1.4 Distance Traveled by the Cavities 46

5.2 A Tight Example for HST-greedy . 50

6 Conclusion and Open Problems 52
6.1 Future Work . 52

6.1.1 Randomized Greedy with the Combinatorial Approach 52
6.1.2 Low-degree HST Constructions for Metric Spaces 53
6.1.3 Extension of Ideas in Chapter 5 53

6.2 Open Problems . 53

Bibliography 55

iii

Chapter 1

Introduction

In the online metric matching problem, requests appear one at a time on the metric
space. As a new request arrives, it must be assigned to a unique server. After a
request has been assigned, it cannot be modified. The goal is to find a matching
for each request such that the total sum of distances between request-server pairs is
minimized. In the offline version of this problem, all requests arrive “simultaneously”,
so the problem is equivalent to the minimum weighted bipartite matching problem
(but on a metric), and can be solved using traditional network flow algorithms.

The heuristic we use to measure the quality of an online algorithm is its competitive
ratio. Given a fixed setting of servers on a metric space, the competitive ratio of an
online algorithm is the ratio between the online algorithm’s matching’s cost and the
offline optimal cost. We are interested in bounding the worst-case competitive ratio
across all settings of servers on metric spaces.

The online metric matching problem was first introduced by Kalyanasundaram
and Pruhs in [KP93], and also independently by Khuller, Mitchell, and Vazirani in
[KMV94]. The problem is known as the online weighted bipartite matching problem in
[KMV94] and simply online weighted matching in [KP93]. Since then, there has been
a considerable amount of work on attempting to bridge the gap between the upper
and lower bounds for this problem. A 2k − 1 competitive deterministic algorithm
is presented in both [KP93] and [KMV94], establishing the initial upper bound for
general metrics. Both sources also note a lower bound of 2k − 1 through the star
graph, where a simple example can be constructed such that no algorithm can perform
with competitive ratio less than 2k − 1.

Although these results close the discussion for deterministic algorithms on general
metrics, study has been performed on the effects of allowing randomization. For the
star graph (or uniform metric), one can show that any randomized algorithm must be
Ω(log k) competitive, and that the simple randomized greedy algorithm of choosing the
closest server to assign to, breaking ties at random, is O(log k) competitive. In 2006,

1

CHAPTER 1. INTRODUCTION 2

Meyerson, Nanavati, and Poplawski presented a randomized O(log3 k) competitive
algorithm on general metrics in [MNP06], representing the first randomized algorithm
to achieve a sublinear competitive ratio. In this paper, we will refer to this algorithm
as the MNP algorithm. This algorithm applies the main results of [FRT03] by first
converting the general metric space into a tree metric with certain properties on the
lengths of the edges, running a simple algorithm on the tree, and then mapping the
resulting assignments back to the original metric. The simple algorithm for the tree
metric is O(log k) competitive, and an O(log2 k) term is incurred in the conversion
back to the original metric, resulting in O(log3 k) competitiveness. In just a year later,
Bansal, Buchbinder, Gupta, and Naor improve upon the MNP algorithm in [BBGN07]
through a similar approach with an O(log k) competitive algorithm on a special tree
metric, but this time only incurring another O(log k) term in the conversion to the
original metric, thus resulting in a O(log2 k) competitive algorithm. Since the star
graph example mentioned earlier gives a lower bound of Ω(log k) for the competitive
ratio, the natural question to ask is whether there exists an O(log k) competitive
algorithm for general metrics.

Several attempts have been made at reducing the upper bound for the randomized
version of the online metric matching problem on special cases of metric spaces such as
the line, or 1-dimensional Euclidean space. In [KP98], a deterministic lower bound of
9 was shown for the line in a reduction to a problem known as the cow-path problem.
The cow-path problem is an example of a search game in an unknown environment,
where a cow begins at the origin of the real number line and must find a bridge located
somewhere on the line. The fact that the lower bound on the competitive ratio for the
deterministic cow-path problem is 9 implies a lower-bound on the competitive ratio for
deterministic algorithms of online metric matching on the line. It was conjectured in
[KP98] that there exists a 9-competitive online algorithm for this problem, which was
later disproved in [FHK05]. Also conjectured in [KP98] was that the Work Function
Algorithm presented for the k-server problem by Koutsoupias and Papadimitriou in
[KP95] obtains a constant competitive ratio on the line for the online metric matching
problem. This conjecture was also disproven by Koutsoupias and Nanavati in [KN03],
who acknowledge that the case of the line is the simplest non-trivial instance of
minimum online metric matching.

1.1 Motivation

Instances of the online metric matching problem occur in numerous real-world situa-
tions apart from the evident application of the problem in network design involving a
series of requests and fixed servers. For example, imagine a setting of k fire stations
in the city, each of which can handle a single fire. As each fire arrives, a fire station
must be assigned to extinguish it. Also, variations of online metric matching can be

CHAPTER 1. INTRODUCTION 3

applied to the algorithms behind electronic markets which must deal with effectively
matching buyers to sellers, each of which name their prices.

Online metric matching on the line also garners theoretical interest due to the large
disparity between the best known bounds for its competitive ratio. The tightest bounds
known for online metric matching on the line are 9 + ε for the deterministic lower
bound and O(k) for the deterministic upper bound, and O(log2 k) for the randomized
upper bound. Note that both types of upper bounds are derived from results on
general metrics; no competitive algorithms have been developed specifically for the line.
For general metrics, the O(log2 k) competitive randomized algorithm in [BBGN07]
is the tightest known upper bound. The relatively large gap between the upper and
lower bounds provides a motivation for the study of this problem.

1.2 Problem Statement

An instance of the online metric matching problem (V, d,R, S, k) is defined by a metric
space (V, d), with the sequence of requests R = r1, · · · , rk and each ri ∈ V . The
set of servers S = {s1, · · · , sm} is such that m ≥ k and each si ∈ V . The integer k
represents the number of requests to arrive.

A solution to an instance of this problem is a permutation π = π1, π2, · · · , πk of a
subset of the set of servers S, also called a matching. The cost of such a solution is
defined as

∑k
i=1 d(ri, πi), where d is the metric used in the metric space (V, d).

The added restriction of the online version of this problem (as opposed to the offline
version) is that the sequence R of requests is revealed one element at a time, rather
than all at once. Thus, an online algorithm is forced to make assignments one-by-one,
as each request arrives. If the online algorithm has made i < k assignments so far,
then only the first i+ 1 requests r1, · · · , ri+1 are revealed. When the algorithm has
made i = k assignments, then all requests have been assigned to unique servers, and
there is no more work left to do.

We call a deterministic online algorithm c-competitive on a specific instance of this
problem if the algorithm achieves a solution whose cost is c times the offline optimal
solution. For randomized algorithms, c-competitiveness on an instance means that
the solution achieves an expected cost that is c times the offline optimal solution. The
competitive ratio of an algorithm is defined as the maximum over all instances of the
ratio between the algorithm’s (expected) cost and the offline optimal’s cost for each
instance. An algorithm is called c-competitive if its competitive ratio is c.

CHAPTER 1. INTRODUCTION 4

1.3 Our Results

We present several algorithms that perform competitively for the online metric match-
ing problem. The techniques described here extend upon the results of [FRT03] to
produce algorithms that perform O(log k)-competitively on the line metric.

The first result is a combinatorial proof that the simple, deterministic greedy
algorithm on a hierarchically well-separated tree (HST) is hd competitive, where
h and d are the height and degree of a tree constructed from the line. Since we
also give HST constructions for the line that allow d = O(1) and h = O(log k)
while changing expected distances by an O(log k) factor, so this gives rise to another
O(log2 k)-competitive algorithm for the line.

Next, we show that a modification of the randomized algorithm given in [MNP06]
is in fact O(log k log2 d)-competitive on the line, where d = 2 for the line. The proof
is based on defining a suitable potential function, and is also inspired by the proof
in [MNP06]. This result also extends to metric spaces with low doubling dimension,
since they also admit embeddings into HSTs where d remains a constant.

Finally, we give a new algorithm (which we call HST-greedy), and show that it is
O(log k)-competitive on the line. The approach used for this algorithm is relatively
different from the previous proofs: the algorithm itself uses both the HST structure
and the fact that the HST is constructed from the line. Moreover, the proof directly
considers the cost incurred on the line, and compares that to an optimal solution’s
cost on the HST. We also show that our analysis is tight.

Chapter 2

Preliminaries

This section will fix various facts that will prove useful in the main results for the
later chapters. First, we will fix some definitions and the notation that will be used
throughout the paper. One of these definitions is of the hierarchically well-separated
tree (HST), first considered in [FRT03]. Next, we will show how to construct an HST
from any line while ensuring that the HST does not stretch the distances between any
two points by more than an O(log k) factor from their original distances on the line.
Although the results in [FRT03] already imply the existence of such a construction
for any metric space, the actual algorithm for the consruction itself is non-trivial and
so it is included here for completeness.

We also include the proofs of validity for two assumptions that we make on the
underlying metric space of an instance of the problem. The first assumption that
we would like to make is that all requests arrive at the location of servers. Thus, no
request ever appears at a point in the metric that is not occupied by a server. We can
qualify this assumption by incurring a multiplicative factor of 2 (plus an additive of
1) to the competitive ratio. In other words, for every instance I of the online metric
matching problem, we can create an instance I ′ such that I ′ has colocated requests
and servers, and any algorithm that is c-competitive on I ′ is 2c+ 1 competitive on I.
The second assumption we make is that the ratio of the maximum distance between
any two points and the minimum distance between any two points is polynomial in
the number of servers. This assumption incurs a multiplicative factor of 6.

2.1 Definitions and Notation

In this paper, we will denote c(M) to be the cost of a matching M . Sometimes, for
an algorithm A, we will use c(A) to denote the cost of the matching produced by A
as shorthand. When the context is clear, we will occasionally use the matching M
to actually represent the cost of the matching, c(M). Furthermore, Opt will always

5

CHAPTER 2. PRELIMINARIES 6

be used to denote the optimal offline matching for an instance of the problem. Also,
the results that involve log k terms are derived from the harmonic series denoted by
Hk =

∑k
i=1 1/i, using the fact that Hk ∼ log2 k. So, all log k terms are base 2 unless

otherwise noted.
Given a tree T rooted at r, define the depth of the root as 0, and the depth of

each other node as one more than the depth of its parent. An edge has depth i if
its endpoint closer to the root has depth i. For α > 1, a tree is called an α-HST if
the length of each edge at depth i is c/αi for some constant c. Moreover, we will
assume that all the leaves have the same depth; it is easy to ensure this while changing
interpoint distances by at most a constant factor (depending on α). Furthermore, the
algorithms we present later will automatically maintain this property.

We can define the height of the leaves in T to be zero, and the height of a node to
be one greater than the height of its children—all leaves having the same depth means
the height of every node is well-defined, and is just the depth of the leaves minus the
depth of that node. The “arity” of the HST is the maximum number of children that
any node has; binary trees have an arity of 2.

The level of vertices in T is defined as follows: the level of the root r is defined to
be 1, and the level of any other node v is defined to be one more than the level of its
parent pv. Hence, L(v) = L(pv) + 1.

We will also talk about degree-d α-HSTs when the degree is important. All of the
algorithms discussed will involve taking the line L in the instance of the problem and
constructing an α-HST T such that for all pairs of points x, y in the metric space,

1. dL(x, y) ≤ dT (x, y), and

2. E[dT (x, y)] ≤ O(log k)dL(x, y)

Here, we use k to represent the number of servers in the instance of the problem. Next,
we show how we can construct an appropriate HST given any instance of the problem
on the line metric, where the HST we construct satisfies the above two properties.

2.2 Constructing an HST from the Line

We are interested in embedding the integer line in the interval [1, k] into a binary HST
T such that for any integers 1 ≤ x ≤ y ≤ k, dL(x, y) ≤ dT (x, y) and E[dT (x, y)] ≤
O(log k)dL(x, y). For simplicity, we will assume that k a power of 2. In all of the
schemes that we are investigating, we are superimposing T on top of the line, where
each leaf of T occupies some integer point on the line within the interval [1, k]. Since
no point on the line corresponds to more than one leaf, the adjacent points i and i+ 1
for 1 ≤ i ≤ k − 1 are always separated by the structure of the tree. Consequently, the
non-leaf nodes with two children of T (of which there are 2k − 1) lie in the divisions

CHAPTER 2. PRELIMINARIES 7

between i and i + 1 for 1 ≤ i ≤ k − 1. We will say that they lie in the interval
[i, i+ 1]. Furthermore, we will call these points “cuts”. For a cut x, define l(x) to be
the location of x. If x lies in [i, i+ 1], then we say that l(x) = i. Also, define the depth
d(x) of a cut x to be the length of the path from the root to the node associated with
x.

Note that the precise structure of a binary tree can be completely characterized
by its cuts. Thus, a binary HST construction algorithm simply decides the location
l(x), and depth d(x) of each of these cuts x, with the binary restriction that there
cannot be more than 2i cuts of depth i for 0 ≤ i ≤ h− 1.

Also, for the edge lengths of the α-HST, we will adopt the convention that edge
lengths starting from the leaves of the tree upwards are: c, cα, cα2, · · · , where c is
some constant. In fact, we will only be considering the case where α = 2 and c = 1.
We will occasionally refer to the property of an algorithm producing a tree T being
such that E[dT (x, y)] ≤ O(log k)dL(x, y) as the algorithm having “O(log k) stretch”.

As mentioned previously, any algorithm can be formulated in terms of the properties
of the k − 1 cuts. We give the algorithm in terms of how it arranges the cuts, and
then a proof for why it achieves an O(log k) stretch for any two points in the interval.

First, we show the following lemma. Let Ai,j denote the event that there exists a
cut of depth i in the interval [j, j + 1] for some 1 ≤ j < k.

