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Abstract 

Autonomous recharging is becoming increasingly important to mobile robotics as it has the 

potential to greatly enhance the operational time and capability of robots. Existing approaches, 

however, are greedy in nature and have little to no coordination between robots. This leads to 

less efficient interactions which adversely affect the performance of the team of robots. 

Therefore, improved coordination can greatly enhance the performance of such a team. This 

senior thesis has advanced the state of the art in autonomous recharging by developing, 

implementing, testing, and evaluating a market-based distributed algorithm for effectively 

coordinating recharging robots. This system is charge-aware and able to autonomously account 

for current and future battery states as well as current and future tasks. The developed solution 

has been evaluated on a series of tasks run on worker robots and recharger robots. Simulations 

were also used to validate the system on larger workloads. Results show that our approach 

consistently outperforms the state of the art in recharging strategies.  



  
2 

 

  

  



  
3 

 

  

Acknowledgements 

I would like to greatly thank my advisor Dr. M. Bernardine Dias for her continued challenges, 

help, support, assistance, and guidance; without her this thesis would be non-existent and 

unfocused. I would like to thank her for taking a chance on me when I asked to join her group 

four years ago as an inexperienced and untested freshman. I would also like to thank my 

mentor Dr. Balajee Kannan for his patience, assistance, and guidance every step of the way. 

I would like to thank my mom and dad for their never-ending hard work, love, support, and 

dedication; without which I would not be where I am today. All my brothers and my sister for 

the encouragement and help they have given me through the years. I would also like to thank 

Samantha Tan for her support and for her patience during my long nights working with the 

robots. 

I would also like to thank Jimmy Bourne, M. Freddie Dias, Nisarg Kothari, and Sairam 

Yamanoor for their work on the robot hardware and software. I want to thank everyone in the 

rCommerce Group for developing and maintaining the current system and robots.  



  
4 

 

  

  



  
5 

 

  

 

Table of Contents 

1. Introduction …………………………………………………………………………….   8 

1.1 Shortcomings of Current Approaches <<<<<<<<<<<<<<<< 9 

1.2 Our Contribution <<<<<<<<<<<<<<<<<<<<<<<<< 9 

1.3 Market-Based Systems <<<<<<<<<<<<<<<<<<<<<...< 10 

1.4 Thesis Outline <<<<<<<<<<<<<<<<<<<<<<<<<<. 11 

 

2. Background & Related Work …………………………………………………………  13 

2.1 No Recharging <<<<<<<<<<<<<<<<<.<<<<<<<<.. 13 

2.2 Recharging Hardware <<<<<<<<<<<<<<<<<.<<<<<. 13 

2.3 Location of Recharging Stations <<<<<<<<<<<<<.<<<<< 14 

2.4 Condition for Recharging <<<<<<<<<<<<<<<<<<<<< 14 

2.5 Mobile Rechargers <<<<<<<<<<<<<<<<<<<<.<<<< 15 

2.6 Challenges & Limitations <<<<<<<<<<<<<<<<<<<<.< 15 

 

3. Approach ………………………………………………………………………………... 18 

3.1 Existing Infrastructure <<<<<<<<<<<<<<<<<<<<<<.. 18 

3.2 Charge-Aware System <<<<<<<<<<<<<<<<<<<<<<.. 21 

3.2.1 Home Base <<<<<<<<<<<<<<<<<<<<<.<........... 21 

3.2.2 State Estimation <<<<<<<<<<<<<<<<<<<<<<< 22 

3.2.3 Customizing TraderBots <<<<<<<<<<<<<<<<<<<. 25 

3.2.4 Cost Functions <<<<<<<<<<<<<<<<<<<<<<<.. 26 

3.2.5 Scheduler <<<<<<<<<<<<<<.<<<<<<<<<..<< 30 

3.2.6 Recharging Behavior <<<<<<<<<<<<<<<<<<<<... 34 

3.3 Mobile Recharging Agents <<<<<<<<<<<<<<<<<<<<... 35 

3.3.1 Recharging Auctions <<<<<<<<<<<<<<<<<<<<... 36 

3.3.2 Cost Functions <<<<<<<<<<<<<<<<<<<<<<<.. 36 

3.3.3 Scheduler <<<<<<<<<<<<<<<<<<<<<.<<<<.. 40 

 

4. Experiments & Results ……………………………………………………………….. 43 

4.1 State Estimation <<<<<<<<<<<<<<<<<<<<<<<<<. 43 

4.2 System Evaluation <<<..<<<<<<<<<<<<<<<<<<<<.. 44 

4.2.1 Real System Tests: Distance Metric <<<<<<<<<<<<<<.. 45 

4.2.2 Real System Tests: Time Metric <<<<<<<<<<<<<<<<. 47 

4.2.3 Scaling Number of Tasks <<<<<<<<<<<<<<<<<<<. 49 



  
6 

 

  

4.2.4 Effects of Battery Threshold <<<<<<<<<<<<<<<<<< 50 

 

5. Discussion & Analysis ………………………………………………………………... 53 

1.1 Accuracy of State Estimation <<<<<<<<<<<<<<<<<<<... 53 

1.2 Advantages of Market-Based Systems <<<<<<<<<<<<<<<< 53 

1.3 Effectiveness of Our Strategies <<<<<..<<<<<<<<<<<<<.. 54 

1.4 Effectiveness of Mobile Recharging Agents <<<<<<<<<<<<<... 57 

 

6. Conclusion & Future Work ………………………………………………………….. 60 

 

7. References ……………………………………………………………………………… 63 

  



  
7 

 

  



  
8 

 

  

1 | Introduction 

The effectiveness of mobile robots has always been affected by the amount of time they can 

spend in the field and thus how much work they can perform. Inherently, mobile robots can 

perform a finite amount of work in a single work cycle due to the finite amount of energy 

contained in their batteries. This makes each action valuable and leads to a heavy emphasis 

placed on planning the robot’s movements, actions, and tasks. The introduction of autonomous 

recharging brings another dimension to planning. It creates the need for each robot to plan not 

only their actions but also how these correlate to their battery life and when recharging needs to 

occur. Autonomous recharging also brings with it the promise of extended runtime. Robots will 

be able to run continuously for very long periods of time with little to no human interventions. 

This makes the currently unthinkable runtime of weeks, months, and even years possible. This 

greatly increases the number of domains in which mobile robots can be effective. 

The current generation of mobile robots is equipped with rechargeable batteries which allow 

the robots to be recharged in the field and thus provide some flexibility for the robot’s work 

cycles. Researchers have also started to incorporate mobile recharging agents into autonomous 

recharging. These mobile recharging agents are mobile robots with recharging capabilities. 

These robots are able to provide a non-stationary recharging unit to service worker robots. Both 

of these features allow flexibility when it comes to where and when to recharge. Unfortunately, 

with this flexibility comes an even greater need for planning in the part of each robot. It is of 

importance that this planning occurs in order to increase the total work performed by any given 

robot. A lack of planning or insufficient planning in the part of each robot can lead to reduced 

efficiency and work. This comes about due to inadequate choices for recharging time and place. 

The motivation of this research stems from the importance of battery life in the amount of work 

performed by a mobile robot. In the history of mobile robots, the amount of energy used and 

stored by the robots has been central to how the field has developed. From the first mobile 

robots that required an external power source, to the modern mobile robots that run on batteries 

or internal generators; all mobile robots have placed an emphasis on low power consumption 

and high power storage or generation. With this emphasis on power, it is surprising to find how 

little planning and coordination is based on power. This motivates us to create a system where 

all planning is done around power and its availability. Recharging becomes a real part of a 

robots work cycles. 

Another consideration is the increasing trend of multi-robot approaches. It is more and more 

frequent to find tasks being tackled by groups of mobile robots rather than a single mobile 

robot. In contrast with single mobile robot systems, these modern systems place an even greater 
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emphasis on coordination and planning due to the real danger of overlapping work as the 

number of robots increases. It is very important to create intelligent systems that scale well as 

we increase the number of robots performing tasks. These robots must coordinate with each 

other in order to effectively complete their goals and do so in a timely manner. 

Autonomous recharging has the potential to greatly increase a robot’s effectiveness and to do so 

with little to no human intervention. This will allow us to build larger and more complex 

systems incorporating more robots. It is the importance of robotics in the future and how key to 

that future autonomous recharging is that motivates us to design and build the system 

described here. 

 

1.1 | Shortcomings of Current Approaches  

We now summarize the current approaches to autonomous recharging. These are discussed in 

greater detail in a later section. Current approaches to autonomous recharging are mostly 

greedy in nature. Each robot makes recharging decisions based on their current state with little 

to no regard for past and future state. This type of planning leads to sub-optimal performance 

and unaccounted edge cases. Most of the time a robot’s future tasks are known to at least some 

extent. This provides an opportunity for better planning and better coordination for each robot. 

Existing approaches have little to no coordination for shared recharging resources. In most 

systems the worker robots will share a static or mobile recharging station. This sharing 

necessitates coordination between robots in order to avoid deadlock or the loss of a robot due to 

falling battery levels. The current state of the art systems specify little coordination between 

robots and the systems that do specify coordination are based on conflict avoidance. These 

conflict avoiding strategies can lead to cases where robots go uncharged. These strategies also 

do not scale as the number of robots sharing the resource grows. 

 

1.2 | Our Contribution 

This thesis has advanced the state of the art in autonomous recharging by designing, 

implementing, evaluating, and verifying a charge-aware system wherein robots plan their tasks 

around their limited supply of power and recharge when necessary. This system incorporates 

static and mobile recharging stations and provides the necessary coordination in order for 

multiple worker robots to share a single mobile recharging station. 

The primary contribution to the state of the art is the planning done by our charge-aware 

system. Unlike existing methods, our approach utilizes past, present, and future known 
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conditions and plans accordingly. Our planner is also optimal in terms of total distance 

traveled. This planning and coordination allow our system to better scale with the number of 

tasks as well as with the number of robots. Both of which are contributions to the current state 

of the art. 