Lemma 2.2.1. If the height h of T is log2(k)+c1 for some small constant c1, then for
all 1 ≤ x < y ≤ k, E[dT (x, y)] ≤ O(k)dL(x, y). If, in addition, Pr[Ai,j] ≤ 2i/(k − 1)
for all 1 ≤ j < k and 0 ≤ i < h, then for all 1 ≤ x < y ≤ k, E[dT (x, y)] ≤
O(log k)dL(x, y).

Proof. First, note that if Ai,j occurs, then

dT (j, j + 1) = 2c(1 + α + · · ·+ αh−1) ≤ 4c · αh−i

by the structure of the HST. Thus, we get that

E[dT (j, j + 1)] =
h∑
i=0

E[dT (j, j + 1)|Ai,j] ·Pr[Ai,j] ≤
log2(k)+c1∑

i=0

4c · αlog2(k)+c1−i ·Pr[Ai,j]

Now, we know that Pr[Ai,j] ≤ 1, so 4c · 2log2(k)+c1−i = O(k)/2i, so

E[dt(j, j + 1)] =

log2(k)+c1∑
i=0

O(k)/2i ≤ O(k) ·
∞∑
i=0

1/2i = O(k).

Now, suppose we can safely assume that Pr[Ai,j] ≤ 2i/(k − 1). Since α = 2,
the product 4c · 2log2(k)+c1−i · (2)i/(k − 1) = 4c · 2c1 · k/(k − 1) for all i, and so the

CHAPTER 2. PRELIMINARIES 8

sum is (log2(k) + c1) · 4c · 2c1k/(k − 1) = O(log2(k)). Thus, we can conclude that
E[dT (j, j + 1)] ≤ O(log k).

Now, for arbitrary x and y such that 1 ≤ x < y ≤ k, we can break up the
distance on the line into segments of length 1. Thus, without the assumption that
Pr[Ai,j] ≤ 2i/(k − 1), we conclude that

E[dT (x, y)] =

y−1∑
i=x

E[dT (i, i+ 1)] = O(k)(y − x) = O(k)dL(x, y).

But, with the assumption we get a slightly better result:

E[dT (x, y)] =

y−1∑
i=x

E[dT (i, i+ 1)] = O(log k)(y − x) = O(log k)dL(x, y).

Now, consider the following algorithm to construct an HST from the interval [1, k]
on the line:

Algorithm 1 HST-Construct(L)

T ← a perfect binary HST with 2k leaves
Randomly place the root of T within the integers of [1, k].

Since the HST has 2k leaves (although half are trimmed off because they hang
outside of the interval), and the root is placed within the interval, this root has height
log(2k) = log(k) + 1.

1 82 3 4 5 6 7

r

Figure 2.1: Here, using k = 8, we have randomly placed the root r of the perfect
binary tree of 2k leaves on the interval [1, k]. We want the leaves to line up with the
integers in [1, k] as in the diagram.

CHAPTER 2. PRELIMINARIES 9

Remark 2.2.2. Here is an alternate view of the algorithm that will make analysis easier
later on. Rather than fixing the interval [1, k] and picking a random location for the
root cut within this interval, we can instead fix the binary tree of 2k leaves on the
interval [1, 2k], and then randomly select some j ∈ [2, k + 1] so that the interval we
are interested in is [j, k + j − 1].

This next remark simply states that the cuts created by HST-Construct in the left
half of the tree of 2k leaves are repeated in the right half of the tree. This just follows
from the structure of the tree, and so the proof is omitted.

Remark 2.2.3. There is a cut of depth i in [j, j + 1] if and only if there is a cut of
depth i in [j + k, j + k + 1], for all 1 ≤ j < k.

Now, we are able to show the main lemma for this section. This lemma allows us
to bound the probability of an small interval being cut by a cut of large depth.

Lemma 2.2.4. For 0 ≤ i < h,

Pr[Ai,j] ≤ 2i/(k − 1).

Proof. We go by induction on i. At depth 0, the algorithm is defined to place the
root cut uniformly at random at the k − 1 possible places for cuts, so for all j,
Pr[A0,j] ≤ 1/(k − 1). Assume that for some i ≥ 1, Pr[Ai−1,j] ≤ 2i−1/(k − 1).

Consider the tree of 2k leaves on the interval [1, 2k], first. The node of a cut at
depth i− 1 has two children, who are cuts at depth i. Also, any cut at depth i must
be either the left child or right child of some cut at depth i− 1.

Now, we redefine the notion of a child cut on the interval [j, j+k−1]. For some cut
x in [j, j+k− 1], if both children (in the tree) of the the node occupied by x lie within
[j, j + k − 1], then these two children are still called the children of x on the interval.
Note that it is not possible for neither child to lie within [j, j + k − 1], since x lies in
between both children, and would thus not be within [j, j + k − 1], either. But now,
suppose that x has one child that does not lie in [j, j+k−1]. Let this child be called y.
If y lies in the interval [m,m+ 1] for some m < j, then by Remark 2.2.3, there exists
a child y′ that lies in [m+ k,m+ k + 1]. Since m+ k ≤ j + k − 1, y′ must lie within
the interval, so we call y′ the left child of x on the interval. Likewise, if m > j + k− 1,
then by Remark 2.2.3, there exists a child y′ that lies in [m− k,m− k + 1], and since
m− k ≥ j, y′ lies within the interval, so we call y′ the right child of x on the interval.

We now show that under this definition of children in the interval, every cut of
depth i in the interval has a parent cut of depth i− 1 in the interval. Let y be a cut
of depth i in the interval. Of course, in the tree, y has a parent, and suppose it is
located in [m,m+ 1]. If m < j, then m+ k ≤ j + k − 1, so the cut of depth i− 1 in
[m+ k,m+ k + 1] would be the parent cut of y. If m > j + k− 1, then m− k ≥ j, so
the cut of depth i− 1 in [m− k,m− k + 1] would be the parent cut of y. Thus, in
both cases y has a parent in the interval.

CHAPTER 2. PRELIMINARIES 10

We have shown that every cut of depth i belongs to a parent cut of depth i− 1.
Furthermore, a parent cut of depth i− 1 cannot have more than two children. Thus,
there is a cut of depth i within the interval [m,m + 1] if and only if there is either
a cut of depth i − 1 in one of two possible positions for cuts within [j, j + k − 1].
By the induction hypothesis, the probability of either of these happening is at most
2i−1/(k − 1), so the probability that such a cut of depth i exists in [m,m+ 1] can be
at most 2i/(k − 1), which completes the induction step.

Since the height of the tree is log2(k) + 1, we can apply the above lemma to
Lemma 2.2.1 to get that the algorithm HST-Construct builds a tree that stretches the
expected distance of two points x and y on the tree by at most O(log k)dL(x, y). To
verify that the tree T outputted from HST-Construct is such that dL(x, y) ≤ dT (x, y),
note that for any two points x and y, a cut of depth at least blog2 dL(x, y)c must lie
within the interval [x, y], and so dT (x, y) ≥ 2 · 2blog2 dL(x,y)c ≥ dL(x, y), since there are
two edges in the tree adjacent to this cut, each of length αi for i being the depth of
the cut.

From now on, the topic of constructing an HST from the line is not discussed in
further detail, and it is assumed that for any line L, any matching produced on an
HST T outputted from HST-Construct(L) will be such that the cost of the matching
on T will be on expectation at most O(log k) times the cost of the same matching on
the line. It follows that an algorithm which is c-competitive on the HST T associated
with L is O(c log k)-comepetitive on L.

2.3 Assumptions

In this section, we present a series of assumptions that we make for any given instance
of this problem. For each of these assumptions, we make the metric space slightly
easier to deal with, while incurring at most a constant multiplicative factor in the
competitive ratio of any algorithm. First, we show that if we assume that requests
appear only at the locations of servers in the metric, then the competitive ratio on the
actual instance will only rise by at most 3 times the competitive ratio on the instance
with colocated requests and servers. This assumption turns out to be quite useful.
For example, in the HST construction, since we already assume that servers appear
only at the leaves of the tree, we can now assume safely that requests also appear only
at the leaves. This simplifies matters considerably, since the analysis of the recursive
structure of the HST is much cleaner.

The second assumption that we justify in this section is more than just a conve-
nience. Fix an instance I, and let ∆ be the ratio of the maximum distance between

CHAPTER 2. PRELIMINARIES 11

any two points over the minimum distance between any two points. Formally,

∆ =
maxx,y d(x, y)

minx,y d(x, y)
.

Some of the algorithms that we present in later chapters yield O(log ∆)-competitiveness.
However, since ∆ can be exponential (or worse) in an untreated metric space, the
upper bound of O(log ∆) can be rather weak. However, if we can somehow construct
an instance I ′ where ∆ = poly(k) on I ′, and show that a c-competitive algorithm on
I ′ is still competitive on I, then these algorithms would be upper-bounded by O(log k).
The analysis provided at the end of this chapter shows that we can indeed construct
such an instance I ′ for all I such that we incur at most a multiplicative factor of 6 in
the competitive ratio when translating our matching from I ′ back to I.

2.3.1 Colocated Requests and Servers

We’d like to make the following assumption on the underlying metric: every request is
colocated with some server. Consider the following algorithm ColocateA, defined for a
fixed algorithm A.

Algorithm 2 ColocateA(R)

for all requests ri ∈ R do
Move ri to a closest server s∗i .
Assign ri (now colocated with s∗i) using A.

end for

In the next lemma, we show that the competitive ratio for an algorithm between
an instance without colocated requests and servers and the output of Colocate on
that instance changes by at most a constant multiplicative factor.

Lemma 2.3.1. For any algorithm A that is c-competitive, ColocateA is at most
(2c+ 1)-competitive.

Proof. For any ri, let s∗i be a closest server to ri. Let ŝi be the server that algorithm
A assigns ri to. Note that ColocateA also assigns ri to ŝi. Define Opt1 to be the
optimal matching under the original instance I1 for which we want to show ColocateA
is 2c-competitive, and Opt2 the optimal matching under the modified I1 where every
request is colocated with a server, where we know that A is c-competitive. We know
that A(I2) ≤ c ·Opt2(I2), and we want to show that ColocateA(I1) ≤ (2c+1) ·Opt1(I1).

Let s̄i be the server that a request ri is assigned to in Opt2(I2). First, note that
for each ri ∈ R, d(ri, s̄i) ≥ d(ri, s

∗
i) by the definition of s∗i . Thus, if we construct the

CHAPTER 2. PRELIMINARIES 12

Figure 2.2: As each request arrives, ColocateA first moves each request to its nearest
server, and then runs A. Note that ColocateA may end up initially moving multiple
requests to the same server, as in the example.

matching Opt1(I2), the cost of this matching is at most 2 Opt1(I1). Therefore, we have
that Opt2(I2) ≤ Opt1(I2) ≤ 2 Opt1(I1). This also means that A(I2) ≤ 2cOpt1(I1).

Now, consider ColocateA(I1). We have by the triangle inequality that

ColocateA(I1) =
∑
i

d(ri, ŝi) ≤
∑
i

d(ri, s̄i) +
∑
i

d(s̄i, ŝi)

But note that Opt2(I2) =
∑

i d(ri, s̄i) and
∑

i d(s̄i, ŝi) ≤ A(I2), since A assumes
each request ri appears at s̄i, and the cost incurred by A of ri must be at least the
distance from ri to its closest server, for each ri. This allows us to conclude that
ColocateA(Ii) ≤ Opt2(I2) + 2cOpt1(I1) ≤ (2c+ 1) Opt1(I1).

The above lemma allows us to take any instance of the online metric matching
problem, move each request to its closest server, and then run a standard algorithm
that assumes colocation of requests and servers. The gaurantee is that the competitive
ratio of the original instance (where all requests may not be colocated with servers)
is no more than 3 times the competitive ratio of the dummy instance that we have
created, where all requests are colocated with servers.

2.3.2 Distances Polynomial in k

Suppose that we know c(Opt) for some instance of the problem on the line. Let A be an
algorithm that does not match any request r to a server s such that d(r, s) > c(Opt).

CHAPTER 2. PRELIMINARIES 13

Consider the following algorithm DivideρA, which breaks the line up into smaller
instances I1, · · · , Im based on ρ.

Algorithm 3 DivideρA(I)

Break the line of I up into smaller instances I1, · · · , I` such that for each instance
Ij, the largest distance between two servers in Ij is less than ρ.
for all requests ri ∈ R do

Let Ij be the instance containing ri.
if there are no more servers in Ij then

output FAIL and halt
else

Use A(Ij) to determine which server ri assigns to.
end if

end for

We now show that if we somehow knew the value of c(Opt(I)) for a fixed instance
I, then we could divide up the line into smaller segments and recursively run our
algorithm A on these segments.

Lemma 2.3.2. Denote Opt(I) as the optimal matching on the original instance,

and Opt(Ij) as the optimal matching on the segment Ij produced from Divide
c(Opt(I))
A .

Then,

c(Opt(I)) =
∑
Ij∈I

c(Opt(Ij))

Proof. To obtain the segments I1, · · · , I` from the original instance I, only the edges
of length greater than c(Opt) are removed. Note however that these edges cannot be
used in the matching by Opt(I), and so the lemma follows.

Remark 2.3.3. Combining the previous two lemmas, we get that if A is c-competitive
for every instance I, then Divide

c(Opt(I))
A is also c-competitive for every instance I.

Now, using m as the total number of servers, consider:

Algorithm 4 ContractρA(I)

while there is pair of adjacent servers si and sj such that d(si, sj) < ρ/m2 do
Contract the edge between si and sj.

end while
Call this new instance I2, and the original instance I1.
for all requests ri ∈ R do

Use A(I2) to determine which server ri assigns to.
end for

CHAPTER 2. PRELIMINARIES 14

The idea behind ContractA is that for servers in the metric that are placed very
closely together, we can “combine” them to form a pseudo-server, which, in the
new instance, represents a cluster of servers. If a request chooses to assign to this
pseudo-server, then we can actually match the request to an arbitrary member of that
pseudo-server on the original instance. We just need to show that such a modified
instance does not affect the competitive ratio by much.