Another contribution from our system is the use of a market-based strategy for coordinating 

recharging. Our approach is the first to utilize a market-based system to schedule worker’s 

tasks and to coordinate a mobile recharger’s tasks. This is important due to the many 

advantages of market-based systems. 

  

1.3 | Market-Based Systems 

Market-based approaches use a simulated economy where robots buy and sell tasks according 

to their estimated cost for completion. In this way, the robots are able to coordinate amongst 

themselves to allocate the necessary tasks according to the best information they have at the 

time. The estimated costs of tasks are based on a set pre-defined cost functions shared amongst 

the agents in the market-based system. These cost functions are used to abstract away the 

details of a task into common currency which all agents understand. This allows for a system 

where robots attempt to minimize their individual costs and the cost of the group as a whole 

which in turn maximizes the work performed by the team of robots.  

We chose to use a market-based system due to their maturity and advantages as well as their 

capability for customization. 

Market-based approaches have risen in popularity [14] over the last few years for tackling the 

problem of multi-robot coordination. Four features that propel the popularity of market-based 

approaches are their simplicity, their distributed nature, their fault tolerance, and their 

scalability. Market-based systems are generally considered simple since they only require the 

definition of cost functions and schedulers in order to completely describe and evaluate any 

task that the robots will need to perform. The system is distributed since each agent can hold its 

own auctions and bid on others agent’s auctions. There is no central authority where all bids go 

through, rather the agent holding the auction determined the reserve price and chooses the 

winner. The system is fault-tolerant since in any given auction if any of the bidding agents fault, 

the auction can still finish since not all agents need bid. If the auctioning agent is the one that 

faults then the auction is cancelled and no winner is determined. Market-based systems are 

inherently scalable due to their abstracted market nature. As the number of robots scales the 

costs of performing the tasks scale accordingly and the system re-calibrates itself with the new 

costs. When a new robot is added to a system it can share the cost of existing work by buying 
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tasks from other robots and thus directly increasing the amount of work done by the group. All 

this is completed with no changes to the infrastructure of the underlying system. 

Market-based systems are highly customizable. Since their building blocks are abstract in 

nature, a market-based system can be defined around any set of tasks that a group of robots 

needs to complete. This allows us to easily define the work and recharging tasks necessary for 

our research. 

Finally, we chose a market-based system due to our group’s familiarity with such systems. This 

familiarity allows us to build a better autonomous recharging system by adapting our current 

system to make it charge-aware. 

 

1.4 | Thesis Outline 

The thesis is organized as follows. Section 2 describes the background of our research and the 

existing strategies for autonomous recharging. This includes a literature review of current 

algorithms and approaches as well as some information about the system utilized in this 

research. Section 3 outlines our approach and presents the details of our novel charge-aware 

system, including the inclusion of mobile recharging agents and the necessary coordination for 

sharing these mobile recharging agents. In Section 4 we will describe our testing methodology 

and metrics alongside the results of the experiments we conducted. We then discuss and 

analyze the work and our results in Section 5. Finally, we conclude with Section 6 which 

provides our conclusions and a description of future work based on what is outlined here.  
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2 | Related Work 

This section describes existing work in autonomous recharging by examining various 

approaches along with their limitations. The topic of autonomous recharging has been gaining 

traction in the literature recently. The existing research on autonomous recharging has focused 

on four main areas: how to recharge, where to place a recharging station, when the robots 

should recharge, and exploring the use of mobile rechargers. We will also describe the base case 

for autonomous recharging: no autonomous recharging at all. 

 

2.1 | No Recharging 

Most research mobile robotics systems today give the robots very little to no understanding of 

its charge state. Rather, they give this information to humans for them to parse and understand. 

They then interrupt the robot’s workflow to introduce the necessary recharging. This is 

something the robot does not plan for and cannot account for in its planning. This approach is 

easy to use and is so overwhelmingly chosen due to that ease and the relatively small number 

of robots in the teams. As the number of robots in the teams increase, it might become necessary 

to use another strategy as this one becomes cumbersome and unscalable; requiring near 

constant attention from human operators. Choosing not to implement autonomous recharging, 

makes it difficult to work with groups of mobile robots and becomes intractable as the number 

of robots increases. 

 

2.2 | Recharging Hardware 

A lot of research has focused on the hardware necessary for static recharging with various 

different systems having been designed and implemented with that goal. Oh et al. described a 

system which utilizes a docking-based static recharging station that can be located via long-

range infra-red beacons. The robot’s short-range maneuvering is done by a grid of specially-

aligned laser-visible targets placed on the recharging station [1]. Silverman et al. presents 

another static docking system, but instead focuses on the short-range docking navigation. The 

system uses a combination of laser targets and vision targets to hone in and maneuver towards 

the docking station. Their docking system is also effective at docking from large displacements 

thus allowing more error in their short-range navigation [2]. Muñoz et al. have developed a 

very robust recharging dock which uses parallel horizontal plates to make contact with the 

robot’s recharging horizontal plate. The system uses vision and odometry to find and dock with 

the static recharging station [12].  
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2.3 | Location of Recharging Stations 

Some researchers are interested in where recharging occurs. This is especially important once 

mobile rechargers are incorporated into a system. The location of such a station can have a great 

impact on the total work a group of robots can perform. Couture-Beil and Vaughan have 

considered the location of a recharging station. They have found that when the station is too 

close to areas of high utilization, the work done by the robot drops as the recharging station 

serves as a roadblock. It was found that the best location for a recharging station was some 

distance from the area of highest utilization [9]. This research, however, only considered a 

continuous task between two locations and did not examine in detail how queuing at the 

recharging station affected the effectiveness of the group of robots. 

 

2.4 | Condition for Recharging 

The next question is when recharging should occur for each robot. The overwhelming answer 

thus far has relied on a particular threshold, most choices being distance or time. While a simple 

strategy, these approaches have many edge cases that can lead to unintended behavior. 

The simplest approach is recharging when a particular batter threshold is reached [2], [8], [12], 

[13+. Since this approach is not based on the robot’s location, task load, or the location of the 

recharging station it is very likely that the robot might not actually make it to the recharging 

station in time. The chosen threshold is critical to the effectiveness of this strategy, particularly 

when the recharging station is far from the work area. Small thresholds lead to possible loss of 

battery power before the robot reaches the recharging station. Large thresholds lead to 

inefficiency in the system as the robots have enough battery to do more work but are asked to 

recharge prematurely. 

Another threshold-based approach uses time as a threshold. Austin et al. have developed such a 

system. Their robots work for a specified amount of time and then proceed to recharge. This 

approach produces less edge cases then a battery threshold approach given the right choice of 

threshold [5]. There is also an inherent difficulty in choosing a threshold. The same problems 

we saw when choosing a battery level threshold arise here. 

A third type of the threshold-based approach opts to recharge when the robot has just enough 

battery to reach the home recharging station [4], [7]. This approach is more robust that other 

approaches, but poses a problem if the estimation is done poorly. It is critical for the system to 

properly determine that the robot has enough battery to reach the recharging station. 
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Most of the existing works on autonomous recharging deals with a single worker robot. The 

existing work that deals with multiple workers attempting to recharge simultaneously 

addresses the coordination issue through conflict resolution rather than coordination between 

the robots [12]. This greedy approach can lead to less desirable situations, where a group of 

workers queue up around a charge station waiting for their turn. Under certain conditions this 

queuing can lead to two adverse outcomes: First, the workers exhaust their batteries while they 

are waiting to recharge, second when the charge station is completely blocked, effectively 

rendering it useless. 

 

2.5 | Mobile Rechargers 

Research has also focused on mobile rechargers. Mobile recharge stations have increasingly 

become popular as they offer a lot of flexibility and promise for on-the-go charging for a 

deployed team of robots. These mobile charging stations also pose a series of challenges, as their 

location and limited recharging capabilities have to be considered when coordinating the team.  

Some researchers have focused on developing the hardware for such systems. Kottas et al. have 

developed a mobile recharging station based on the Pioneer robotics platform. This mobile 

recharger is capable of recharging multiple small robots [3]. Our chosen approach has a mobile 

recharger charging much larger robots and is thus only capable of recharging one at a time. 

Zebrowski and Vaughan have chosen a similar route with a tanker robot being equipped with a 

gripper it uses to dock with other robots and power outlets for energy transfer [10]. [11]. 

Research has also been conducted on how these mobile rechargers interact with the robots they 

recharge. Litus et al. developed a system which utilizes a tanker recharging robot that 

rendezvous with other workers and recharges them. Their approach aims to find an optimal set 

of rendezvous points and orderings in order to maximize the recharger’s effectiveness *6+. 

However, they found their approach to be at least as hard as the travelling salesman problem. 

Their approach also tries to minimize the travel amount of the recharger and to some extent the 

workers. This has the side effect of decreasing the amount of work the robots can perform. We 

believe that the recharger should take a support role as we wish to maximize the amount of 

work performed by the robots and, in turn, the group as a whole. 

 

2.6 | Challenges & Limitations 

Current research into autonomous recharging has laid the foundation necessary with the 

hardware and concepts necessary. However, current approaches to autonomous recharging 

have little coordination and do not make full use of the knowledge we may possess about the 
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past, current, and future state of the robots. Scalability was not a primary goal of current 

approaches and thus their performance suffers as the number of robots increases. There is 

currently little work that is able to coordinate robots with a recharging station. The approaches 

that do handle this coordination do so through conflict avoidance. We aim to advance the state 

of the art in autonomous recharging by addressing these challenges and limitations. The system 

we propose is able to schedule recharging tasks as a component of a robot’s work cycle. This 

scheduling is done optimally by using all known information. Recharging stations are also 

scheduled so as to avoid deadlock and the loss of robots due to battery depletion. 
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3 | Approach 

We now present a system where power is a central component of planning and worker robots 

incorporate recharging into their work cycle. Towards this goal we have developed a system 

where each worker robot is charge-aware and is able to plan its schedule of tasks according to 

which tasks it can and cannot complete given its charge. They also have the capability to insert 

recharging tasks into their schedules when necessary. We then incorporated mobile rechargers 

whose goal is to lower the cost of the worker robots’ schedules in order to increase the amount 

of work the workers can perform. Our system uses two types of tasks: A point task which is an 

abstracted work task comprised of traveling to a specified coordinate. A recharging tasks is a 

task wherein the robot rechargers its batteries, whether that be via a static recharging station or 

a mobile recharger. 

 

3.1 | Existing Infrastructure 

The existing infrastructure used for this research is the system utilized by the rCommerce group 

at the Robotics Institute. The system is comprised of a series of robots, an operator interface, and 

the market-based system that ties them all together. 

 

 

Figure 1 - 3 Pioneer P3DX robots 

 

The rCommerce group has six Pioneer P3DX robots (Figure 1) with localization and mapping 

capabilities. Localization is done via wheel-mounted encoders and a centrally located 

gyroscope. Mapping and environment detection is done through a single laser range scanner 
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with      range of vision. The onboard computing is comprised of single-core 1.2GHz x86 

processors, 2GB of RAM, and varying levels of solid state storage (Figure 2). All the robots run 

Ubuntu Linux and communicate via an 802.11n WiFi network. One of the robots is equipped 

with a recharging arm which it can use to dock with and recharge the other robots (Figure 3). 

This robot is our mobile recharger. Each robot runs a series of modules which allow it to sense 

its environment, plan its movements, and coordinate with other robots. The robots are able to 

autonomously travel to any point and do so while avoiding obstacles.  

 

 

Figure 2 - Pioneer with (1) laser scanner, (2) wheel encoders, (3) gyroscope, and (4) computing. 

 

1 

2 

4 

3 
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Figure 3 - Pioneer with recharging arm docked with another Pioneer 

 

The operator interface is comprised of a graphical user interface that merges the data provided 

by all the robots (Figure 4). It is characterized by a large map with aggregated map information 

from all robots. The map shows each robot’s location, it’s currently executing task, and a brief 

distance trail for the robot. Through the interface one can assign tasks to an individual robot or 

to a group of robots. 

 

 

Figure 4 - Graphical user interface showing a robot's location, path, and a map of the known environment. The 

interface allows for direct control of the robots. 
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The market-based system utilized by the group is the TraderBots system first developed by Dias 

et al. [14]. Our current version of the TraderBots library is version 4 and it is developed by 

Carnegie Mellon’s National Robotics Engineering Center *15+. This library implements a fully 

customizable distributed market-based system. Each robot has a Task Allocator module which 

instantiates the library and is tasked with holding that robot’s auctions and bidding for tasks in 

that robot’s name. As a member of the rCommerce group I have taken an active role in the 

development and advancement of this infrastructure for the past four years. 

 

3.2 | Charge-Aware System 

Our charge-aware system runs on each robot and proactively plans in what order the robot 

should execute its tasks and whether it should recharge at any time. These plans are made 

based on the robot’s battery state and schedule of tasks. The schedule of tasks is comprised of 

both future and present tasks. In order to give each robot charge-awareness they must first be 

able to estimate their runtime, to know which tasks can be completed given their available 

power. Due to the market-based nature of our system the robots must also be able to determine 

the cost of individual tasks and to schedule accordingly. Finally, the robots must also know 

what to do when recharging is triggered; that is what actions they actually have to perform in 

order to recharge. 

 

3.2.1 | Home Base 

The robot’s start location is an area we call their home base. It is the location where they are first 

deployed and the location they must return to once deployment is complete. It is in home base 

where we allow the robots a last-option backup plan for recharging. Since each robot has its 

own charger at its home base, the robot can always go recharge at home where it is guaranteed 

to have an available charger for its use. The choice to go home is not optimal for a robot as 

home can be far from the robot’s work area and it is thus somewhat expensive to return home. 

It would be much lower in cost for the robot to be recharged by a mobile recharger rather than 

going all the way home. However, mobile rechargers might not always be available or the 

available ones might be busy recharging themselves or other worker and are unable to recharge 

the requesting robot. Due to this possibility, we allow home as the recharging backup 

alternative to assure that a robot’s schedule of tasks can always be completed since home is 

guaranteed to be a viable recharging option. 
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3.2.2 | State Estimation 

Accurately estimating a robot’s runtime is important since it is this estimate that the robots use 

to plan their schedules and chose when to recharge. An overestimated runtime can lead to 

unexpected recharging where the robot might not have enough time to reach a static or a mobile 

recharging station. Underestimated runtime won’t lead to a loss of a robot due to lack of battery 

power, but it will lead to reduced total work output since the robot will perform less work per 

recharging cycle than its batteries allow. The second case, however, is more permissible as it 

allows the completion and continuation of work by the robot.  

In order to provide accurate runtime estimation we must be able to translate a robot’s 

remaining battery power into how much work can be performed. We chose to translate the 

robot’s remaining battery power into a distance to empty calculation. Similar to how modern 

cars will display how many miles the car can traverse before its tank of gasoline is depleted, we 

wanted our robots to display the number of meters the robot could traverse given its current 

battery power. 

Towards this end we began by running a series of battery rundown tests. In these states we run 

the robot continuously until their battery is depleted. We found that the total distance traveled 

was consistent within    between runs on the same robot using the same battery pack. There 

were variations between different robots and between different battery packs on the same robot, 

but these are differences that can be discerned by knowing what battery pack the robot is using 

and training it on that pack. With this observation we decided to implement a system that 

started with this known runtime and could measure how much energy was used during the 

robot’s run. Thus we would be able to have a good estimate of the robot’s remaining runtime at 

any given point in time. 

We started designing a system for state estimation by recognizing discrete power states in 

which the robot operated and proceeded to estimate the amount of power consumed in those 

states. There are two main states our robots exhibit: motion and idling. Motion is when the 

robots are actively moving towards a goal and its wheels are providing the propulsion. Idling is 

when the robot is not actively moving towards a goal but is still receiving sensor data from all 

sensors. We designed and implemented a model for each of these two states. The models are 

able to calculate how much runtime is consumed by the robot when it is in that particular state 

and has been in that state from time        to time     . The models take as input the start an end 

robot state and return how much power was used, in units of meters, during the time period it 

was in that state. 

The motion state model is relatively simple since our runtime is expressed in meters. The model 

determines what distance the robot has traversed from        to      and provides that as the 
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runtime consumed. This estimation is accurate since it is exactly how many meters of battery 

life the robot will consume by traversing   meters. 

The idle state model is a little more difficult since it requires translating idle time in seconds to a 

number of meters consumed. Our state model does this by estimating how many meters the 

robot could have traversed had it moved rather than stayed. In other words, if the robot were to 

move instead of idle for the specified time how much battery would it consume? We do this 

estimation by conducting an idle rundown test where the robot’s battery is drained while the 

robot is in the idle state. We also conducted further moving rundown test where the robot’s 

battery is drained while the robot is in constant motion. We compare the total time taken to 

drain the battery while idle to the distance traveled in the moving rundown test. This gives us 

an estimated number of meters consumed by   seconds idle. If the robot had not stayed idle for 

the entire idle rundown test it could have traversed the total number of meters traversed in the 

moving rundown test. Through this correlation we are able to determine how many meters the 

robot could have traversed had it not stayed idle.  

We incorporate these models by examining the robot’s state at frequent intervals and providing 

the models with the start and end states. We then deduct the estimated consumed runtime each 

model reports from the current estimated runtime. This translates roughly to: 

 

                                    (         )             (         ) 

 

Where           translates the start and end states into idle time which it then converts to 

potentially traversed meters. The             provides the distance the robot traversed 

between the start and end states. The starting runtime for the model is based on the training 

data we provide. It is the average of the total runtime seen in the calibration runs. 

We created the battery monitor module which is tasked with carrying out state estimation in each 

robot. This module receives robot position and state data   times a second from the robot’s 

control module and maintains the robot’s current estimated runtime. Other modules can then 

query the battery module for the most up-to-date estimated runtime. The battery module 

currently runs the state estimator twice a second.  

Another approach that we considered was based on battery voltage. A battery’s remaining 

power is normally determined by the battery’s voltage. A fully charged battery will have a 

certain voltage and as it is depleted this voltage falls until a threshold where the voltage can no 

longer power the robot. In our robots, full battery voltages range from     to       and empty 
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batteries are characterized by voltages around      . It is well known that battery voltage drops 

in a non-linear way and is thus difficult to estimate and use effectively. When we ran our 

rundown tests we logged all voltage data. We then examine the battery voltage curve as a 

function of time and attempted to model it. What we found was that voltage was very noisy, 

varied wildly between runs, and wasn’t too consistent between runs, robots, and battery packs. 

These observations can be seen in Figure 5. Another property of the batteries that made it 

difficult to use for state estimation is the lack of discernable states. Our batteries report voltage 

up to the tenth of a volt and go from fully charged to deplete in about ten discernible states. 

Given that the robots can traverse up to 1,300  during this same time, we did not think these 

readings provided enough resolution.  

 

 

Figure 5- Graph of voltage over time. Note the volatility of readings, especially those between voltage thresholds. 

 

We ran similar tests with multiple robots and multiple batteries packs. Some of the battery 

packs were new while others were packs the robots had been using for a few years. We found 

the same fluctuations in voltage in all packs. The main variation was that the runtime was 

extended for newer battery packs leading to longer robot lifetime. 
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We did consider other approaches for estimating power usage but chose against those options 

since they required extra hardware to measure power usage. This would be more costly, 

complicated, and time consuming. We opted with this approach due to its simplicity and lack of 

need for any hardware modifications to any component of our system.  

 

3.2.3 | Customizing TraderBots 

Market-based systems enforce certain abstractions in order to be able to create a very generic 

system which can be applied to any set of tasks. TraderBots is particularly well suited for this 

task as it allows for customization of nearly every aspect of the system [15]. 

The most basic component of any market-based system is the cost functions. These functions 

translate the work the robot must perform to complete a task into the cost to complete the task. 