Lemma 2.3.4.
c(ContractρA(I1)) ≤ c(A(I2)) + ρ

Proof. Let dI1(si, sj) be the distance between two servers si and sj on the original
instance I1, and dI2(si, sj) their distance on I2. Then, since the procedure can only
contract at most m − 1 edges (every edge between each pair of adjacent servers),
dI1(si, sj) ≤ dI2(si, sj) + ((m− 1)/m2) · ρ. Thus, for each of the k ≤ m requests ri, the
cost of ri’s assignment by A on I2 can only increase by at most (m− 1)/m2 ≤ 1/m
times ρ. Thus, the total cost of ContractρA(I1) can only be (k/m) · ρ ≤ ρ more than
the cost of A on I2.

Since we are interested in multiplicative approximation guarantees, we can scale
distances so that the minimum non-zero distance is 1. Define

SimplifyρA(I) = Contractρ
DivideρA(I)

(I ′),

where I ′ is the instance of the problem that DivideρA(I) generates, and SimplifyρA(I)
fails if DivideρA(I) fails. Now, consider the following algorithm:

Algorithm 5 Guess&VerifyA(I)

ρ← 1
for all requests ri ∈ R do

while SimplifyρA(I) fails do
ρ← 2 · ρ

end while
Use SimplifyρA(I) to determine which server ri assigns to.

end for

This algorithm combines the two previous algorithms to form a single procedure
that we can invoke for an arbitrary instance to form a new instance that has its max
distance over min distance ratio to be in poly(k). However, we must address the
problem that we do not know c(Opt) in hindsight, as was assumed in the lemmas
regarding DivideA. To account for this, we try to “guess” the value of c(Opt), and we
repeatedly double our guess until the algorithm does not fail.

CHAPTER 2. PRELIMINARIES 15

Lemma 2.3.5. If algorithm A is c-competitive, and ρi is the ρ-value used in the
algorithm on ri, then c(SimplifyρiA (I)) ≤ 3cρi.

Proof. First, note that for all i, Opt(I, i) ≤ ρi ≤ 2 ·Opt(I, i). To see this, note that
DivideρA(I) can only fail if ρ < Opt(I, i), since this means that there exists some
sub-instance where an edge that was intended to be used by Opt(I, i) was cut by
DivideρA. For the upper bound, we stop increasing ρ as soon as the algorithm does
not fail, so ρi is in fact the smallest ρ-value that is a power of 2 and is such that
ρi ≥ Opt(I, i).

For the main proof, we go by induction on i, the number of requests that have
so far appeared, using Alg(I, i) to represent the cost of algorithm Alg on instance
I for the first i requests. For the base case, the claim holds since Simplifyρ1A (I, 1) =
A(I, 1) ≤ c ·Opt(I, 1). Assume inductively that

Simplify
ρi−1

A (I, i− 1) ≤ 3cρi−1.

There are two cases to consider on ρi. Let’s denote I ′ as the modified instance that
we run A on in Guess&VerifyA(I). If ρi = ρi−1, then SimplifyρiA (I, i) ≤ A(I ′, i) + ρi by
Lemma 2.3.4. Now, since A is c-competitive, A(I ′, i) ≤ c ·Opt(I ′, i), and Opt(I ′, i) ≤
Opt(I, i), since I ′ is a version of I where all distances have either stayed the same or
shrunk. Since ρi ≥ Opt(I, i), we get that

SimplifyρiA (I, i) ≤ 2ρi ≤ 3cρi,

since c ≥ 1 by the definition of competitive ratio.
Now, consider the case where ρi ≥ 2 · ρi−1, since this is the only other possibility if

ρi 6= ρi−1. Here is one way to upper-bound SimplifyρiA (I, i), conceptually. Given the
assignment of requests we have made so far from Simplify

ρi−1

A (I, i− 1), we can imagine
sending the requests back to their original location, and then assigning them according
to the matching dictated by A(I ′, i), since by the triangle inequality this is an upper
bound on the cost of the actual matching made. Thus, we have by Lemma 2.3.4 again
that

SimplifyρiA (I, i) ≤ Simplify
ρi−1

A (I, i− 1) + A(I ′, i) + ρi

Inductively, Simplify
ρi−1

A (I, i−1) ≤ 3cρi−1 ≤ (3c/2)ρi. Again, A(I ′, i) ≤ c·Opt(I ′, i) ≤
c ·Opt(I, i) ≤ cρi, so we have that

SimplifyρiA (I, i) ≤ cρi(3/2 + 1 + 1/c) ≤ 3cρi

as desired.

Using the lemma we have just proved, we can deduce the following corollary that
ensures that running our algorithm on the result of our procedure will still attain
small competitive ratio.

CHAPTER 2. PRELIMINARIES 16

Corollary 2.3.6. Guess&VerifyA is 6c-competitive if A is c-competitive.

Proof. Note that Guess&VerifyA uses SimplifyρkA (I), where ρk is the final value of the
ρ used in the algorithm. This is at most 2 ·Opt(I) as shown in the previous lemma, so
SimplifyρkA (I) ≤ 3cρk ≤ 6c·Opt(I), which means that Guess&VerifyA ≤ 6c·Opt(I).

The algorithms presented in the next few chapters always make the assumption
that the instance I for which it must run on has colocated requests and servers and all
interpoint distances are polynomial in k. Since the online metric matching problem
considers all instances, it may not be the case that I has these properties. Thus,
we implicitly run the procedures Colocate and Guess&Verify to an instance I given
by the adversary in order to create an instance I ′ with the two desired properties.
Then, the gaurantees provided in this section show us that if an algorithm on I ′ is
c-competitive, then it must be O(c)-competitive on I. Such a result is quite appealing,
since it allows us to make assumptions that simplify techniques that would otherwise
be more intricate while only incurring a constant multiplicative factor into the actual
competitive ratio.

Chapter 3

An hd-competitive Algorithm

Suppose that on an HST with k servers, an algorithm is faced with k requests that
appear in an online manner. The algorithm then makes some matching of the k
requests to the servers. Now, since we are assuming that all requests and servers
appear at the leaves, we can imagine drawing directed arrows from each request to
the server to which it was matched, where an arrowhead is placed on each edge in the
path from the request to its matching server. In this diagram, there are probably some
edges of the tree that have been labeled with arrows pointing in opposing directions
(unless the matching is optimal).

r1 s1 s2 s3 r5 s5 s4
r2 r3 r4 r6

s6

Figure 3.1: The diagram of assignments for the matching M = {(ri, si)} for all
1 ≤ i ≤ 6. One can create such a diagram by imagining the path that each request
travels along when being moved to its matching server.

Let’s consider some edge e where two arrowheads that lie on e happen to point
in opposite directions. It turns out that if we delete this pair of arrowheads but

17

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 18

change nothing else, then the resulting diagram describes a new matching that has
cost strictly less than the original matching created by the algorithm. To see this,
note that the only difference in the new diagram is that the new matching crosses e
two less times than the old matching did (one for each arrowhead).

This conceptual procedure of deleting pairs of arrowheads is the primary motivation
for the analysis of this chapter. Intuitively, the number and level of pairs of arrowheads
that point in opposite directions can be used as a measure of the performance of
an algorithm. We will later show that, for all algorithms that match in a somewhat
greedy fashion, one can always look at the matching produced by the algorithm and
repeatedly delete pairs of opposing arrowheads until no more exist. Interestingly,
the resulting diagram represents an optimal matching. So, in order to measure the
“distance” that an algorithm’s matching is from an optimal matching, we attempt to
form sequences of these arrowhead pairs, and then bounding the total amount of cost
incurred by a worst-case such sequence.

In the final section of this chapter, we then relate these sets of sequences that we
have created to the actual cost of a matching. We then analyze the deterministic
greedy algorithm’s performance on the tree, and we are able to show that on each
level of the tree, deterministic greedy will pay at most d times the amount that the
optimal matching pays, for d being the degree of the tree. Since there are h levels of
the tree, this implies a competitive ratio of hd.

3.1 Matching Definitions on an HST

For an edge e on the tree T , define the parent node of e as its endpoint that is closer
to the root of the tree, and the child node as the endpoint further from the root of the
tree. Now, the level of an edge e = {v1, v2} is the level of its parent node: in other
words, L(e) = min(L(v1), L(v2)).

Recall that an α-HST is a rooted tree T = (V,E) such that for any edge e, the
weight of e is

w(e) =
c

αL(e)−1
.

From now on, T will be used to represent an α-HST where all requests and servers
occur at the leaves.

Definition 3.1.1 (Matching). A matching M : R→ S is a map from a set of requests
R to the set of servers S.

Definition 3.1.2 (Matching Paths). Let (ri, si) be an element of some matching M ,
with ri ∈ R and si ∈ S. Suppose Pi represents the unique path from ri to si, such
that Pi has the following form:

Pi = 〈ri, v1, v2, · · · , vl, si〉.

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 19

We can define a matching path ~Pi corresponding to the matched pair ri, si thus:

~Pi = {(ri, v1), (v1, v2), · · · , (vl, si)},
where the direction associated with each arc is oriented towards si and away from ri
in P .

So far, it has been established that a matching M , which is a map from requests
to servers, can be described as a set of (directed) matching paths from each request to
its corresponding server. These matching paths consist of a collection of arcs, and let
A(M) be the multiset of all arcs in used in matching M . For each arc a ∈ A(M), let

t(a) = i if a ∈ ~Pi. Moreover, let e(a) be the edge associated with a; i.e., if a = (x, y)
then e(a) = {x, y}. An up arc is one that is directed towards the root, whereas a
down arc points away from the root.

Fix a matching M , which defines the matching paths ~Pi, and hence the multiset
of arcs A(M). For some edge e in T , let Λe be the multiset of arcs associated with e
in M . Moreover, let Λu

e be the multiset of all up-arcs at e, and Λd
e be the set of all

down-arcs. It follows that Λe = Λu
e ∪ Λd

e. Observe that for any arc a, it holds that
a ∈ Λe(a); moreover, A(M) = ∪e∈EΛe.

Definition 3.1.3 (Cost of Matching). For a matching M , the cost of the matching,
denoted by c(M), is defined as the sum of the weights of all arcs associated with M ;
i.e.,

c(M) =
∑
~Pi

∑
a∈~Pi

w(e(a)) =
∑
e∈E

w(e) · |Λe|.

An optimal matching is one that achieves the minimum cost.

3.1.1 Characterizing Optimal Matchings

The following definition and the next lemma introduces an important characteristic of
matchings of optimal cost.

Definition 3.1.4. A conflicted edge for some matching M is an edge such that both
Λu
e and Λd

e are non-empty.

Lemma 3.1.5. Let M : R→ S be a matching from the set of requests to the set of
servers on an α-HST, where all servers and requests are at the leaves. Assume that
for every request r, if M(r) = s, then there does not exist some unassigned s′ such
that d(r, s′) < d(r, s). If M has no conflicted edges, then M is optimal.

Before we prove this lemma, we present a useful definition. For some edge e, let
Te = (Ve, Ee) denote the tree rooted at the child node of e. Also, let RTe denote the set
of all requests in Te, with STe the set of all servers in Te; in other words, RTe = R∩ Ve
and STe = S ∩ Ve.

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 20

Proof. Every request must be matched to a server in any matching—thus, at least
βe = |RTe| − |STe| requests from RTe must be matched to servers not in Te. Thus,
for any matching M , the number of up-arcs on e is |Λu

e | ≥ βe. Similarly, at least
γe = (|R| − |RTe|)− (|S| − |STe|) requests outside of Te must match to servers within
Te. Consequently, it must also be the case that |Λd

e| ≥ γe.
For a contradiction, suppose the matching M is not optimal. Then there exists

some edge e such that |Λu
e | > βe or |Λd

e| > γe.
If |Λu

e | > βe, then at least one request r in Te must have assigned to a server s
outside of Te. Also, we have that there exists some server s′ in Te that is not assigned
by a request in Te. Let r′ be the request that is matched to s′. Then r′ is not in
Te. The matching paths used by the assignments (r, s) and (r′, s′) then cause e to be
conflicted.

The proof is similar for when |Λd
e| > γe. In both cases, we get a contradiction,

implying that M is an optimal matching.

r1 s1 s2 s3 r5 s5 s4
r2 r3 r4 r6

s6

Figure 3.2: An example of how removing all conflict edges of a matching results in an
optimal matching. The original matching from Figure 3.1 is represented here after
deleting all edges with pairs of arrowheads pointing in opposite directions. The new
matching we can infer from this diagram is M∗ = {(r1, s6), (r5, s5)} and then all other
requests assigned to their colocated servers.

3.2 A Deterministic Algorithm

Consider the following algorithm Adet for matching requests to servers on T :

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 21

Algorithm 6 Adet
for all requests ri ∈ R do

Assign ri to a closest unassigned server.
end for

Let M be the matching produced by Adet.

Lemma 3.2.1. For every request r, if M(r) = s, then there does not exist any
unassigned server s′ such that d(r, s′) < d(r, s).

Proof. For some request r, with M(r) = s, suppose for the sake of contradiction that
some s′ remained unassigned and d(r, s′) < d(r, s). Then, when the algorithm chose to
assign r, it chose a closest server. By definition, this means that the server it chooses,
s, must be such that all other servers have distance at least d(r, s). The existence of
s′ provides the necessary contradiction to establish this lemma.

The above lemma must be established in order to apply Lemma 3.1.5 to M , which
would allow the cost of M to be directly compared to the cost of the optimal matching.
Let us now look closer at the nature of conflicted edges.

An arc a1 is said to be added before an arc a2 if t(a1) < t(a2). Likewise, a1 is
added after a2 if t(a1) > t(a2).

Lemma 3.2.2. As algorithm Adet is being run, all down arcs are added before any up
arc is added. In other words, for any edge e covered by the matching,

max
a∈Λde

(t(a)) < min
a∈Λue

(t(a)).