This cost is then used as common currency robots can use to trade tasks and compare 

workloads. TraderBots’ defaults require pairwise cost functions; these are a type of cost functions 

that take two tasks,   and  , as arguments. They then calculate the cost of completing   given 

the completion of  . We can calculate the cost of a schedule of tasks by running this pairwise 

cost function through each consecutive pair of tasks and summing the resulting cost. We must 

also account for the      task in the front of the schedule. The      task is representative of the 

robot’s current position; it is used to calculate the cost of performing the first task given the 

robot’s current position. This can be seen in the following example:  

 

    (        (       ))      (      )      (   )      (   )      (   ) 

 

TraderBots also has a scheduler which keeps track of a robot’s schedule. Schedules are ordered 

lists of tasks that the robot must performed in sequence. This ordering is placed because of 

dependency or cost reasons. Dependency reasons arise when one task has to be completed in 

order for another to be completed. Cost reasons arise when it might be more cost effective to 

have one task before another (maybe due to their proximity). The schedule does not have any 

deadlines associated with the tasks. The scheduler is defined as a set of functions applied to the 

schedule. These functions are outlined in Table 1. The default TraderBots scheduler uses 

pairwise costing functions and no schedule optimization. We decided to create our own custom 

scheduler since we wanted to customize how the schedule was optimized and since we also 

needed to add recharging tasks when necessary in the schedule. 
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Table 1 - Functions comprising a TraderBots scheduler 

Scheduler Function Function Description 

InsertTaskAndCalculateBid Inserts a task into the end of the schedule and determines 

the bid for this task by calculating the change in price of the 

schedule once the specified task is added 

EraseTaskAndCalculateReserve Erases a task in the schedule and determines the reserve cost 

for this task by calculating the change in price of the 

schedule once the specified task is removed 

OptimizeSchedule Optimizes the ordering of tasks in the schedule 

GetScheduleCost Returns the cost of the schedule by running the cost 

functions and adding their results 

 

All other components of the TraderBots system were kept unaltered. Auctions would be 

triggered and carried out in the default manner. Bids and reserve prices would be calculated in 

the default manner. Winning bids would also be chosen in the default manner. 

 

3.2.4 | Cost Functions 

We wanted to have the cost functions determine the cost of a balanced schedule rather than that 

of the actual schedule. We define a balanced schedule to be a schedule of tasks which can be 

completed by a given robot given its current battery state and some scheduled recharging tasks. 

The cost of a schedule is the total distance (in meters) that the robot must travel to complete the 

tasks. With this in mind, we defined the cost functions to determine when a recharging task 

needed to be inserted and to account for that insertion in the cost of the schedule. 

Since cost functions are evaluated between two tasks, they have to be defined between any two 

types of tasks. Given that we have two types of tasks (point and recharging); we must define 

four cost functions. We must also remember the      task as a special type of task which is only 

evaluated at the beginning of the schedule. Given our two types of tasks and given that either 

one can be the first in our schedule; we have two more cost functions we must implement. This 

leads to six cost functions in total. These cost functions are summarized in Table 2.  
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Table 2 - The implemented cost functions. 

Cost Function Description 

NullToPoint(NullTask, PoinTask) The cost of traveling from the robot’s 

current position to a specific location 

NullToRecharge(NullTask, RechargeTask) The cost of recharging at a specific location 

given the robot’s current location 

PointToPoint(PointTask1, PointTask2) The cost of traveling from one specific 

location to another 

RechargeToRecharge(RechargeTask1,  

RechargeTask2) 

The cost of recharging at a specific location 

after recharging at another location 

PointToRecharge(PointTask, 

RechargeTask) 

The cost of recharging once we have 

traveled to a specific location 

RechargeToPoint(RechargeTask, 

PointTask) 

The cost of traveling to a specific location 

once we have recharged at another location 

 

Generally there are three properties we want to hold in our cost functions. The first property is 

that we want to be conservative in our creation of balanced schedules and as such are 

pessimistic in the availability of mobile rechargers. This means that all planning must assume 

that no mobile rechargers are available and that the robot must instead recharge at the home 

recharging station. The second is that we want an accurate estimate of the current runtime at 

any given cost function. This means that when a cost function is being executed, it must have a 

value for what the estimated runtime will be at that point in time (when the event the function 

is evaluating will occur). This leads to the third property which is that all cost functions must 

leave the schedule in a stable state. This means that no cost function can allow the robot to 

deplete its battery or to put the robot in a situation where it will deplete its battery. This is done 

by guaranteeing that the robot has enough battery to reach the home recharge station after the 

completion of the tasks used by the cost function. 

For all the cost functions below we determine distance given straight-line Cartesian distance 

due to its simplicity. There is no reason why we cannot replace this with a more complete path 

planner. However, that is left for future work. We will now describe the implementation of each 

cost function. 

The NullToPoint cost function determines the cost of traveling from the robot’s current position 

to a position specified by the point task. We chose to treat this cost function as we would treat a 
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PointToPoint cost function due to their identical semantics. The implementation simply calls on 

the PointToPoint function with the robot’s current location masqueraded as the first point task. 

This cost function also initializes the estimated runtime used by the cost functions to the current 

runtime value queried from the battery monitor module. 

 

function NullToPoint(nullTask, pointTask) 

 runtime = BatteryModule.currentRuntime() 

 newPointTask = nullTask 

return PointToPoint(newPointTask, pointTask) 

 

  

The NullToRecharge cost function determines the cost of recharging given the robot’s current 

location. Due the stable property of our cost functions, we know that the robot has enough 

battery to reach the recharging task. The cost is simply the distance from the robot’s current 

position to the recharging task. We then update the current runtime to the value of a full battery 

charge as that is what the robot will have once it completes the recharging task.  

 

function NullToRecharge(nullTask, rechargeTask) 

 runtime = BatteryModule.fullBatteryRuntime() 

return distance(nullTask, rechargeTask) 

 

  

The PointToPoint cost function determines the cost of traveling to a specific location given the 

robot has already traveled to another location. This is by far the most complicated cost function 

and is where recharging task insertion occurs. The function must determine whether the robot 

has enough battery to travel to the second point task and then go home to recharge. This is done 

to maintain the stable property of our cost functions. If this is possible, then the cost of 

completing the second point task is the distance between both tasks. If this is determined to be 

impossible, we must insert a recharging task before we complete the second specified task. In 

this case the cost returned by the function is the distance from the first point task to the home 

recharging station and then to the second task. In both cases the current runtime is updated by 

subtracting the distance between the tasks in the first case and by setting the current runtime 

corresponding to a full battery and then subtracting the distance from home to the second point 

task. This approach has one edge case however. In the case where there already exists a 

recharging task in the schedule which is closer than going home but not immediately after the 

first point task, this function will require a recharging task to be inserted into this schedule 

unnecessarily. This is circumvented by determining the distance to the next recharging task in 

the schedule and not inserting a recharging task if that distance is less than the robot’s current 
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runtime. Thus, if it is beneficial to use that recharging task instead of going home, that approach 

is used. 

 

function PointToPoint(pointTask1, pointTask2) 

distanceTaskToTaskToHome = distance(pointTask1, pointTask) 

+ distance(pointTask2, home) 

distanceToNextRecharge = getDistanceToNextRechargeTask() 

 

if (distanceTaskToTaskToHome > runtime AND 

distanceToNextRecharge > runtime) 

 // Insert recharging task 

cost = distance(pointTask1, home) 

+ distance(home, pointTask2) 

runtime = BatteryModule.fullBatteryRuntime() 

- distance(home, pointTask2) 

else 

cost = distance(pointTask1, pointTask2) 

runtime -= cost 

  

return cost 

 

  

The RechargeToRecharge cost function determines the cost of recharging given we have just 

recharged. The cost of this task is simply the distance between both tasks. Current runtime is 

updated by setting it equal to the runtime corresponding to a full battery.  

 

function RechargeToRecharge(rechargeTask1, rechargeTask2) 

 runtime = BatteryModule.fullBatteryRuntime() 

return distance(rechargeTask1, rechargeTask2) 

 

  

The PointToRecharge cost function determines the cost of recharging given that the robot has 

already traveled to a specific location. Due to the stable property of our cost functions the robot 

must have enough battery to reach the recharging location. Thus, the cost of this task is the 

distance between the tasks. Current runtime is updated by setting it equal to the runtime 

corresponding to a full battery.  

 

function PointToRecharge(pointTask, rechargeTask) 

 runtime = BatteryModule.currentRuntime() 

return distance(pointTask, rechargeTask) 
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The RechargeToPoint cost function determined the cost of traveling to a specific location given 

we have just recharged. The cost of this task is simply the distance between both tasks. Current 

runtime is updated by subtracting the distance traversed during this task.  

 

function RechargeToPoint(rechargeTask, pointTask) 

cost = distance(rechargeTask, pointTask) 

 runtime = BatteryModule.currentRuntime() - cost 

return cost 

 

  

3.2.5 | Scheduler 

The scheduler is defined via a series of pre-defined function. The four main functions are: 

GetScheduleCost,  InsertTaskAndCalculateBid, EraseTaskAndCalculateReserve, and 

OptimizeSchedule. We now provide descriptions for the implementation of our custom 

scheduler. These are summarized in Table 3. 

 

Table 3 - Summary of scheduler functions. 

Function Description 

GetScheduleCost Returns the total cost of the current schedule 

in meters. 

InsertTaskAndCalculateBid Inserts a task into the current schedule and 

calculates the added cost to the schedule by 

inserting this task. 

EraseTaskAndCalculateReserve Erases a task from the current schedule and 

calculates the decrease in cost to the schedule 

by erasing this task. 

OptimizeSchedule Optimizes the ordering of all tasks in the 

schedule. Includes optimizing the ordering of 

recharging tasks. 

 

The GetScheduleCost function returns the cost of the current schedule given the current battery 

state. This is done by running the pairwise costing functions on the schedule as previously 

described and adding the cost of all these tasks. 

The InsertTaskAndCalculateBid function calculates the cost of the current schedule and then 

inserts the specified task into the schedule. It then re-calculates the cost of the schedule to find 

the difference between the new schedule and the old schedule. This cost difference is what the 

robot would bid for this task as it is the cost this robot incurs while inserting this task into its 
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schedule.  Optionally, the schedule can be optimized before the cost of the new schedule is 

calculated. This is option is given so that the schedule will not be optimize multiple times in 

short succession since optimization is a costly operation (in the case where we are inserting 

many tasks for example). 

The EraseTaskAndCalculateReserve function is similar to InsertTaskAndCalculateBid since it finds 

the cost difference between two schedules; however, in this case the specified task is removed 

from the schedule. The cost difference represents the cost the robot incurs by having this task in 

its schedule. This is set as the reserve price; if no robot has a lower cost the current robot should 

keep the task as it has the lowest cost to complete it. Optionally, the schedule can be optimized 

before the cost of the new schedule is calculated. 

The OptimizeSchedule function re-orders the schedule of tasks so that the total schedule cost is 

minimized. More so, the schedule that is outputted by the function is optimal in terms of 

distance traversed by the robot. The bulk of our work on the scheduler focused on the schedule 

optimizer as it proved to be the most complex component. Our optimizer did two types of 

optimizations: optimize the point tasks and optimize the recharging tasks. 

Optimizing the point tasks is comprised of finding the minimal ordering of tasks. This minimal 

ordering is also optimal. The simplest approach is an exhaustive search which tests all possible 

permutations. This approach, while correct, produces a runtime of  (  ) which we found to be 

unacceptable. We then focused on inserting a single task optimally. This is comprised of linearly 

testing the insertion of the task at each available location and then selecting the one that 

produces the minimal cost. We extend this to all   tasks by re-inserting the tasks into a new 

schedule one at a time. Since each task is inserted optimally, we finish this process with an 

optimal schedule. The runtime of this approach is a much improved (  ).  

 

function optimizeOneTask(schedule, task) 

 forall tasks in schedule 

  schedule.insertBefore(currentTask, task) 

 

  if schedule.cost < minCost 

   minCost = schedule.cost 

   minBefore = currentTask 

 

  schedule.erase (task) 

 

 schedule.insertBefore(minBefore, task) 
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function optimizeAllTasks(schedule) 

 newSchedule = empty schedule 

 forall tasks in schedule 

  optimizeOneTask(newSchedule, currentTask) 

 

 return newSchedule 

 

Optimizing the recharging tasks is significantly more complicated as the location of one 

recharging task greatly affects the location of other recharging tasks. If we place a recharging 

task earlier in our schedule, this may move later recharging tasks since it changes the robot’s 

estimated runtime at that point in time. The optimizing function returns a list of locations where 

recharging tasks need to be inserted. These locations are the optimal placement for recharging 

tasks given the current schedule. 

A naïve exhaustive search has a runtime of  (  ) as each of the   possible locations can either 

have or not have a recharging task present. This runtime is simply intractable for more than a 

handful of tasks. We originally implemented a scheduler in this manner and with a set of 50 

tasks, observed the optimizer run for hours. 

The next approach we tested was an optimization on the exhaustive search. In this approach we 

would find the last place where a recharging task could be inserted and still have a balanced 

schedule. This saved us from testing many solutions that would create unbalanced schedules. 

We saved this location and tested inserting the recharging task at every location before that 

saved location. We then optimized the remaining schedule of tasks by recursively applying the 

same logic to the smaller schedule after the inserted recharging task. The recursion ended when 

no further recharging tasks where necessary. This was determined by the robot’s ability to 

perform the remaining schedule without recharging. After all of the possible locations were 

tested, the minimal was chosen and returned. This optimizer also produced optimal schedules 

and in reduced runtime. However, this reduction is not significant enough and thus does not 

allow for the optimization of tasks onboard the robots in real-time. 

With a goal of significant reduction in runtime we set out to design a better optimizer. The first 

observation we made was that when we simulated the insertion of a recharging task and then 

recursed on the remaining schedule, we were in essence optimizing the smaller schedule. 
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Figure 6 - Relation between the old schedule, the new smaller schedule being optimized, and the full schedule. 

 

The next observation we made was that whenever the optimizer was called with this new 

smaller schedule to optimize, the answer was never going to change. What was optimal for the 

smaller scheduler last time we checked will still be optimal this time, even if the old schedule has 

changed. The old schedule is the beginning of the full schedule and the schedule from which we 

recursed into the new smaller schedule we are optimizing. The old schedule is comprised of the 

tasks that come directly before the new schedule and are not included in the new schedule. The 

relationship between the old schedule, new smaller schedule being optimized and the full 

schedule can be seen in Figure 6. 

We used these two observations and applied memoization. When we recurse on a schedule we 

first check whether we have already calculated this schedule. If we have, we take the previously 

calculated insertions and return. If we have not then we run the same algorithm as before where 

we look for the last possible place we can insert a recharging task and check all placements 

before that insertion place. When we are done computing the result we then store it in a map 

with the first task in the schedule as the key. This algorithm guarantees that for any given 

smaller schedule, defined by its starting task in our full schedule, the optimization will only be 

calculated once. This component optimization takes a linear amount of work. When we do this 

for all   tasks in our schedule we find the optimal ordering of recharging tasks and do so with 

greatly reduced runtime. The runtime of this approach is  (  ) which optimizes our sample 50 

task schedule instantly. This proves to be a great improvement over our previous approaches.  
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map memoizedValues. 

function optimizeRechargingTasks(startTask, schedule) 

 if memoizedValues.find(startTask) 

  return memorized insertions 

 

 firstRecharge = find first recharging task 

 

 forall tasks between startTask and firstRecharge 

  schedule.insertBefore(currentTask) 

  currentInsertions = optimizeRechargingTasks( 

currentTask + 1, schedule) 

   

  if schedule.cost < minCost 

   minCost = schedule.cost 

   minInsertions = currentInsertions 

 

  schedule.eraseBefore(currentTask) 

 

 memoizedValues.insert(startTask minInsertions) 

 

 return minInsertions 

 

3.2.6 | Recharging Behavior 

Once the robots have created optimal balanced schedules and have inserted recharging tasks 

into their schedules, they must know what a recharging behavior entails. 

The robot’s most basic behavior is to go to the home recharging station. When such a task is 

triggered the robot goes home to its recharging station. It then waits for a human to start 

recharging the robot by physically plugging the robot into power or by having its batteries 

replaced with a new set. The batteries can be replaced without disconnecting power to the robot 

and can be used when a quick turnaround is necessary. The human then signals the robot that 

recharging is complete and the robot continues. In future prototypes we hope to automate this 

process by having a docking station for the robots and by having the robots analyze their 

voltage and determine when their batteries are filled. 
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Figure 7 - Prototype recharging hardware. Note the recharging robot on the left and the worker robot on the right. 

 

A second type of recharging task is one in which the worker robot rendezvous with a mobile 

recharger and docks with it to recharge. In this approach the worker robot and the mobile 

recharger both travel to the rendezvous location and wait for the other robot. When both robots 

are present the robots dock and once the worker’s batteries are filled, undock and continue. The 

docking and undocking behavior is currently being developed and can be seen in prototype 

form in Figure 7. Having two robots taking part in the docking maneuver makes it important 

for both robots to coordinate their actions. Towards this we have decided to have one robot 

maneuver and dock with the other robot while that robot stays stationary. We ran tests to 

determine which robot would be best fitted to perform the docking. The tests consisted of 

variations on the docking angle and variations on which robot, the recharger or the worker, 

stayed stationary. We found that when the worker was stationary the recharger successfully 

docked      of the time when the angle was within      from the direction the worker is 

facing. This is compared to the      achieved when the recharger was kept stationary. 

  

3.3 | Mobile Recharging Agents 

The next component of this research is the incorporating of mobile recharging agents into the 

already implemented charge-aware system. Our goal with mobile rechargers is to lower the cost 

of the worker robot’s schedules by providing a recharging station closer than the home 

recharging station. Towards this, we have developed auctions, a scheduler, and cost functions 

that are unique to the mobile recharger and aim to have the mobile rechargers assist the worker 

robots as much as possible. This leads to an increase in total work performed by the group of 

robots as a whole. 
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Similar to the charge-aware implementation present in the worker robots, we must create a 

custom scheduler and cost functions in order to implement the mobile recharger’s logic. As 

before, all other components of the market-based system are kept as the TraderBots defaults. 

 

3.3.1 | Recharging Auctions 

In order to create this coordination between workers and mobile rechargers we will have the 

workers auction recharging tasks. These tasks will specify the worker’s schedule and ask to be 

recharged somewhere along its tour. In turn, each recharger will bid their cost to recharger the 

worker at a rendezvous point of their choosing. The recharger with the lowest cost will win the 

task. 

The recharging tasks for mobile rechargers are different from the recharging tasks on worker 

robots. When a worker auctions a recharging task he must specify a range of tasks in its 

schedule through which he is available to be recharge. This necessitates that a mobile 

recharger’s recharging task include a copy of this the worker’s schedule.  

When a worker has inserted a recharging task into its schedule it must also examine the 

possibility of having that task carried out by a mobile recharging agent. To do so the worker 

creates a recharging task that it will auction. The worker examines its schedule and determines 

that he must be recharged somewhere between the last recharging task and the recharging task 

currently being auctioned. Thus, the worker includes this segment of the schedule in the 

recharging task to be auctioned. The robot also includes the task right after the recharging task 

currently being auctioned. This will allow the recharger the option to rendezvous along the 

worker’s path, away from the home recharging task, but still inside of the worker’s range given 

its battery state. This task is then auction through the TraderBots library. 

When a mobile recharger receives an auctioned task it must determine its bid for the task. It 

does so by first determining a rendezvous point in which recharging will occur, and then 

calculating the cost of traveling to that rendezvous point after it has completed its current 

schedule of tasks. 