Proof. When a request r traverses an edge e upwards, this means that all servers in
Te have been assigned. When a request r′ traverses e downwards, r′ is matched to
some unassigned server within Te. Thus, if a down arc occurs after an up arc, then a
contradiction forms. More formally, it is a contradiction if there exists some a ∈ Λu

e

and a′ ∈ Λd
e where t(a) < t(a′).

At this point, more precision is needed for the categorization of conflicted edges.
Rather than simply labeling an edge as conflicted or not, the following definition can
be used to establish the number of conflicts at an edge.

Definition 3.2.3. A digon is a pair of arcs (a1, a2) such that a1 in Λu
e and a2 in Λd

e

for some edge e. A set of digons is said to be distinct if no two digons of the set share
an arc.

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 22

Lemma 3.2.4. Let M be a matching produced by Adet. Consider only the arcs in
A(M) corresponding to level i edges, and fix any maximal set of digons among these
arcs. If the set of arcs is non-empty, then there exist at least two arcs a1 and a2 that
do not belong to a digon, where a1 is an up arc, and a2 is a down arc. Also, these two
arcs lie on non-conflicted edges.

Proof. Let a1 be the arc on some edge e1 at level i, such that over all arcs at level i,
t(a1) is minimal. Intuitively, this arc represents the first request that traversed level
i. We know by Lemma 3.2.2 that no more down arcs can occur on e1. Since a1 was
also the first request to traverse this level, there could not have been any down arcs
before a1. Thus, Λd

e1
is empty, and so a1 cannot be paired into a digon, and e1 is

non-conflicted.
Similarly, let a2 be the arc on edge e2 such that over all arcs at level i, t(a2) is

maximal. Intuitively, this arc represents the last request that traversed level i. We
know by Lemma 3.2.2 that no up arcs can occurred on e1 before a2. Since a2 was
also the last request to traverse this level, there could not have been any up arcs
after a2. Thus, Λu

e2
is empty, and so a2 cannot be paired into a digon, and e2 is

non-conflicted.

The next lemma shows how to algorithmically obtain an optimal matching from
any matching produced by Adet by repeatedly removing digons.

Lemma 3.2.5. Let M be some matching produced by Adet. Suppose two arcs a1

and a2 from A(M) are chosen such that {a1, a2} form a digon. Then there exists a
matching M ′ such that A(M ′) = A(M) \ {a1, a2}. Also, c(M ′) ≤ c(M).

Proof. Suppose that for all k, M(rk) = sk. Let ~Pi (connecting ri to si) be the matching

path containing a1, and ~Pj (connecting rj to sj) be the matching path containing a2.
Define M ′ as follows:

M ′(rk) =


sj, if k = i

si, if k = j

sk, otherwise

By switching the matching paths ~Pi with ~Pj to not use e(a1) in M ′, a valid matching
is still maintained. Since all other arcs in M ′ also exist in M , we see that c(M ′) =
c(M)− 2w(e(a1)) ≤ c(M), with the equality being strict if w(e(a1)) > 0.

The above lemma, along with Lemmas 3.1.5 and 3.2.1 immediately imply the
following.

Corollary 3.2.6. If digons are repeatedly removed from a matching M produced by
Adet until there are no more digons, the resulting matching must be optimal.

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 23

If the number of digons removed to transform M into the optimal matching is
small, we get a bound on the competitive ratio. To do this, we next consider ways to
bound the number of digons.

3.3 Conflict Sequences

Loosely speaking, a conflict sequence is an ordered sequence of arcs that begins with
an up arc, followed by 0 or more digons, and is terminated by a down arc. The digons
are, however, obtained by pairing arcs in a specific fashion, as we describe next.

A sequence σ = a0, a1, · · · , a|σi|−1 of arcs at level i is a conflict sequence if

• aj is an up arc if j is odd, and a down arc if j is even,

• a2j−1 and a2j must belong to the same matching path (i.e., t(a2j−1) = t(a2j)),
and

• a2j+1 belongs to a matching path added after a2j (i.e., t(a2j) < t(a2j+1)), but
these two arcs form a digon (i.e., e(a2j) = e(a2j+1)).

Additionally, a conflict sequence is maximal if it is not a proper subset of any other
conflict sequence.

Let the function #(σ) represent the number of distinct edges covered by σ, and
|σ| denote the number of arcs in σ. Then the following facts establish a relationship
between #(σ) and |σ|.

Fact 3.3.1. For any conflict sequence σ = 〈a0, a1, · · · , a|σ|−1〉, we have e(a2j) 6= e(a2k)
for all k 6= j.

Proof. We already know that e(a2j) = e(a2j+1), and that a2j is a down arc, whereas
a2j+1 is an up arc. But by Lemma 3.2.2, if an arc a′ in σ is such that e(a2j) = e(a′),
then t(a2j) < t(a′) < t(a2j+1). However, since a2j and a2j+1 follow consecutively in σ,
no such arc can exist.

Fact 3.3.2. For any conflict sequence σ = 〈a0, a1, · · · , a|σi|−1〉, it holds that #(σ) =
1
2
|σ|+ 1.

Proof. Since e(a2j) = e(a2j+1), every arc can be paired with the next arc in the
sequence, except for the last arc of σ. Also, e(a2j) = e(a2k) only when j = k. The
lemma follows.

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 24

3.3.1 Canonical Conflict Sequences

We want to have some notion of a fixed set of conflict sequences for a matching, such
that every arc of the matching belongs to a conflict sequence, no arc belongs to two
conflict sequences. We will denote S as the set of these canonical conflict sequences,
and Si will be used to represent the set of canonical conflict sequences at level i of T .

Lemma 3.3.3. Let RS : A→ A be the relation between two arcs a1 and a2 such that
a1RSa2 if and only if a1 and a2 belong to the same canonical conflict sequence. Then,
there exists a setting of canonical conflict sequences S such that RS is an equivalence
relation.

Proof. We first define several functions for constructing S.
For the remainder of this proof, σ will be used to represent a conflict sequence

with arcs a1, a2, · · · , an.

Algorithm 7 merge(S = {σ1, σ2, · · · , σt})
S∗ ← ∅
for all pairs of conflict sequences (σi, σj) ∈ S × S do
ai ← the last arc of σi
aj ← the first arc of σj
if t(ai) < t(aj) and e(ai) = e(aj) then
S ← S \ {σi, σj}
S∗ ← S∗ ∪ {σj ◦ σi}

end if
end for
return S∗

Remark 3.3.4. Given a set of conflict sequences S, merge(S) will extend these sequences
such that the sequences in the set returned will be maximal.

The next function we define allows us to create a conflict sequence at level i− 1
based on a conflict sequence at level i. This sequence at level i− 1 thus acts as the
parent.

Algorithm 8 image(σ)

E ← the set of edges adjacent to edges covered by the arcs of σ at one level higher
if |E| > 1 then

return a conflict sequence out of the arcs in E
else

return ⊥
end if

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 25

Fact 3.3.5. In image(σ), the arcs of E are enough to form a valid conflict sequence.

Proof. It remains to prove that the arcs lying on edges in E can be organized as a
conflict sequence at level i− 1. This can be done by showing that all properties of
being a conflicted sequence hold on some sequence involving the arcs at E in some
order.

For each edge e ∈ E, let S(e) be the set of arcs of σi that are adjacent to e. Define

f(e) = min
a∈S(e)

t(a)

Create the sequence S = e0, e1, · · · , e|E|−1, where f(e0) < f(e1) < · · · < f(e|E|−1).
Define eui as an up arc and edi as a down arc on edge ei. We want to show that

σi−1 = eu0 , e
d
1, e

u
1 , e

d
2, e

u
2 , e

d
3, · · · , ed|E|−2, e

u
|E|−2, e

d
|E|−1

is a conflict sequence at level i− 1.
By our definition, σi−1 consists only of arcs found at level i− 1.
By how we constructed σi−1, we have that each even term is an up arc. Also

note that the request that traversed up on ei must have been the same request that
traversed down on ei+1. Thus, we have that t(ei) = t(ei+1).

By how we constructed σi−1, we have that each odd term is repeated once again,
establishing that e(aj) = e(aj+1). Also note that the request that traversed down on
ei must have come before the request that traversed up on ei. Thus, we have that
t(ei) = t(ei+1).

Therefore, σi−1 is a conflict sequence at level i− 1.

Fact 3.3.6. Let σ1 and σ2 be two conflict sequences at level i. Then image(σ1) and
image(σ2) are disjoint.

Proof. Suppose an arc a at level i − 1 belongs to image(σ1) and image(σ2). Then
there exists an arc a′ at level i such that t(a′) = t(a).

By the way the parent sequences are formed from image, it must be the case that
a′ is also a member of two sequences σ′1 and σ′2 at level i. Thus, by induction, it only
remains to show that an arc cannot belong to two sequences at the last level of the
tree.

Suppose for the sake of contradiction that an arc â at the last level belongs to
two sequences σ̂1 and σ̂2. Then there exist arcs â1 in σ̂1 and â2 in σ̂2 such that
t(â1) = t(a) = t(â2). However, there cannot be three arcs that have the same t-values,
a contradiction.

This next function will be used to generate a set of canonical sequences at level
i. It requires the canonical sequences at level i + 1. Let Si be the set of canonical
sequences at level i.

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 26

Algorithm 9 canonicalize(i,Si+1)

Si ← ∅
if i = h (so we are canonicalizing the bottom level of the tree) then
Si ← {(a1, a2) ∈ Ai : t(a1) = t(a2)}

else
for all s ∈ Si+1 do
Si ← Si ∪ {image(s)}

end for
end if
return merge(Si)

Thus, we now have a way of generating the set of canonical sequences for the
entire tree. It is trivial to show that RS is reflexive and symmetric. To show that
RS is also transitive, it is enough to show that no arc can belong to more than one
canonical sequence. Since we remove the arcs that form a canonical sequence before
adding them into the set of canonical sequences, it cannot be the case that one arc
is used twice to form two canonical sequences. Thus, we have shown that RS is an
equivalence relation.

Now that we have fully defined a complete procedure for determining the canonical
sequences of a matching for any given level on an HST, we can define a function image
which relates canonincal sequences between levels of the HST. We then show that
certain desirable properties hold between a canonical sequence at level i and its image
at level i− 1.

Lemma 3.3.7. Let F be the map defined by the image function. Then,

F : Si → Si−1 ∪ {⊥}

is such that:

1. If F(σ) = ⊥ then |σ| ≤ 2d− 2.

2. if F−1(σ′) = {σ1, σ2, · · · , σt}, then
∑t

k=1

[
|σk|
τ
− 2
]
≤ |σ′|, where τ = d.

Proof. For property 1, we show the contrapositive. Let E be the set of edges adjacent
to arcs in σ, and suppose that σ is a conflict sequence at level i. It is enough to show
that if |σ| > 2d− 2, then |E| ≥ 1.

Suppose, to get a contradiction, that all arcs of σ are adjacent to exactly one edge
e at level i− 1. We know that for any edge e′ at level i, at most two arcs from σ can
lie on e′. Since the maximum degree of the tree is d, we also know that at most d

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 27

edges at level i can be adjacent to e. But by Fact 3.3.2, #(σ) > 1
2
(2d− 2) + 1 = d,

which is a contradiction.
For property 2, look at any arbitrary σk, and let Ek be the set of edges adjacent to

arcs in σk. Note that #(σk) = 1
2
|σk|+ 1, and so the Pigeonhole Principle gives us that

|Ek| ≥
⌈

#(σk)

d

⌉
=

⌈ 1
2
|σk|+ 1

d

⌉
≥ 1

2d
|σk|

We know by Fact 3.3.5 that we can pull arcs from the edges of Ek to form a conflict
sequence. Let σ′k be this new sequence. Fact 3.3.2 then gives us that

|σ′k| = 2|Ek| − 2 ≥ |σk|
d
− 2.

Since k was arbitrarily chosen, we can then apply this to all such σk for 1 ≤ k ≤ t.
By Fact 3.3.6, the arcs in the image of σk are disjoint from the arcs of any other σj
for j 6= k. Thus, we can simply take the sum over all σk to establish a lower bound
on the union of the images of each σk. Note that the union of the images of each σk
make up σ′, and so property 2 follows.

Now that we have fully specified the definition of the canonical conflict sequences
for matchings on the tree, we can move onto the relation between canonical sequences
and the cost incurred by them in the next section.

3.4 Competitive Ratio

From now on, we will use M to denote the matching produced by our algorithm, and
M∗ the optimal matching. Note that for a canonical sequence σ ∈ Si, our algorithm
pays |σ|, hence

c(M) =
h∑
i=1

[∑
σ∈Si

|σ|
]

c

αi−1

If we define si =
∑

σ∈Si |σ|, we get

c(M) = c

h∑
i=1

si
αi−1

.

We can also give a lower bound on the cost of the optimal matching; note that every
canonical sequence is associated with exactly two non-conflicted edges. Recall from

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 28

Corollary 3.2.6 that removing the digons in each the canonical sequences for M gives
us an optimal matching. Hence, if ai = |Si|, it follows that

c(Opt) = 2c
h∑
i=1

ai
αi−1

.

Let us now relate the si’s to ai’s as follows:

Lemma 3.4.1.
si ≤ τ(si−1 + 2ai).

Proof. Let σ′ be a canonical sequence at level i−1, and suppose F(σ′) = {σ1, σ2, · · · , σt}
be the canonical sequences at level i that map to σ′. Lemma 3.3.7(2) implies that

|σ′| ≥∑σk∈F(σ)(
|σk|
τ
− 2).

Furthermore, we know that each σ′ at level i either maps to some sequence at level
i− 1, or maps to ⊥—in which case its length is at most 2τ − 2, and hence satisfies
2|σ′|
τ
− 2 ≤ 0.

Using these facts, we can sum over all σ’s in Si to get∑
σ∈Si

(|σ|
τ
− 2

)
≤

∑
σ′∈Si−1

|σ′|.

Now using the definitions of si and ai, we get

si
τ
− 2ai ≤ si−1,

or si ≤ (si−1 + 2ai) · τ , which proves the claim.

Now, we would like to relate the right-hand side of Lemma 3.4.1 to c(Opt).