 

3.3.2 | Cost Functions 

The cost functions for a mobile recharger must determine the best rendezvous point with the 

worker given the mobile recharger’s existing schedule. The best rendezvous point is defined to 

be the closest one. This way we minimize the amount of distance the mobile recharger has to 

travel while still placing a greater emphasis on reducing the cost of the worker’s schedule. Since 
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the mobile recharger only handles a single type of task, recharging tasks, it only needs to 

implement two cost functions. These are summarized in Table 4 and will be described in detail. 

 

Table 4 - Mobile recharger cost functions 

Cost Function Description 

NullToRecharge(NullTask, 

RechargeTask) 

Determines the cost of recharging the 

specified worker given its current location. 

RechargeToRecharge(RechargeTask1, 

RechargeTask2) 

Determines the cost of recharging the 

specified worker given it has finished 

recharger another worker. 

 

The NullToRecharge cost function determines the cost of recharging the specified worker given 

its current location. Since this cost function has the same semantics as the RechargeToRecharge 

cost function, it is implemented by simply calling the RechargeToRecharge cost function with 

the current location masqueraded as a completed recharging task. 

 

function NullToRecharge(nullTask, rechargeTask) 

 newRechargeTask = nullTask 

 return RechargeToRecharge(newRechargeTask, rechargeTask) 

 

The RechargeToRecharge cost function determines the cost of recharging the specified worker 

given it has already recharged another worker. All that is important about the completed 

recharging task (the first recharging task) is the location at which it occurred since it if from this 

location that the robot must travel to recharge the second worker. As such, this cost function 

must find the shortest distance between the first recharging task’s rendezvous point and the 

schedule of the robot in the second recharging task. 

We must keep in mind that the shortest distance might not be to one of the task’s location but to 

a location in between two tasks. To do this we analyze each consecutive pair of tasks as a line 

segment and find the shortest distance between the point and the line segment. This shortest 

distance will be between some point on the line, what we call the shortest point, and our original 

point. If this shortest point is within the line segment then we calculate the distance to that 

point. If the shortest point is outside of the line segment, we select the closes endpoint of the 

line segment and calculate the distance to that point. An example of this is shown in Figure 8. 

We then find the minimal distance between the point and any line segment on the tour. This 
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final shortest point is what the mobile recharger will use as the rendezvous point. The distance 

to this point is the cost returned by the cost function.  

 

function RechargeToRecharge(rechargeTask1, rechargeTask2) 

 originalPoint = rechargeTask1.rendezvousPoint 

 

 taskLines = consecutive tasks in rechargeTask2.schedule 

 

 forall lines in taskLines 

  shortestPoint = shortestPoint(currentLine,  

originalPoint) 

   

  if distance(shortestPoint, originalPoint)<= minCost 

   minCost = distance(shortestPoint, originalPoint) 

 

 return minCost 

 

 

Figure 8 - The three posible locations of the shortest point. On the line segment (left), to the left of the line 

segment (center), and to the right of the line segment (right). 

 

The shortest distance between a line and a point will always lie on a point within the line. The 

line formed by the shortest point and the original point intersect perpendicularly to the original 

line. To implement this we find the slope of the intersecting line and using that slope and the 

original point we now have the equation of the intersecting line. From here we simply find the 

intersection between both lines. 
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function shortestPoint(line, point) 

 intersectLineSlope = -1 / line.slope 

 insersectLine = make line from point and slope 

 intersection = intersect of line and insersectLine 

 

 if intersection is inside line 

  return intersection 

 else if distance(intersection, line.startPoint) < 

distance(instersection, line.endPoint) 

 return line.startPoint 

 else 

  return line.endPoint 

 

The only special case in this cost function is the final task. Recall that the schedule used by the 

mobile recharger to bid on the recharging task has the worker’s go-home-and-recharge task as 

the second to last task in the schedule. The last task in the schedule is the task immediately after 

the go-home-and-recharge task. Since we want to intercept the worker somewhere on its tour 

we may need to do so in the last leg of the tour: between the last point task and the go-home-

and-recharge task. To minimize travel by the worker we want to instead intercept him between 

the last point task and the point task after the go-home-and-recharge task (from now on 

referred to as the first point task). Thus, circumventing the original go-home-and-recharge task 

since the mobile recharger will be doing the recharging anyways. We must keep in mind that 

the worker is only guaranteed to have enough battery to reach the home recharging station. As 

such, we take the distance between the last point task and the go-home-and-recharge task and 

project it on the line between the last point task and the first point task. We then use that point 

as the final point in the schedule instead of the actual go-home-and-recharge task; unless the 

first point task is closer, in which case that task is used instead. An example of this is shown in 

Figure 9. 

 

 

Figure 9 - The creation of the last task in the recharge task's partial schedule. 
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To implement this we calculate the distance between the last point task and the go-home-and-

recharge task as well as the distance between the last point task and the first point task. We also 

calculate the ratio of their distances. We then scale the vector from the last point task to the first 

point task by the ratio of their distances. This gives us the desired last task. 

 

function createLastTask(lastPoint, rechargeTask, nextPoint) 

 distancePointToPoint = distance(lastPoint, nextPoint) 

distancePointToRecharge = distance(lastPoint,  

rechargeTask) 

 

 if distancePointToPoint <= distancePointToRecharge 

 return lastPoint 

 

 scaleFactor = distancePointToRecharge /  

distancePointToPoint 

 

 return (nextPoint - lastPoint) * scaleFactor 

 

One property of the rendezvous point chosen by these cost functions is that since it is on the 

path of the worker’s schedule, it is guaranteed to decrease the cost of the worker’s schedule no 

matter where the rendezvous point is chosen. 

 

3.3.3 | Scheduler 

The recharger’s scheduler must implement the same set of functions described in the charge-

aware section. The mobile recharger has a different scheduler due to its different goal: to 

minimize the schedule of the worker robots. The recharger’s scheduler is simpler since it is a 

first-in-first-out scheduler. The requests for recharging are serviced as a queue, thus the first 

worker to ask for recharging will be recharged before the second worker to ask for recharging. 

This is done to establish fairness in the process and to not cause the starvation of requests by 

favoring some type of request (whether that is a closer request or a request with a particular 

robot). 

The GetScheduleCost cost function simply runs the pairwise cost functions along the schedule 

and returns the sum of the individual costs. 

The InsertTaskAndCalculateBid cost function appends a task to the current schedule and 

calculates the bid from adding that task. No optimization is done.  
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The EraseTaskAndCalculateBid cost function removes a task from the current schedule and 

calculates the reserve cost from removing that task. No optimization is done. 

The OptimizeSchedule cost function does not perform any action on the schedule. While it is 

possible to lower the cost of the mobile recharger’s schedule this possible optimization is not 

done for the sake of focusing instead on decreasing the cost of the worker’s schedules. It is also 

important to note that once a rendezvous point is chosen it is similar to a contract with the 

worker and as such must be kept intact. Optimizing the mobile recharger’s schedule might 

involve changing this rendezvous point which will have adverse effects to the worker if he is 

not appropriately contacted and consulted. 
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4 | Experiments & Results 

In order to evaluate the effectiveness of our approach and compare it to current approaches we 

must evaluate its components through a series of tests. We have divided our evaluation into 

two main components for evaluation: The state estimation used to determine remaining 

runtime. Second, the evaluation of the entire system and how it compares to existing systems. 

 

4.1 | State Estimation 

The first component we chose to test was the accuracy of our state estimation. We designed a 

series of tests to gauge the effectiveness of our state estimation in various states of robot activity.  

We selected tasks that would have the robot run continuously in an open space and varied the 

frequency of the tasks. This way we also varied the percentage of time the robot was active. The 

chosen periods of activity were     ,        , and    . We took some initial training data 

with a run of      and    activity. These two correlate to our moving and idle rundown tests. 

At the end of each run we compared the actual remaining runtime against the runtime 

estimated by our model. The error is defined as the actual remaining runtime minus the 

remaining runtime calculated by our state estimation. The actual remaining runtime is always 

zero since the battery has been depleted. A positive error correlates to underestimating the 

remaining runtime. This means that we estimated the battery would run out before it actually 

did. A negative error correlates to overestimating the remaining runtime. This means that the 

battery was expected to run out later than it actually did. The results of the tests can be seen in 

Table 5. 

 

Table 5 - Summary of results for state estimation. 

Percent Activity Error 

100% 3.7 

75% 2.44 

50% 1.52 

25% -12.03 
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4.2 | System Evaluation 

The second component we chose to test is the effectiveness of our approach, how much total 

work is done by the robots as a whole. We also wanted to compare the performance of our 

system against that of current systems. Towards that we designed a series of tests from which 

we would run all approaches and compare their performance. We ran tests on actual hardware 

to verify our results on a real system and in simulation for testing larger scenarios.  

We have chosen to run our tests on a single worker robot. This was done to create simpler and 

more manageable test cases while still showcasing the effectiveness of each recharging strategy. 

The only exception to this is in the cases where we test a system with a mobile recharger. In 

those cases we have a second robot which functions as the mobile recharger. 

There are five recharging strategies that will be testing during our evaluation: 

1. Infinite battery: This strategy assumes that the robot has an infinite amount of charge and 

thus never requires recharging. This strategy is used as an unreachable lower-bound on 

the performance of other strategies; no recharge strategy can perform better than the 

strategy that does not require recharging. 

2. Battery threshold: This strategy determines when recharging should occur based on the 

current battery voltage. A robot is instructed to recharge when its battery voltage drops 

below a certain percentage of the full battery voltage. 

3. Distance threshold: This strategy instructs robots to recharge when they have just enough 

battery to reach the recharging station. At the same time, this strategy wishes to 

maximize the number of tasks completed. Thus, if a robot has enough power to perform 

a task and then recharge, this strategy will chose that ordering. 

4. Charge-aware: This strategy is our charge-aware system described previously. It 

determines the optimal ordering of recharging tasks and utilizes that ordering. 

5. Charge-aware with mobile recharger: This strategy is identical to the charge-aware strategy 

but with the inclusion of a mobile recharger. This mobile recharger is in a support role 

and thus is tasked with maximizing the amount of work done by the worker robot. From 

now on we will refer to this strategy as mobile recharger for convenience. 

The first series of tests we ran are designed to test the effectiveness of each strategy on a set of 

tasks that would require recharging multiple times. The tests were conducted with one of our 

Pioneer robots in the Carnegie Mellon University, Gates and Hillman Center high bay. We 

tested on an open area     by    with no obstacles in the robot’s path (Figure 10). 
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Figure 10 - The test area at the Gates and Hillman Center high bay. Shown is a robot during one of the test runs. 

 

4.2.1 | Real System Tests: Distance Metric 

We created two schedules, each comprised of 50 point tasks placed randomly within the testing 

area. The sum of the total distance between the tasks was about      for both schedules. These 

tasks were given to the robot to execute. The robots performed no optimization on the order of 

the given tasks. The tasks were performed in the order given. To make the runtime of the tests 

tractable we artificially limited the robot’s battery to     of runtime.  

We continuously logged time, position, and battery. All strategies were run twice on each 

schedule and the presented results are the average values between both runs. The metric used 

for evaluation is total distance traveled in meters. 

All presented schedules were computed in real-time except that of the mobile recharger 

strategy. Due to network-based constraints in TraderBots we were unable to trade the tasks in 

real-time. As such the schedules were manually pre-computed before the run. We do not 

believe that this pre-computation affected the results significantly due to our distance based 

metric and the speed of TraderBots’ trading infrastructure. 

The threshold used for the battery threshold strategy was     for the first schedule and 28% for 

the second schedule. These are percentages of total battery capacity. These values were chosen 
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since any smaller value caused the robot to deplete its battery during the run before it reached 

the recharging station.  

The results of both schedules are presented below in Table 6 and Table 7. We have also included 

the number of recharging tasks as another means of comparison. 

 

Table 6 - Schedule 1 results for all strategies 

Strategy Total Distance Covered ( ) Number of Recharging Tasks 

Infinite battery 220.95 0 

Battery threshold 242.58 5 

Distance threshold 251.05 5 

Charge-aware 234.75 5 

Mobile recharger 221.31 7 

 

Table 7 - Schedule 2 results for all strategies 

Strategy Total Distance Covered ( ) Number of Recharging Tasks 

Infinite battery 169.67 0 

Battery threshold 186.93 4 

Distance threshold 186.80 3 

Charge-aware 171.04 6 

Mobile recharger 170.63 5 

 

The results above show that our system exhibits a substantial reduction in distance traveled 

when compared to existing threshold approaches. The mobile recharger approach is even 

significantly close to the lower bound established by the infinite battery strategy. Table 8 and 

Table 9 summarize the gains made by our approaches when compared to existing strategies. 
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Table 8 - Summary of gains from charge-aware and mobile recharger strategies for Schedule 1. The center column 

is for charge-aware and the right column is for mobile recharger. 

Strategy 
Distance Gains (m) 

Charge-Aware 

Distance Gains (m) 

Mobile Recharger 

Infinite battery -13.8 (-5.88%) -0.36 (-0.16%) 

Battery threshold 7.83 (3.33%) 21.27 (9.61%) 

Distance threshold 16.30 (6.94%) 29.74 (13.44%) 

Charge-aware - 13.44 (6.07%) 

Mobile recharger -13.44 (-5.73%) - 

 

Table 9 - Summary of gains from charge-aware and mobile recharger strategies for Schedule 2. The center column 

is for charge-aware and the right column is for mobile recharger. 

Strategy 
Distance Gains (m) 

Charge-Aware 

Distance Gains (m) 

Mobile Recharger 

Infinite battery -1.37 (-0.08%) -0.96 (-0.56%) 

Battery threshold 15.89 (9.29%) 16.30 (9.55%) 

Distance threshold 15.76 (9.21%) 16.17 (9.48%) 

Charge-aware - 0.41 (0.24%) 

Mobile recharger -0.41 (-0.24%) - 

 

4.2.2 | Real System Tests: Time Metric 

We would also like to present the results of these tests if they were to be evaluated under a 

time-based metric. In order to provide these results we must estimate the time required for 

recharging. We will estimate using two different methods. 

The first method is equivalent to changing batteries rather than recharging them. Our robots are 

equipped with a set of batteries that can be changed on-line without turning off the robot’s 

power. We have many sets of spare batteries on fast chargers just for this type of use. This 

method will estimate a constant time required for recharging. In order to calculate the total 

runtime we use the following equation: 

 

                                                                     

 



  
48 

 

  

The second method estimates the time it would take to recharge the battery to full capacity 

given its current state. We assume a linear relation between battery power and recharging time. 

Since we utilized a smaller simulated battery we will equally scale the known recharging times. 

This will give us an estimated recharging time that increases linearly as the battery is more 

depleted. In order to calculate the total runtime we run the following function: 

function getTime(taskList, testRuntime) 

 totalTime = testRuntime 

 forall tasks in taskList 

  totalTime += (1 – currentTask.batteryPercentage) *  

fullRechargeTime 

 

 return totalTime 

 

Using these equations and our existing data we get the results shown in Table 10 and Table 11. 

We have also included the base runtime for reference. 

 

Table 10 - Schedule 1 results for all strategies under the two time metrics 

Strategy Base Runtime ( ) Method #1 ( ) Method #2 ( ) 

Infinite battery 960 960.00 960.00 

Battery threshold 1042 1065.10 2934.90 

Distance threshold 1092 1115.10 2810.70 

Charge-aware 990 1013.10 2801.20 

Mobile recharger 965 997.31 2555.40 

 

Table 11 - Schedule 2 results for all strategies under the two time metrics 

Strategy Base Runtime ( ) Method #1 ( ) Method #2 ( ) 

Infinite battery 841 841.00 841.00 

Battery threshold 893.5 911.96 2253.7 

Distance threshold 934 947.85 2117.6 

Charge-aware 901 928.69 1935.7 

Mobile recharger 879.5 902.58 1904.8 
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We see that our approaches perform better for the most part except for the case of battery 

threshold and charge-aware in schedule 2. However, we are not as close to the time lower 

bound as we are to the distance lower bound. We summarize the gains for each method on 

Table 12 and Table 13. 

 

Table 12 - Summary of gains from charge-aware and mobile recharger strategies for Schedule 1 using the two time 

metrics. The center two columns are for charge-aware and the right two columns are for mobile recharger. 

Strategy Method #1 Method #2 Method #1 Method #2 

Infinite battery -53.10 (-5.24%) -1841.2 (-65.73%) -37.31 (-3.74%) -1595.4 (-62.43%) 

Battery threshold 52.00 (5.13%) 133.70 (4.77%) 67.79 (6.80%) 379.50 (14.49%) 

Distance 

threshold 

102 (10.07%) 9.50 (0.34%) 117.79 (11.81%) 255.30 (9.99%) 

Charge-aware - - 15.79 (1.59%) 245.80 (9.62%) 

Mobile recharger -15.79 (-1.56%) -245.80 (-8.77%) - - 

 

Table 13 - Summary of gains from charge-aware and mobile recharger strategies for Schedule 2 using the two time 

metrics. The center two columns are for charge-aware and the right two columns are for mobile recharger. 

Strategy Method #1 Method #2 Method #1 Method #2 

Infinite battery -87.69 (-9.44%) -1094.7 (-56.55%) -61.58 (-6.82%) -1063.8 (-55.85%) 

Battery threshold -16.73 (-1.80%) 318.00 (16.43%) 9.38 (1.04%) 348.90 (18.32%) 

Distance 

threshold 

19.16 (2.06%) 181.90 (9.40%) 45.27 (5.02%) 212.8 (11.17%) 

Charge-aware - - 26.11 (2.89%) 30.9 (1.62%) 

Mobile recharger -26.11 (-2.81%) -30.9 (-1.60%) - - 

 

4.2.3 | Scaling Number of Tasks 

We then ran a series of tests on our simulator in order to test with larger data sets. Our 

simulator is comprised of the TraderBots scheduler. The scheduler is able to give an estimated 

cost for the entire schedule given the list of tasks. We use this to estimate the total distance the 

robot will travel as both cost and distance are measure in meters in our case. We have found the 

simulator to be within about    of the value found by experimentation. Thus, we believe the 

simulator’s results are a good estimate of the behavior of the system. 
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The first behavior we wanted to observe was how each strategy scaled; in other words, how 

each strategy performed as we increased the number of tasks. In order to test this scenario, we 

generated a random schedule of 150 tasks and ran experiments from 50 to 150 tasks in 

increments of 10 tasks. Each strategy was run under each incremental schedule. The results of 

this test can be seen in Figure 11. 

 

 

Figure 11 - Graph of schedule cost over number of tasks. Note that mobile recharger and infinite battery are near-

identical. 

 

From the above test we can see that our strategies consistently to outperform existing strategies. 

 

4.2.4 | Effects of Battery Threshold 

We also wanted to observe how the chosen threshold for the battery threshold strategy affected 

the performance of the strategy. We ran schedule 1 with varying thresholds from 20% to 36% in 

2% intervals. The results of this test can be seen in Figure 12. 
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Figure 12 - Graph of schedule cost over different battery thresholds 

 

These results show that there isn’t a significant change in performance for the small thresholds 

we chose. However, performance quickly degrades with higher thresholds. 
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5 | Discussion & Analysis 

We will now discuss some of the limitations and assumptions made during the implementation 

of our system and how these affect the performance of the system as a whole. We will also 

discuss the advantages of different components of our approach, as well as introduce some of 

the areas that can and will be met with improvements.  

 

5.1 | Accuracy of State Estimation 

We found that our state estimator gave us a good idea of remaining runtime for runs when the 

robot was mostly in motion for the duration of the run. Overall for these runs when it is 

accurate the state estimator always underestimated the runtime when compared to the actual 

runtime. This is a good sign in that our estimates are conservative and will not lead to the 

misplacement of a robot due to their battery losing charge (Table 5). 