Lemma 3.4.2.

si ≤ τ i

(
d

τ
a1 + 2

i∑
k=2

ak
τ k−1

)
≤ di

c
· c(Opt).

Proof. Let us use Lemma 3.4.1 repeatedly to represent si in terms of s1 thus:

si ≤ s1 · τ i−1 + τ i · 2
i∑

k=2

ak
τ k−1

.

We also know that ai · di ≥ si, since the maximum length of any canonical sequence
at level i is di. Thus, s1 ≤ a1 · d, and so we can infer that

si ≤ τ i

(
d

τ
a1 + 2

i∑
k=2

ak
τ k−1

)
.

CHAPTER 3. AN HD-COMPETITIVE ALGORITHM 29

Recall that τ = d; plugging this in, we get

si ≤ di

(
a1 + 2

i∑
k=2

ak
dk−1

)
≤ di · 2

i∑
k=1

ak
dk−1

≤ di

c
· c(Opt).

This completes the proof of the lemma.

Plugging this into the definition of c(M), we get

c(M) = c

h∑
i=1

si
αi−1

≤ c

h∑
i=1

di

c · αi−1
· c(Opt) ≤ c(Opt) ·

h∑
i=1

di

αi−1
,

which implies the main result for deterministic algorithms:

Theorem 3.4.3. The competitive ratio of the deterministic greedy algorithm on α-
HSTs with maximum degree d is at most

h∑
i=1

di

αi−1
.

In particular, if d ≤ α, then the competitive ratio is at most hd.

The crucial idea in this analysis of the deterministic greedy algorithm on HSTs was
the formulation of the canonical sequences and the conclusions drawn in Lemma 3.3.7.
We were able to relate the canonical sequences of levels i and i− 1 in the tree with
one another. Without the ability to infer information about the canonical sequence
level i − 1 given the canonical sequence at level i, a bound of hd would not have
been possible. One natural question to ask is whether or not the randomized greedy
algorithm improves upon the competitive ratio of the deterministic greedy algorithm,
under the same framework of analysis (the use of canonical sequences). Unfortunately,
it appears to be more difficult to relate the canonical sequences at adjacent levels, and
so the analysis would require a modified approach.

If we consider the HST construction algorithm described in Chapter 2, then we note
that the d = α = 2, and h = log k. Thus, a competitive ratio of hd on the tree implies
a competitive ratio of O(log2 k) on the line (since an extra O(log k) term is incurred
when converting back from the tree to the line). An O(log2 k) competitive ratio for
general metrics has already been attained in [BBGN07]—though, their algorithm
requires the computation of an offline optimal solution on the HST as each new request
appears, whereas the deterministic greedy algorithm is much simpler. However, in the
next chapter, we will see an example of an algorithm that exhibits O(log k) on the
line.

Chapter 4

The Random-Subtree Algorithm

The randomized greedy algorithm on HSTs, analyzed by Meyerson, Nanavati and
Poplawski [MNP06], achieves an O(log3 k) by showing that randomized greedy has
competitive ratio O(log k) on α-HSTs, where α = Ω(log k). However, in the case of
the line metric, we know that we are able to construct degree-2 2-HSTs with O(log k)
expected stretch. Somehow, we want to factor in the advantage of the HSTs having
small degree into the analysis of the randomized greedy algorithm. In this chapter,
we show that by making a modification to the way a request chooses a random
closest server to break ties, we can replace the log k terms with log d terms, where d
is the degree of the HST. In the case of the line and low-dimensional spaces where
constant-degree HST constructions are known, this new dependency on log d rather
than log k proves to be quite advantageous.

4.1 The Algorithm

Our algorithm, called Random-Subtree, for online metric matching on HSTs is the
following: when a request l comes in, consider its lowest ancestor node a that contains
a free server. Now choose a path down from a to a free server by going to a (uniformly)
random subtree that contains a free server. We imagine that each leaf of the HST
contains at most one server, and so when we reach a server/leaf s, we map the request
l to this server s. Note that this does not bias towards subtrees that contain more
servers (as the randomized greedy algorithm of [MNP06] does).

The performance of this algorithm is given by the following theorem:

Theorem 4.1.1. The algorithm Random-Subtree is a 2(1 + 1/ε)Hd-competitive algo-
rithm for online metric matching on degree-d α-HSTs, as long as α ≥ max((1+ε)Hd, 2).

Using the fact that we can approximate a k-point line metric by degree-2 2-HSTs
with distortion O(log k) [FRT03], we immediately get an O(log k) · 8H2-competitive

30

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 31

randomized algorithm for online metric matching on a line. This appears to be the
first O(log k)-competitive algorithm for this problem. Throughout the proof, we use
Hd to represent the dth harmonic number, so Hd =

∑d
i=1 1/i.

4.2 Proof of the One-Level Lemma

To prove the theorem, we first show a one-level lemma (Lemma 4.2.2) that accounts
for the expected number of times an edge adjacent to the root in the HST is used by
the algorithm: we show that this number is at most Hd times the number of times the
optimal algorithm uses those edges. We then use this result for every level to show
that the total cost still remains at most O(Hd) times the optimum, as long as the
parameter α for the HST is sufficiently large compared to Hd. This proof appears in
Lemma 4.3.1, and immediately implies Theorem 4.1.1.

Consider an HST T with a set of requests S ∪ S ′ such that the requests in S
originate at the leaves of T , and those in S ′ originate at the root. Assume that the
number of servers in T is at least |S ∪ S ′|. Occasionally we will use Ti to represent
the set of requests that originate in a subtree Ti of T (rather than the subtree itself)
when the context makes this clear. Let ni be the number of servers in the ith subtree
Ti of T , and let m∗ =

∑
i max(|S ∩ Ti| − ni, 0).

Fact 4.2.1. In any assignment of requests in S ∪ S ′ to servers, at least m∗ + |S ′|
requests use top-level edges.

Proof. The number of requests that originate in a subtree Ti is |S∩Ti|, so |S∩Ti|−ni
represents the number of requests that originate in Ti and must assign to servers
outside of Ti, and hence, must use a top-level edge. The maximum of this quantity over
all subtrees is therefore a lower bound on the number of requests that use top-level
edges.

Let M be the random variable denoting the number of requests in S ∪ S ′ that use
a top-level edge when assigned by the algorithm Random-Subtree.

Lemma 4.2.2 (One-Level Lemma).

E[M] ≤ Hd · (m∗ + |S ′|).

Proof. Let the k requests S ∪ S ′ be labeled r1, r2, · · · , rk, where r1 is the earliest
request and rk is the last request.

We define time t to be the instant just before request rt is assigned, so that
t = 1 represents the time before any request assignments have been made, and
t = k + 1 represents the the time after all request assignments have been made. Let
Rt = {rt, rt+1, · · · , rk}, the set of requests at time t that have yet to arrive. At time t,

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 32

let ni,t be the number of available servers in tree Ti. A subtree Ti is said to be open
at time t if ni,t > 0 (there are available servers at time t in Ti). Let αt be the number
of open subtrees of T at time t. Define the first min(ni,t, |Rt ∩ Ti|) requests to be the
local requests of Ti at time t (these are the ones in Ti that have the highest numbered
indices), and the remaining requests in Ti to be the global requests of Ti at time t; let
Li,t and Gi,t be the set of local and global requests in Ti at time t, and let Lt = ∪iLi,t
and Gt = ∪iGi,t. All requests in Rt ∩ S ′ are called root requests of T at time t, and
form the set Rt.

Remark 4.2.3. At time t = 1, R1 = S∪S ′, ni,1 = ni, and the number of global requests
in Ti is |Gi,1| = max(|S ∩ Ti| − ni, 0), and the number of root requests is |Ri,1| = |S ′|.
The total number of global requests at time 1 is m∗.

4.2.1 Cost Functions Ft

We will maintain functions Ft : Rt → Z≥0; such a function Ft is called well-formed if
it satisfies the following properties:

• Ft(rj) = 0 if and only if rj ∈ Lt (i.e., it is a local request at time t), and

• for all global and root requests rj ∈ Gt ∪ Rt, Ft(rj) is an upper bound on αj
(the number of open subtrees at time instant j) with probability 1.

To ensure that our functions are well-formed initially at time 1, we set F1(rj) = d
(the degree of the tree) for all rj ∈ G1 ∪R1 (global and root requests at time 1), and
F1(rj) = 0 for all rj ∈ L1 (local requests at time 1). It is immediate that the map
F1 is well-formed. We will define a (well-formed) map Ft for every time instant t, as
described in the following discussion.

Consider time instant t, and suppose that the well-formed map Ft has been defined.
If rt ∈ Lt, then define Ft+1(rj) = Ft(rj) for all rj ∈ Rt. Note that if a request at time
t is a local/global/root request, then it is still a local/global/root request at time t+ 1,
so it follows that Ft+1 is still well-formed.

Now suppose rt ∈ Gt ∪Rt—it is a global or root request. For convenience, we say
that a request rj “becomes global” at time t if rj is local at time t− 1, but rj is global
at time t. Recall there are αt open subtrees at time t; moreover, since rt is a global
request, its own subtree is not open at time t. For each open subtree Ti, there are
|Rt ∩ Ti| requests and ni,t free servers in it, so if |Rt ∩ Ti| ≥ ni,t then assigning rt to a
server in this subtree would cause some request rj in Rt ∩ Ti that is local at time t to
become global at time t+ 1 (because ni,t−1 would become ni,t − 1). Let at(Ti) = j, so
that at(Ti) is the index of the request rj that turns global in subtree Ti; if there is
no such request, set at(Ti) = k + i. Let At = {at(Ti) | Ti open at time t}; note that
|At| = αt. Now denote the elements of At by {pj}αtj=1 such that p1 < p2 < · · · < pαt .
Note that each pj corresponds to at(Ti) for some subtree Ti.

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 33

Remark 4.2.4. Note that pαt > k; indeed, since the total number of requests in S ∪ S ′
is at most the total number of servers. If rt is global, then the subtree containing rt
has no available servers but has at least one request (namely rt), which must assign
to some open subtree Ti which has more available servers than requests. Alternatively,
if rt is a root request, then there must exist some there must be at least one open
subtree Ti which has strictly more available servers than requests—for this subtree Ti,
the corresponding at(Ti) is greater than k.

Now, let rt get randomly assigned to a server in one of the open subtrees, say in
subtree Ti. We now need to define the map Ft+1. There are two cases to consider:

• If at(Ti) > k (i.e., none of the requests in Ti ∩ Rt+1 become global at time t),
then we set Ft+1(r) = Ft(r) for all requests r ∈ Rt+1.

• If at(Ti) ≤ k, then say at(Ti) = pα(t)−q+1 in the ordering given above (i.e.,
at(Ti) was the qth largest value in At). Now assign Ft+1(r) = Ft(r) for all
r ∈ Rt+1 \ {rat(Ti)}, and Ft+1(rat(Ti)) = q − 1.

Lemma 4.2.5. The map Ft+1 is well-formed.

Proof. By induction, the map Ft was well-formed. In the first case when rt is local,
since the map remains unchanged on Rt+1, and so do the set of local/global/root
requests in Rt+1, the claim follows.

When rt is a global or root request and mapped into Ti, if none of the requests in
Ti ∩ Lt−1 become global due to this change, the well-formedness of Ft+1 follows again.
So, let’s consider the case where the request rj ∈ Ti becomes global because of rt. We
previously defined that j = at(Ti), and that j is the qth largest of the sequence of At.
Moreover, since rj is mapped by Ft+1 to an integer q ≤ k, it suffices to show that at
most q − 1 subtrees will be open at time j. Indeed, we claim that for any subtree Th
with at(Th) < at(Ti) = j, there will be no servers available in Th at time j. To see
this, note that since at(Th) < k, there must be some request that becomes global if rt
assigns in Th. Thus, the number of requests in Th that had indices smaller than j (and
hence arrive before rj) was equal at time t to the number of available servers in Th,
and hence these requests alone would cause Th to be closed. Moreover, for subtree Ti,
the fact that rj becomes global at time t means that Ti will also be closed at time j.
Hence, the only open subtrees at time j would be the subtrees T` which were open at
time t, and which had at(T`) > j. There are at most q − 1 of such subtrees T`, since j
is the qth largest of the sequence. This shows that Ft+1 is well-formed.

Observe that the changes to the map Ft over time are very simple: maps Ft and
Ft+1 differ in at most one request from Rt+1. Moreover, this difference is when some
local request rj becomes global at time t, and hence is mapped to some positive integer
value instead of to zero. The value Ft′(lj) then remains unchanged thenceforth (for
times t′ = t+ 1, t+ 2, . . . , j).

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 34

4.2.2 Potential Function Analysis

Finally, let us define a potential function:

Φt =
∑
r∈Rt

HFt(r),

where we consider H0 = 0. Also, define ρt to be the number of requests that our
algorithm has matched outside their subtrees at time t.

Lemma 4.2.6. For all 1 ≤ t ≤ k + 1, E[Φt + ρt] ≤ Hd · (m∗ + |S ′|).

Proof. We prove this by induction on time t. The base case is when t = 1. Then
ρ1 = 0; the number of global/root requests is m∗ + |S ′|, and since each such request r
has F1(r) = d, we get that Φ1 = Hd · (m∗ + |S ′|).

Inductively assume the claim is true at time t. Thus, E[Φt + ρt] ≤ Hd · (m∗ + |S ′|).
We want to show the same at time t+ 1, right after rt has been assigned. We claim
that

E[Φt+1 + ρt+1] ≤ Φt + ρt,

which will complete the proof. There are two cases:

• Suppose rt is a local request: its subtree contains an unassigned server, so
ρt+1 = ρt. Moreover, Ft(rt) = 0 by the well-formed property, so Φt+1 = Φt.

• Suppose rt is a global request, and gets assigned to subtree Ti. In this case,
ρt+1 = ρt + 1. Now consider E[Φt − Φt+1]. This is

HFt(lt) −
1

αt

αt−1∑
j=0

Hj ≥ 1

since Ft(rt) ≥ αt by the well-formedness of map Ft, and Hm − 1
m

∑m−1
j=0 Hj = 1.

Hence, in both cases, conditioned on everything that happened before time t, the
value E[Φt+1 +ρt+1] ≤ Φt +ρt, where the expectation is taken over the random choices
of lt. This completes the induction, and the proof of the lemma.

Since ρk+1 = M , and Φk+1 = 0, this finishes the proof of the one-level lemma.

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 35

4.3 Bounding the Total Cost

Given the one-level lemma with parameter γ, we can now show the following result
for α-HSTs:

Lemma 4.3.1. Suppose T is an α-HST rooted at r. For any set S of requests at
the leaves of T , and requests S ′ at the root of T , such that |S ∪ S ′| is at most the
number of servers in T . If we let Alg(R, T) be the cost of Random-Subtree on the set
of requests R on the tree T , and Opt(R, T) the cost of the optimal solution, it holds
that

E[Alg(S ∪ S ′, T)] ≤ cγOpt(S ∪ S ′, T)

for c = 2(1 + 1/ε) as long as α ≥ max(2, (1 + ε)γ).

Proof. We prove this by induction on the depth of the HST. The base case of this
problem is implied by the one-level lemma on a star (say of unit edge lengths); note
that the algorithm incurs a cost of 2M , whereas Opt(S∪S ′, T) = |S ′|+2m∗ ≥ |S ′|+m∗.
Hence we get that E[Alg(S∪S ′, T)] = E[2M] ≤ 2Hd·Opt(S∪S ′, T) ≤ cγOpt(S∪S ′, T).
Recall that M is the number of requests in S ∪ S ′ that in our algorithm’s matching
use top-level edges, and m∗ is the number of requests in S that use top-level edges in
the optimal matching.

For the inductive step, let us prove the claim for an α-HST T under the assumption
it inductively holds for all the α-HSTs Ti that are the subtrees of the root. Let the
length of edges incident to the root be 1, the length of their children be 1/α, etc. Let
the length of the path from the root to a leaf in T be (1 + β), which implies that
β ≤ 1

α−1
. Let ni be the number of servers in a subtree Ti of T .

Consider the optimal matching Opt, and define the following quantities:

• Let Γ∗i be the requests originating in Ti that Opt matches outside Ti (call these
the Opt-global clients), and let m∗i = |Γ∗i |,

• Let Λ∗i be the requests in Ti that Opt satisfies with servers in Ti (these are the
Opt-local clients)

• Let Si = Λ∗i ∪ Γ∗i , and note that S = ∪iSi.

Fact 4.3.2 (Optimal Cost).

Opt(S ∪ S ′, T) =
∑
i

Opt(Λ∗i , Ti) +
∑
i

m∗i · 2(1 + β) + |S ′| · (1 + β).

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 36

r1 r2 r3

r4
r5

Ti

Figure 4.1: If the dotted lines represent the assignments that Opt makes within Ti,
then Λ∗i = {r1, r3}, Γ∗i = {r2}, and the set S ′ of Ti is {r4, r5}.

Proof. We can partition the set S ∪ S ′ into the three types of subsets Λ∗i , Γ∗i , and S ′.
For each request r in Λ∗i we note that the optimal cost of assigning r is determined by
Opt(Λ∗i , Ti), since r’s server must be in Ti. For every request in Γ∗i , we must assign
from some subtree Ti to Tj by using a top-level edge. Thus, we simply pay twice
the length from the root to a leaf for each request in Γ∗i , which can be expressed
as 2(1 + β)m∗i for each subtree Ti. Finally, the requests that begin at the root (of
which there are |S ′| many) will pay the length of the root to a leaf, which is exactly
1 + β.

Now, let Mi be the set of requests originating outside Ti (but possibly at the root
of Ti) that the algorithm satisfies by assigning into Ti. Look at Si ∪Mi—these are all

the requests that the subtree Ti encounters, and let Xi = Ŝi ∪ M̂i be the first ni of
these requests which can be satisfied within the subtree Ti. (Note that the sets Mi,

Xi, Ŝi, and M̂i are all random variables.)

Fact 4.3.3.

E[Alg(S ∪ S ′, T)] =
∑
i

E[Alg(Ŝi ∪ M̂i, Ti)] +
∑
i

E[|Mi|] · (2 + β).

Proof. Suppose r is some request in Ti that Alg assigned to some server in Tj 6= Ti.
We account for this assignment’s cost by breaking the path from r to s into two parts.

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 37

The initial part, accounted for by the latter term of the equation, includes the edges
used from r to the root along with both edges incident to the root. The path from r
to the root is of length β + 1, and the additional edge incident to the root is of length
1, giving us β + 2. Since there are |Mi| such requests for each subtree Ti, we see that
the second term covers all of the initial parts of the paths of each global request.

The reason for the above convention is that now that we have covered all outgoing
requests, we can imagine all global incoming requests as having originated at the root
of the tree, since their inital parts have already been accounted for. Therefore, this
quantity can be described as Alg(Ŝi ∪ M̂i, Ti) for each subtree Ti.

By our inductive assumption we know that for any Ŝi and M̂i defined for a tree Ti,

E[Alg(Ŝi ∪ M̂i, Ti)] ≤ c γ Opt(Ŝi ∪ M̂i, Ti). (4.1)

Fact 4.3.4.

Opt(Ŝi ∪ M̂i, Ti) ≤ Opt(Λ∗i , Ti) +m∗i · 2β + |Mi| · β.

Proof. To bound Opt’s cost on Ŝi ∪ M̂i, we imagine the requests in Ŝi ∩Λ∗i being sent
according to where Opt(Λ∗i , Ti) sent them, and the remaining requests being assigned
arbitrarily to the remaining servers. The former cost is upper bounded by Opt(Λ∗i , Ti).

For the latter term, there are |Ŝi ∩ Γ∗i | ≤ |Γ∗i | = m∗i requests which incur a cost of at
most 2β (since they go from some leaf to another within the fixed subtree Ti), and
the remaining requests—at most Mi of them—incur a cost of at most β (since they
go from the root of Ti to a leaf).

Using Facts 4.3.3 and 4.3.4 with (4.1), we get

E[Alg(S∪S ′, T)] = c γ
∑
i

(
Opt(Λ∗i , Ti)+m∗i ·2β+E[|Mi|] ·β

)
+
∑
i

E[|Mi|] · (2+β).

Comparing this expression with Fact 4.3.2 (and cancelling the Opt(Γ∗i , Ti) terms), it
suffices to show that∑

i

c γ
(
m∗i · 2β + E[|Mi|] · β

)
+ E[|Mi|] · (2 + β) ≤

∑
i

c γ (2m∗i + |S ′|)(1 + β).

Finally, we can use the one-level lemma to claim that

E[|Mi|] ≤ γ · (
∑
i

m∗i + |S ′|).

Using this, abbreviating m∗ =
∑

im
∗
i and s′ = |S ′|, and cancelling γ throughout, it

suffices to show that

cm∗ 2β + (m∗ + s′)(cγβ + (2 + β)) ≤ c (2m∗ + s′)(1 + β).

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 38

Or equivalently, it suffices to choose c such that

c ≥ (m∗ + s′)(2 + β)

(2m∗ + s′)(1 + β)− 2β m∗ − (m∗ + s′)γβ

as long as the expression in the denominator is positive. But the expression on the
right is

m∗(2/β + 1) + s′(2/β + 1)

m∗(2/β − γ) + s′(1/β + 1− γ)
≤ max

(
2/β + 1

2/β − γ ,
2/β + 1

1/β + 1− γ

)
,

so as long the greater of 2/β+1
2/β−γ and 2/β+1

1/β+1−γ is bounded above by c, we are in good

shape. If α ≥ 2, then 1/β ≥ α− 1 ≥ 1 and the latter expression is the larger one, so
we can focus on that. But that expression is 2α−1

α−γ , which is bounded above by 4 if

α ≥ 2γ. In general, we could set α = (1 + ε)γ, in which case we could set c = 2(1 + 1
ε
).

The following is a proof of this algebraic manipulation for completeness:

Lemma 4.3.5. For 1/β ≥ α− 1, we have that

2/β + 1

1/β + 1− γ ≤ c.

Proof. Plugging in c = 2(1 + 1
ε
) and α = (1 + ε)γ we get:

c ≥ 2/ε+ 2− 1/(εγ)

c ≥ 2γ + 2εγ − 1

εγ

2(1 + ε)γ − 1 ≤ cεγ

(2α− 1) ≤ c(α− γ)

2α− 1

α− γ ≤ c

Now, note that f(x) = 2x−1
x−γ is a decreasing function, so we have that α ≤ 1/β + 1

implies that f(α) ≥ f(1/β + 1). Since c ≥ f(α), then c ≥ f(1/β + 1), and so

2(1/β + 1)− 1

1/β + 1− γ ≤ c.

This completes the proof of the bound on the expected cost of Random-Subtree.

CHAPTER 4. THE RANDOM-SUBTREE ALGORITHM 39

Note that in the worst case, the HST is just the star graph, in which case
d = k. Thus, we have that d ≤ k. Since our results imply O(log2 d log k), then
Random-Subtree must be at least as good as the MNP algorithm for general met-
ric spaces. The analysis here allows us to conclude that Random-Subtree achieves
O(log k) competitiveness on the line, and O(log k) competitiveness for any metric
space for which there exists a constant-degree HST construction with O(log k) stretch.
Now, any improvement upon O(log k) competitiveness for the line would require an
algorithm that does not construct an HST, since the inevitable conversion back to
the line would incur an O(log k) term already. However, in the next chapter we
see a new, deterministic algorithm on HSTs derived from the line that achieve O(1)
competitiveness on the HST.

Chapter 5

An O(log k) Algorithm for the Line

The two algorithms in the previous chapters that we proposed for the online metric
matching problem, as well as the poly(log k) algorithms presented in [MNP06] and
[BBGN07], are algorithms that perform an HST construction, run a simple procedure
on the HST, and map the matching back to their original metrics while incurring
an additional O(log k) cost, obliviously. The problem with this approach is that we
compare the algorithm’s cost on the HST with the optimal cost on the HST, and then
we apply the results of [FRT03] immediately to get a competitive ratio for the original
metric. In the following analysis, we choose to ignore the cost of the algorithm’s
matching on the HST entirely. Rather, we compare the cost of our matching using
the original metric’s distance function with the cost of our matching with the HST’s
distance function.

However, the fact that we are now comparing costs between two different metric
spaces makes the analysis more difficult. Our proof technique involves the analysis
of a hybrid algorithm—one that makes arbitrary assignments for the first i requests,
and then runs our competitive algorithm for the remaining requests. We compare this
to a hybrid algorithm that makes the same arbitrary assignments for the first i− 1
requests, and then runs our competitive algorithm on the remaining requests. We
show through a careful analysis of the changes that occur between these two hybrid
algorithms that the difference in cost is small enough. This allows us to conclude that
the “hybrid” algorithm that makes arbitrary assignments on the first 0 requests and
then runs our competitive algorithm on the remaining (all) of the requests performs
well. In this chapter we also include an instance of the online metric matching problem
on the line that shows that our analysis for this algorithm is tight.

40

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 41

5.1 The HST-greedy Algorithm

Consider the following algorithm for online minimum matching on the line. This
deterministic algorithm takes a line L (on the set of servers S, with |S| = k), and a
binary 2-HST T superimposed on it in the natural fashion as in the figure, such that
distances dT in the HST dominate the distances dL along the line. Given a sequence of
requests σ = r1, r2, . . . , rk appearing online, the algorithm matches each request ri to
a distinct server f(ri) as follows: for the request ri, let ai denote the lowest ancestor
of ri in the tree such that the subtree T (ai) rooted at xi contains a free server. Assign
ri to the free server in T (ai) that is closest to ri along the line; this server is called
f(ri). We call this the HST-greedy algorithm, and denote the matching produced by
it on a request sequence σ as Gσ.

Theorem 5.1.1. The cost (along the line) of this matching f is at most a constant
times the cost (along the tree) incurred by any other matching f ∗. I.e.,∑

i

dL(ri, f(ri)) ≤ O(1) ·
∑
i

dT (ri, f
∗(ri)), (5.1)

Combining this with the fact that we can choose this tree T from a probability
distribution such that the expected distances in the tree are greater only by a factor
of O(log k), we get:

Corollary 5.1.2. The randomized algorithm that picks a random binary 2-HST for
the line and runs the HST-greedy on this tree is an O(log k)-competitive randomized
online algorithm for metric matching on the line.

In the subsequent discussion, we will find it useful to generalize the discussion to
the case where we approximate the line using α-HSTs of maximum degree D. In this
case we assume that the children of each node are numbered 1, 2, . . . , D in the natural
left-to-right order. In this case, we need to generalize the HST-greedy algorithm above
“break ties consistently”; let us call this the generalized HST-greedy algorithm. In
particular, on request ri, let ai again be the lowest node such that T (ai) contains a
free server. Now let bi be the lowest-numbered child of ai such that T (bi) contains a
free server; if the leaves of T (bi) lie to the left of ri, send ri to the closest free server
to its left, else send it to the closest free server to its right. In the binary case, T (bi)
is the subtree that does not contain ri, and hence following the generalized algorithm
just gives us the original HST-greedy algorithm for the binary case.

5.1.1 Analysis via a “Hybrid” Algorithm

To prove Theorem 5.1.1, first consider a “hybrid” algorithm that matches the request
r1 to an arbitrary server s1, and then runs the HST-greedy algorithm on the remaining

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 42

requests in σ. Denote the matching produced to be Hσ; note that this matching is a
function of the choice of s1.

Lemma 5.1.3 (Hybrid Lemma). There is a λ = O(D) such that for any set of
servers S on the line, for any request sequence σ = r1, · · · , rk, and for any choice of
assignment r1 → s1,∑

i

dL(ri, Gσ(ri)) ≤
∑
i

dL(ri, Hσ(ri)) + λ dT (r1, s1), (5.2)

Note that if G were the optimal matching on the line, and H would match r1 → s1

and then find the optimal matching on the remaining requests, such a claim is easily
seen to be true with additive error 2dL(r1, s1). Here we show that even the HST-greedy
algorithm satisfies such a property with O(1) dT (r1, s1).

Also, before we prove this lemma, let us use it to prove the theorem. Given any
request sequence σ and matching f ∗, we can define a sequence of hybrid algorithms
{H t}kt=0, where H t matches the first t requests ri in σ to f ∗(ri), and then runs the
HST-greedy algorithm on the remaining requests. Note that H0 is just the HST-greedy
algorithm, and Hk produces the matching f ∗. Moreover, by ignoring the servers in
{f ∗(ri) | i ≤ t}, just considering the request subsequence rt+1, . . . , rk, we can use the
lemma to claim that

k∑
i=t+1

dL(ri, H
t(ri)) ≤

k∑
i=t+1

dL(ri, H
t+1(ri)) + λ · dT (rt, f

∗(rt)),

or by adding
∑t

i=1 dL(ri, f
∗(ri)) to both sides,

k∑
i=1

dL(ri, H
t(ri)) ≤

k∑
i=1

dL(ri, H
t+1(ri)) + λ · dT (rt, f

∗(rt)).

Now, this summing this for all values of t, and using that H0 = G and Hk = f ∗, we
get

k∑
i=1

dL(ri, G(ri)) ≤
k∑
i=1

dL(ri, f
∗(ri)) + λ ·

∑
i

dT (rt, f
∗(rt)).

Finally, since dL ≤ dT , we get that

k∑
i=1

dL(ri, G(ri)) ≤ (λ+ 1) ·
∑
i

dT (rt, f
∗(rt)),

and hence Theorem 5.1.1 follows.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 43

Let us now proceed with the proof of Lemma 5.1.3. We first make a few simple
claims relating the behavior of the algorithms G and H given any initial set of servers
S and a request sequence σ.

Firstly, if there are any requests ri such that Gσ(ri) = Hσ(ri), we can delete the
request ri from σ, and delete the server Gσ(ri) from S, to get another server set and
sequence with the same behavior; hence we will assume for the rest of the section that
for each ri ∈ σ, Gσ(ri) 6= Hσ(ri).

5.1.2 Defining the Cavities

Lemma 5.1.4. If the set of available servers in G’s run and H’s run just after
request rt has been satisfied is denoted by AG(t) and AH(t) respectively, then either
AG(t) = AH(t), or |AG(t) \ AH(t)| = 1 = |AH(t) \ AG(t)|.
Proof. Suppose Gσ(r1) = x1; recall that Hσ(r1) = s1, and by the above observation,
x1 6= s1. Hence, AG(1) \AH(1) = {s1}, whereas AH(1) \AG(1) = {x1}. Let us call the
former a “G-cavity” and the latter an “H-cavity”. Now, inductively assume the claim
is true just before assigning rt. If AG(t− 1) = AH(t− 1), then the claim is trivially
true from then on, so assume there is a unique G-cavity gt−1 and H-cavity ht−1. Let
Hσ(rt) = st and Gσ(rt) = xt. There are some cases to consider:

1. If xt = gt−1 and st = ht−1, then AG(t) = AH(t).

2. If xt 6= gt−1 and st = ht−1, then it follows that AH(t) \ AG(t) = {xt}, whereas
AG(t) \ AH(t) = {gt−1}—i.e., gt = gt−1 but ht = xt.

3. If xt = gt−1 and st 6= ht−1, then it follows that AH(t) \ AG(t) = {ht−1}, whereas
AG(t) \ AH(t) = {st}—i.e., ht = ht−1 but gt = st.

4. Finally, we claim that the case xt 6= gt−1 and st 6= ht−1 must imply that xt = st.
Indeed, say that the lowest ancestors considered by HST-greedy when assigning
rt in the two runs are aG and aH respectively. If these are not identical, say
aG is lower: then T (aG) contains a server in G’s run but not in H’s, but since
the only additional free server in AG(t − 1) is gt−1, we would get xt = gt−1

and a contradiction; a similar analysis shows that aH cannot be lower. Hence
aG = aH = a, say. Now if rt is assigned to the first free server it encounters within
T (a) (by first scanning to the left of rt for a free server in T (a), then scanning to
the right) in both runs, and neither is assigned to the G-cavity or the H-cavity,
then xt = st, which contradicts the assumption that G(rt) 6= H(rt). Hence,
gt = gt−1 and ht = ht−1, and so AG(t) \ AH(t) = {gt} and AH(t) \ AG(t) = {ht}.

Another way to view the above lemma is to consider the symmetric difference
Gσ∆Hσ of the two matchings, and to claim that this is a single path or cycle. We

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 44

T ∗

r1 r2 h0 h1
g0 r3 g1

Figure 5.1: In this small example, suppose H is the matching (r1, g0), (r2, h0), (r3, g1),
and G initially matches r1 to h0. Then, as r2 arrives in G’s run, it will be assigned to
h1, the new H-cavity, and when r3 arrives, it will be assigned to g0, causing g1 to be
the new G-cavity.

start off with two edges (r1, s1), (r1, x1); each subsequent time we place down two
edges adjacent to rt, and these extend the path (in cases 2 and 3) until we close a
cycle (as in case 1, when both the G-cavity and H-cavity disappear), at which time
the process stops.

In the rest of the argument, we define gt to be the unique G-cavity in AG(t)\AH(t),
and ht to be the unique H-cavity in AH(t) \ AG(t). Moreover, since we are interested
in the difference between costs incurred by G and H respectively, we can assume that
AG(t) 6= AH(t) for all time t < k, and hence that gt and ht are defined for all times
t ∈ {1, 2, . . . , k − 1}.

Moreover we will be relating the runs of G and H, so some jargon will be useful
to avoid confusion. When we refer to server(s) in G’s run, we call them G-servers.
The request rt is assigned at time t, and we refer to the situation just before this
assignment as being at time t−, and just after this assignment as being at time t+;
note that (t− 1)+ = t−.

Lemma 5.1.5. Suppose a∗ is the least common ancestor of (r1, s1) in T . Then, for
all times t < k, {gt, ht} ⊆ T (a∗), the subtree rooted at a∗. Henceforth, let us denote
the subtree T (a∗) as T ∗.

Proof. To begin, g1 = s1, and hence in T (a∗). Also, h1 = x1 is chosen by the HST-
greedy, and must lie in the lowest subtree containing both r1 and a free server; hence
this is a (not necessarily proper) subtree of T (a∗). Let t be such that {gt, ht} 6⊆ T (a∗)

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 45

but {gt−1, ht−1} ⊆ T (a∗), and rt the request at time t. Since rt assigns to a unique
server, it cannot move both gt and ht out of T (a∗) at the same time. Suppose gt ∈ T (a∗)
and ht 6∈ T (a∗). Then the number of available servers in T (a∗) at time t− in G’s run
is not equal to the number of available servers at time t− in H’s run. The same holds
true if gt 6∈ T (a∗) and ht ∈ T (a∗).

By the Induction Hypothesis, {gi, hi} ∈ T (a∗) for all i < t. Therefore, all assign-
ments have been made within T (a∗), and so the number of free servers is the same
between G’s run and H’s run at time t−. This contradiction establishes the desired
claim.

5.1.3 An Accounting Scheme

The “hybrid lemma” Lemma 5.1.3 showed that it suffices to bound the difference in
cost incurred by HST-greedy G on a sequence, and the cost incurred by the hybrid
algorithm that assigned r1 → s1 and used HST-greedy from that point onwards. Now
we show that this difference is costs can be measured merely in terms of the line
distances traveled by the cavities.

Lemma 5.1.6 (Accounting Lemma).

∑
t≤k

dL(rt, Gσ(rt))−
∑
t≤k

dL(rt, Hσ(rt)) ≤ 2
k−1∑
t=2

dL(gt−1, gt)+2
k−1∑
t=2

dL(ht−1, ht)+2 dT (r1, s1),

i.e., twice the distance traveled by the G-cavities and H-cavities, plus twice the distance
r1 → s1.

Proof. First, we consider the cases where t > 1. By the triangle inequality, we get
that for any t,

dL(rt, Gσ(rt))− dL(rt, Hσ(rt)) ≤ dL(Gσ(rt), Hσ(rt)).

If Gσ(rt) = Hσ(rt), then dL(rt, Gσ(rt)) − dL(rt, Hσ(rt)) = 0, so we assume that
Gσ(rt) 6= Hσ(rt). There are three cases: either Gσ(rt) is not available for request rt in
H’s run, or Hσ(rt) is not available for rt in G’s run, or both.

• If Gσ(rt) is not available for request rt in H’s run, then by Lemma 5.1.4,
Gσ(rt) = gt−1. But then gt = Hσ(rt), and so we have that dL(Gσ(rt), Hσ(rt)) =
dL(gt−1, gt).

• If Hσ(rt) is not available for request rt in G’s run, then again Lemma 5.1.4
implies Hσ(rt) = ht−1. But now ht = Gσ(rt), and so we get dL(Gσ(rt), Hσ(rt)) =
dL(ht−1, ht).

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 46

• Finally, if both happen, then Hσ(rt) = ht−1 and Gσ(rt) = gt−1. Thus AG(t) =
AH(t), so this must be time k. Now, dL(Gσ(rk), Hσ(rk)) = dL(gk−1, hk−1), which
in turn is at most∑

t<k

(
dL(gt−1, gt) + dL(ht−1, ht)

)
+ dL(r1, g1) + dL(r1, h1)

Note that h1 = Gσ(r1) and g1 = Hσ(r1).

Adding all these cases for t > 1, we get that
∑k

t=2 dL(rt, Gσ(rt))− dL(rt, Hσ(rt)) is at
most

k−1∑
t=2

2
(
dL(gt−1, gt) + dL(ht−1, ht)

)
+ dL(r1, Hσ(r1)) + dL(r1, Gσ(r1))

Finally, adding in dL(r1, Gσ(r1))− dL(r1, Hσ(r1)) to both sides, and noting that

2dL(r1, Gσ(r1)) ≤ 2dT (r1, Gσ(r1)) ≤ 2dT (r1, Hσ(r1)),

we get

k∑
t=1

dL(rt, Gσ(rt))−dL(rt, Hσ(rt)) ≤
k−1∑
t=2

2
(
dL(gt−1, gt)+dL(ht−1, ht)

)
+2 dT (r1, Hσ(r1)),

which completes the proof.

5.1.4 Distance Traveled by the Cavities

Given the “accounting lemma” Lemma 5.1.6, it suffices to merely bound the to-
tal distance traveled by the cavities; in this section we show that this distance
is proportional to the maximum distance between any two nodes of T ∗, which is
O(2level(a

∗)) = O(dT (r1, s1)) and completes the proof. To do this, first let us define
some useful concepts:

Definition 5.1.7 (Direction). We define dirg(t), the direction of the G-cavity gt, to
be either L or R as follows: initially, we say that dirg(1) is L. For t > 1, if gt is located
to the left (respectively, right) of gt−1 on the line, then dirg(t) := L (respectively, R),
and if gt = gt−1 then dirg(t) := dirg(t− 1).

Definition 5.1.8. Let ag(t) be the least common ancestor of g1, · · · , gt, and define
Tg(t) = T (ag(t)). Similarly, if ah(t) is the least common ancestor of h1, · · · , ht, then
Th(t) = T (ah(t)).

Remark 5.1.9. If u < t, then Tg(u) ⊆ Tg(t).

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 47

We now need more information on the servers that lie between gt−1 and gt, and
between ht−1 and ht.

Lemma 5.1.10. For t > 1, there are no free G-servers between gt−1 and gt at time
t−. Likewise, there are no free H-servers between ht−1 and ht at time t−.

Proof. Let rt be the request that assigns to gt in H’s run and gt−1 in G’s run. (If
the G-cavity does not move, then the claim continues to hold, as no free servers are
created and the direction does not change.) There are certainly no free G-servers
between rt and gt−1 at time t− by the algorithm’s run on G. Also, we know that there
are no free H-servers between rt and gt at time t−. The only free G-server that might
be between rt and gt is gt−1. If gt−1 is not between rt and gt, then the claim holds.
Otherwise, even if gt−1 is between rt and gt, there are still no free G-servers between
gt−1 and gt at time t−. An analogous proof holds for the H-servers.

Now, we will incorporate the “direction” in which gt or ht is moving into our proof.
We are able to obtain some useful facts specifically at the points in time where the
direction changes, as seen in the next lemma.

Lemma 5.1.11. For t > 1, if dirg(t− 1) = L, dirg(t) = R, and b is the child subtree
of ag(t) that contains gt, then b does not contain gt−1. Similarly, if dirh(t− 1) = L,
dirh(t) = R, and b is the child subtree of ah(t) that contains ht, then b does not contain
ht−1.

Proof. We first show that for all 1 ≤ j ≤ t − 2, gj must lie in between gt−1 and gt.
Assume for the sake of contradiction that there exists some j such that gj is to the
left of gt−1. We know that gt−2 is to the right of gt−1 since dirg(t− 1) = L. Thus, by
repeated applications of Lemma 5.1.10, there are no free G-servers between gj and
gt−2 at time (t− 2)+. However, this contradicts the fact that gt−1 is a free G-server at
time (t− 2)+.

Assume for the sake of contradiction that there exists some j such that gj is to the
right of gt. We know that gt−1 is to the left of gt since dirg(t) = R. Thus, by repeated
applications of Lemma 5.1.10, there are no free G-servers between gj and gt−1 at time
(t− 1)+. However, this contradicts the fact that gt is a free G-server at time (t− 1)+.

Thus, we have just shown that for all 1 ≤ j ≤ t− 2, gj must lie in between gt−1

and gt.
Now, let b be a child subtree of ag(t) that contains gt, and assume for the sake

of contradiction that it also contains gt−1. Then it must also contain gj for all
1 ≤ j ≤ t− 2, and so b is a common ancestor of gi for all 1 ≤ i ≤ t. This contradicts
the fact that ag(t), the root of Tg(t), is supposed to be the least common ancestor of
gi for all 1 ≤ i ≤ t, thus establishing the claim. An analogous proof holds for ht−1

under the assumptions involving ht, ah, and dirh.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 48

The previous lemma, which shows that a change in direction implies a change in
the number of subtrees within the “convex hull” of the set of gts or hts, is now put to
use in the next lemma.

Lemma 5.1.12. If dirg(t− 1) = L and dirg(t) = R, then there are no free G-servers
to the left of gt in Tg(t). Likewise, if dirh(t− 1) = L and dirh(t) = R, then there are
no free G-servers to the left of ht in Th(t).

Proof. Let rt be a request which causes the G-cavity to move from gt−1 to gt. As
the arguments in Lemma 5.1.4 show, the G-cavity moves from gt−1 to gt because H
assigns rt to st, but G assigns rt to gt−1, which means that gt := st.

Because H runs the HST-greedy procedure after the first step, there are no free
H-servers between rt and st = gt at time t−, else rt would be assigned to it. Hence, by
Lemma 5.1.4, the only free G-server between rt and st = gt at this time t− can be gt−1.
But rt → gt−1 in G, so there are also no free G-servers between rt and gt at time t+.

Since dirg(t) = R, we know that gt−1 is to the left of gt. Let b be the child subtree
of ag(t) that contains gt. By Lemma 5.1.11, b cannot contain gt−1. Now, there are
several cases to consider based upon the location of rt with respect to gt:

1. rt is to the left of every point in Tg(t). Then we have already established that
there are no free G-servers between rt and gt and time t+. Since rt is to the left
of gt, then there are no free G-servers within Tg(t) that are to the left of gt at
time t+.

2. rt is to the left of every point in b but within Tg(t). Since rt → gt in H, rt must
have turned at ag(t) to make this assignment in H, since rt is not within b. By
our algorithm, rt first considered all H-servers within Tg(t) that are to the left
of rt. But since rt assigned to gt in H, there are no free H-servers to the left
of rt within Tg(t) at time t−. Consequently, the only free G-server that might
be to the left of rt within Tg(t) is gt−1, but then at time t+, there are no free
G-servers to the left of rt within Tg(t). We have already established that there
are no free G-servers between rt and gt, and so we can conclude that there are
no free G-servers within Tg(t) to the left of gt at time t+.

3. rt is within b, or rt is to the right of gt. If rt is within b, then using Lemma 5.1.11,
gt−1 cannot be within b, and so rt prefers gt over gt−1. If rt is to the right of gt,
then we can also assert that rt prefers gt over gt−1. Since gt is free at time t− in
G’s run, rt cannot assign to gt−1 in G’s run, a contradiction.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 49

ag(t)

b

gt−1 gt

Case 1 Case 2 Case 3

Figure 5.2: The three cases for the location of rt.

Thus, in all possible cases, we conclude that there are no free G-servers to the left
of gt at time t+ within Tg(t), which maintains the claim. An analogous argument can
be used to show that this property holds for all ht.

The following lemma follows from the above proof:

Lemma 5.1.13. Suppose dirg(t− 1) = R and dirg(t) = L, and let u < t be the largest
integer such that dirg(u − 1) = R and dirg(u) = L, if any. Then the level of the
tree Tg(t

+) is strictly greater than the level of Tg(u
+). Similarly, if dirh(t − 1) = R

and dirh(t) = L, where u < t is the largest integer such that dirh(u − 1) = R and
dirh(u) = L, if any, then the level of Th(t

+) is strictly greater than the level of Th(u
+).

Proof. Assume for the sake of contradiction that Tg(u
+) = Tg(t

+) for some choice of
u and t. From Remark 5.1.9, we have that for all u ≤ w ≤ t, Tg(w

+) = Tg(u
+). Let v

be such that u < v < t and dirg(v − 1) = L and dirg(v) = R. Lemma 5.1.12 gives us
that there are no free G-servers within Tg(v

+) = Tg(t
−) and to the left of gv. Also,

for all v ≤ w ≤ t, dirg(v) = R since t is the first time after v that the direction can
change. By repeated applications of Lemma 5.1.10, there can be no free servers at
time t+ between gv and gt−1, either. Thus, at time t+, there are no free G-servers to
the left of gt−1 that are within Tg(t

−).

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 50

Now, note that gt is a free G-server at time t+ that is to the left of gt−1. Thus, it
cannot be within Tg(t

−), and so Tg(t
+), which must include gt by definition, is not

equal to Tg(t
−), a contradiction.

Remark 5.1.14. For all t, Tg(t), Th(t) ⊆ T ∗, the subtree rooted at the least common
ancestor of r1 and s1.

Lemma 5.1.15. For the general D-ary α-HST, the total distance traveled by either
the G-cavities or H-cavities is O(dT (r1, s1)).

Proof. As t increases, Tg may change, and define ρt such that T (ρt) = Tg(t); note
that level(ρt) is non-decreasing by Remark 5.1.9. Moreover, as long as the scope
stays fixed at some subtree T (ρt), the G-cavity gt can only change direction once,
and hence the total distance it travels is at most twice the width of T (ρt), which is
2D ·O(2level(ρt)). Finally, by Remark 5.1.9, each of the ρi’s is a descendent of a∗, the
root of T ∗. Hence the total distance traveled by the G-cavity is at most a 2D times
1 + α + α2 + . . . + αlevel(a

∗), which is O(D · αlevel(a∗)) = O(D · dT (r1, s1)). A similar
argument holds for the distance traveled by the H-cavity.

Now plugging this into Lemma 5.1.6 (the “accounting lemma”), we get∑
t≤k

dL(rt, Gσ(rt))−
∑
t≤k

dL(rt, Hσ(rt)) ≤ O(D · dT (r1, s1)) + 2 dT (r1, s1).

Note that dT (r1, s1) ≥ dL(r1, s1), and hence the expression on the right is at most
λ dT (r1, s1) for some λ = O(D). This completes the proof of Lemma 5.1.3, the “hybrid
lemma” and hence the proof of Theorem 5.1.1. Next, we show that this analysis is
tight.

5.2 A Tight Example for HST-greedy

Consider the setting of k servers and requests on the real line where a server si is
placed at point i for every i ∈ Z such that 1 ≤ i ≤ k, and r1 is placed at point 2, and
then for all 1 < i ≤ k, ri is placed at point i. Thus, each adjacent server is at distance
1 from each other, there are no requests sitting on s1, there are two requests sitting
on s2, and there is one request sitting on every other server. The optimal matching
assigns r1 → s2, r2 → s1, and then ri → si for all i > 2. The cost of this matching is
1. We want to show that the HST-greedy algorithm has an expected cost of Θ(log k).

First, note that the binary tree of 2k leaves leaves 2k−1 cuts on the interval [1, 2k].
The depths of these cuts, going from left to right, can be expressed as the sequence

s = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, · · · .

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 51

The sequence s can also be defined recursively. Let t1 = 1 and ti = 〈ti−1〉 i 〈ti−1〉.
Then, s = tlog2(k)+1.

Now, suppose we choose some j ∈ [2, k + 1] so that [j, j + k − 1] is our interval
under consideration. Let ri be the request that assigns to s1. Then, the cost of the
matching is simply 2dL(s1, ri) − 1 = 2i − 3. It remains to figure out, for a fixed j,
which request ends up assigning to s1.

Remark 5.2.1. The sequence s is such that for any j ≥ 1, if i = j + 2sj−1, then i is the
smallest integer such that si > sj.

Now, suppose the interval under consideration is [j, j + k − 1] for 1 ≤ j ≤ k + 1.
Then, the cut between s1 and s2 is the cut placed in [j, j + 1], which has depth sj.
By Remark 5.2.1, all cuts between sj and sj+2sj−1 have depth smaller than sj, so this

means that the first 2sj−1 − 1 requests will not assign to the s1, but the next request
will. Thus, the ri that assigns to s1 is such that i = 2sj−1. Consequently, the cost of
the matching for such a j is Θ(2sj).

Remark 5.2.2. For all j ∈ [1, k + 1], there is exactly one j such that sj = log2(k) + 1,
and then there are exactly 2log2(k)−i integers j such that sj = i for 1 ≤ i ≤ log2(k).

Since each j is chosen uniformly at random, we can now compute the expected
cost of the matching M :

E[M] =

log2(k)∑
i=0

Pr[sj = i] · E[M |sj = i]

We have shown through Remark 5.2.2 that Pr[sj = i] is 1/k for i = log2(k) + 1 and
2log2(k)−i/k for i > 0, and E[M |sj = i] is Θ(2sj) = Θ(2i). Thus, we get that

E[M] =

log2(k)∑
i=0

2log2(k)−i/k ·Θ(2i) =

log2(k)∑
i=0

Θ(k/k · 2i/2i) =

log2(k)∑
i=0

Θ(1) = Θ(log k)

Thus, this specific setting of servers and requests forces HST-greedy to perform
with expected competitive ratio Θ(log k).

Chapter 6

Conclusion and Open Problems

We have presented three algorithms that perform competitively on HSTs, two of which
imply an O(log k) competitive ratio on the line. For each algorithm we present, the
analysis for its competitive ratio is unique. In Chapter 3, we take a combinatorial
approach to the problem. We show how if we can carefully count and make bounds
for the number of digons in the matching, then we can upper-bound the cost of the
matching. For the line metric, this analysis yielded an O(log2 k) competitive ratio
for a very simple algorithm: deterministic greedy on the HST. In Chapter 4, we
argue via a carefully chosen potential function that our modification to the MNP
algorithm yields O(log2 d log k) for general metrics, which implies O(log k) for the line
and low-dimensional spaces. In Chapter 5, we show how if we ignore the cost of our
algorithm on the HST and instead measure the cost of our algorithm on the original
metric, we can obtain a tight competitive ratio of O(log k) on the line, where the
algorithm that we run on the HST is deterministic.

The new approaches and algorithms that we have introduced give rise to potential
opportunities for improvement in the upper bound of online metric matching, and
they are mentioned in the following section.

6.1 Future Work

Listed here are several avenues that were not fully explored in this thesis which seem
to hold some promise in improvements for the upper bound on the competitive ratio
of online metric matching.

6.1.1 Randomized Greedy with the Combinatorial Approach

In Chapter 3, we explore the deterministic greedy algorithm and conclude that it
yields a competitive ratio of hd. However, our worst-case analysis was quite harsh,

52

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS 53

and it seems as if randomization could help. If we use a similar definition of the
canonical sequences as in the proof of the deterministic greedy algorithm’s competitive
ratio, perhaps one could show that randomized greedy yields a competitive ratio of
O(h log d)—or better yet, without the dependence on h.

Also, even for deterministic greedy, one could use the fact that the HST construction
from the line is a randomized procedure, and could possibly make the worst-case on
the HST unlikely. In our analysis, we pretended as if our adversary could choose the
worst-case HST for deterministic greedy to run on. However, in reality this is not the
case, and could possibly be taken advantage of when assuming that the HST that
deterministic/randomized greedy runs on is from the line.

6.1.2 Low-degree HST Constructions for Metric Spaces

In our analysis of the MNP algorithm, we show how the modified algorithm we propose
has competitive ratio O(log2 d log k) on the original metric. In general, the best we
can assume is that d ≤ k, but do there exist any classes of metric spaces where d
is still relatively small, say, d = O(log k)? If this were the case, then running our
modification to the MNP algorithm would result in an O((log log k)2 log k) algorithm,
which represents an improvement over O(log2 k).

6.1.3 Extension of Ideas in Chapter 5

A small trick that we performed for the analysis of the HST-greedy algorithm allowed
us to obtain tight bounds on its competitive ratio. However, we noted that this trick
assumes that the HST was constructed from the line. It would be interesting to find
other metric spaces for which this trick still applies. An even more interesting result
would be if this kind of analysis applies to other algorithms, such as those discussed
in Chapters 3 and 4, or from previous works.

6.2 Open Problems

The following is a more broad list of open problems whose answers are desirable, and
would represent significant progress towards tightening the bounds on online metric
matching.

1. Do there exist deterministic or randomized lower bounds for online metric
matching on the line that do not reduce from results on the cow-path problem?

2. Does there exist a “simple” randomized algorithm that does not involve HSTs
and still performs competitively (say, poly(log k))?

CHAPTER 6. CONCLUSION AND OPEN PROBLEMS 54

3. Can we improve upon the upper bound of 2k − 1 for deterministic online metric
matching on the line, or on general metric spaces?

4. Does there exist a derandomized version of the HST construction from the line
that can be used to show a competitive deterministic algorithm?

Bibliography

[BBGN07] N. Bansal, N. Buchbinder, A. Gupta, and J. S. Naor. An o(log2k)-competitive
algorithm for metric bipartite matching. In Proceedings of the 15th annual
European conference on Algorithms, pages 522–533, 2007.

[FHK05] B. Fuchs, W. Hochstattler, and W. Kern. Online matching on a line. Theoretical
Computer Science, 332:251–264, 2005.

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In STOC ’03: Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, pages 448–455, 2003.

[KMV94] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted
bipartite matching and stable marriages. Theor. Comput. Sci., 127(2):255–267,
1994.

[KN03] E. Koutsoupias and A. Nanavati. The online matching problem on a line. In
WAOA03, pages 179–191, 2003.

[KP93] B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms,
14(3):478–488, 1993.

[KP95] E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. J. ACM,
42:971–983, September 1995.

[KP98] B. Kalyanasundaram and K. Pruhs. Online network optimization problems,
1998. Online Algorithms: The State of the Art , eds. A. Fiat and G. Woeginger,
Lecture Notes in Computer Science 1442, Springer-Verlag.

[MNP06] A. Meyerson, A. Nanavati, and L. Poplawski. Randomized online algorithms
for minimum metric bipartite matching. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 954–
959, 2006.

55