The only run that resulted in bad estimation was for the     moving run. We believe that this 

is an acceptable error, since the robot will be moving most of the time. This is due to the fact 

that we want the robot to be doing useful work as much as possible and spending large 

portions of time idle equates to lost productivity. In other words, we do not expect to have the 

robot perform runs where it will be mostly idle, and thus our current state estimation should be 

sufficient for our purposes. 

The error in the     moving run can be attributed to a greater than expected power 

consumption by the robot while in idle mode. To mitigate this we could add a scaling factor to 

the idle power consumption; but this will serve to lower the accuracy of our other estimates. 

Since we plan to have the robot moving most of the time, we chose not to have this tradeoff. It 

may also be beneficial to examine a model where idle power consumption depends on what 

percentage of the robot’s total lifetime has been spent idle. This, however, is considered future 

work. We discuss other possible methodologies for state estimation in the future work section. 

 

5.2 | Advantages of Market-Based Systems 

We chose to implement the above system as a market-based system due to our familiarity with 

such systems and because of their advantages. Our system exhibits many of these advantages in 

its implementation. There are three advantages in particular that contribute greatly to the 

potential of our system. 
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Market-based systems are very generic. These systems are not designed around one specific 

type of task and as such have the potential to be customized for any type of task needed by the 

users of the system. This generic nature is also seen in our system. We have been able to create a 

generic autonomous recharging solution that can be used with any type of work task. All that is 

required to create a new work task is to define its cost functions which are used by the system 

to understand the amount of work involved. The details of the execution of the work task are 

abstracted away from the recharging component allowing for its use without modifications. 

A second advantage of market-based systems is their scalability. Other systems need to 

explicitly design for scalability with significant amount of interaction. However, a market-based 

system is self-adapting. The cost of tasks and of each robot’s schedule is dynamic and adapts to 

the number of robots, the number of tasks, and the complexity to the environment. This is the 

reason why this type of system is commonly utilized in dynamic environments. Our system is 

directly impacted by this advantage in that we designed the system without any explicit 

decisions in the name of scalability; rather it is something we received for free. Rather than 

explicitly state the behavior of the recharger once there are more workers than it can service; 

this is solves via the auction mechanism and works regardless of the number of workers or 

rechargers. This is a limitation we found with many existing systems as their conflict-resolution 

strategies quickly broke down with the number of robots. 

Similar to market-based system’s scalability is their ability to run in a distributed fashion and 

the inherent fault tolerance. This system has no central point of failure and no synchronization 

between all robots. If a worker goes down, other workers can pick up its tasks and the 

recharger’s schedules are automatically adjusted for this change. If a recharger goes down, 

worker robots are able to re-schedule their tasks into their original recharger-less schedules.  

 

5.3 | Effectiveness of Our Strategies 

Through our testing, we found that our system continuously outperformed existing systems in 

both metrics of distance and time. We now discuss both metrics in detail along with some 

limitations and considerations. 

Our system outperformed existing threshold strategies under the metric of total distance 

traveled. This was the metric for which we designed our system and the metric for which we 

optimize. We chose this as a good estimate of power usage and work. We also believed that 

there would be some correlation between total distance and time. Our charge-aware strategy 

performed between    to    better than existing approaches with an average of about      

decrease in total distance. This translated to about     less distance on our schedules (Table 8 
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and Table 9). Our mobile recharger approach performed even better with a decrease in distance 

between    and     with an average of      . This represents a decrease of over     in the 

worker’s schedule (Table 8 and Table 9). The mobile recharger approach closely trails the lower 

bound of total distance, represented by the infinite battery approach. This is mainly due to the 

choice of recharging tasks along the worker’s tour. This provides verification that our choice of 

utilizing the mobile recharger in a support role greatly increased the amount of work produced 

by the workers and in turn the group of robots as a whole. 

Our approaches did tend to insert more recharging tasks than previous approaches, but these 

were inserted when it was opportune to do so. Of special note is the second schedule which had 

several non-recharging tasks on the home recharging station. Our approaches chose to take 

advantage of this fact and insert a recharging point close to those tasks. Thus, we gained 

recharging with little to no added distance. However, we can conceive of some repercussions 

for the added number of recharging tasks, further discussed below. 

While our system was designed to optimize for time, we believe that for completeness the 

results should also be examined under the metric to total time. Our systems still managed to 

outperform existing strategies under this metric for the most part, but did so with varying 

improvements. Our assumption of the correlation between distance and time seems to have 

held given our results. The charge-aware strategy saw a gain of    to     using the first 

recharging method. There was one case where the charge-aware strategy performed worse than 

the battery threshold strategy. This is mostly due to the larger number of recharging tasks 

inserted by the charge-aware strategy. Under the second method we saw gains of    to     

(Table 12 and Table 13). The mobile-recharger strategy again exhibited even greater gains than 

the charge-aware strategy. Under the first method we saw a reduction of    to     with an 

average of one minute saved. Under the second method we saw gains of    to     which 

equates to a gain of 4 to 6 minutes (Table 12 and Table 13). This approach does not reach the 

lower bound for time, as it necessitates some recharging, unless the recharging time is 

significantly shortened. Both of our recharging strategies show a significant savings in total 

time. This can be easily translated to potential for more work performed by the group. 

Some would argue that our strategies are less efficient due to their use of more recharging tasks. 

However, since more tasks are inserted at convenient times, less distance is traveled. At the 

same time, since we are recharging with a more full battery than other strategies, our recharging 

times are less. This can be clearly seen by the results, especially how our gains tend to be better 

when the second method is used. A fixed time penalizes our strategies for coming in with non-

empty batteries while a capacity-based time rewards the strategy. 
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Our reasoning for the two recharging methods is their relevance. The main problem we face in 

autonomous recharging is the total time necessary for recharging. This time can be large in 

comparison to the amount of time the robot can spend working. Thus, one solution is similar to 

method 1 which involved the exchanging of batteries. This proves to be efficient use of time but 

significantly more complicated than simple recharging. On the other hand there is method 2 

which involved the recharging of the batteries. This method is simpler and can be achieved by 

almost all modern robotics platforms. It does, however, take a much longer amount of time. We 

believe that as battery and recharging technology improves we will see recharging time become 

less and less of a problem. These are the same problems faced by the automobile industry today 

in their drive for electric car. Both recharging and battery exchanging are being actively 

pursued by that industry as well. 

While outside of the scope of this thesis, we do hope to optimize our schedules for time and will 

further discuss this in our future work section.  

We were very interested in how the approaches scaled with larger and larger schedules. After 

running our tests we saw that our strategies outperformed current threshold approaches at 

every size schedule we tested (Figure 11). We can see a widening gap between our charge-

aware approach and the threshold based approaches as the number of tasks increase. 

One assumption made by our tests was that the entire schedule was known ahead of time and 

thus used for optimization. It is very common to have a very good idea of a robot’s schedule of 

tasks, while this might not be complete knowledge; it is frequently to have good knowledge of 

the next few tasks. Our strategies are particularly well suited for exploiting this future 

knowledge and are able to plan around it. However, in the case that this knowledge is not 

available, it is important to note that our strategies degrade gracefully. The charge-aware 

strategy will match the performance of the distance threshold strategy as it will seek to recharge 

when there is just enough power to reach the recharging station. The mobile recharger strategy 

should still outperform other strategies, even by a small margin; due to its use of mobile 

rechargers that rendezvous worker’s along their paths. 

We did not test with an increasing number of worker robots but we expect the result to be 

similar to those obtained by our experiments. This is due to the fact that each individual robot’s 

schedule can be seen separate from the others and any of these schedules will be better 

optimized by our strategies. Thus, the savings at each robot’s schedule will be multiplied by the 

number of robots present in the group. 

We briefly examined the effect of the chosen threshold on the performance of the battery 

threshold strategy. From our experiments, we saw that there was no significant difference 

between the performances of the smaller working thresholds (Figure 12). However, we did see 
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that there is an optimal threshold for any given set of tasks. The fact that this threshold changes 

depending on the particular tasks makes it very difficult to be chosen. We believe that this is a 

detriment of that strategy as the choice of threshold can significantly affect the performance if 

the threshold is too large or too small. When we tested smaller thresholds, in our case less than 

   , we found that the robot was too greedy and ran out of battery before it could recharge. 

Larger thresholds caused the robot to recharge too early and greatly decreased performance. 

 

5.4 | Effectiveness of Mobile Recharging Agents 

From our testing we saw the substantial decrease in both distance and time afforded by the 

inclusion of mobile rechargers. During our experiments we considered the case of one worker 

and one recharger where the worker had exclusive use of the recharger. As more workers are 

utilized, the mobile recharger will no longer be able to service all of the worker’s requests. As 

this occurs we will see some of the worker’s auctions finishing without bids and the workers 

being forced to go to the home recharging station. However, since the workers still utilize the 

charge-aware strategy their performance will not degrade to that of threshold based strategies. 

Rather, their performance will be somewhere between that of the charge-aware strategy and 

that of the mobile recharger strategy. 

As we increase the number of rechargers, we can again have full coverage of the worker’s 

recharging needs. It is interesting to see what the ratio of rechargers to workers should be for 

equilibrium to be reached and how that varies with tasks.  

Since we do not optimize our tasks in terms of time, we do not place much emphasis or 

reducing the number of recharging tasks in the schedules that use the mobile recharger strategy. 

However, as we turn towards time-based metrics this becomes increasingly important and we 

must place some emphasis on minimizing the number of recharging tasks added to a schedule. 

Since these will again be on the worker’s path, the distance change for the worker is negligible. 

We have chosen to treat the mobile recharger as a support unit and place little emphasis on the 

cost of their schedules. However, we might be introducing inefficiency in our system, whereas 

we might be able to increase the work output of the group as a whole by asking the workers to 

go slightly out of their way. This approach is very complex and has already been examined by 

Litus et al. They have found such solutions to be at least as difficult as the NP-complete 

traveling salesman problem. This might make such solutions intractable for larger sets of tasks. 

 One final simplification we have made in our system is the state of the recharger. We currently 

do not account for the fact that the recharger must itself recharge and how that might affect its 

choice in tasks and locations. We believe that such work can be added as an extension to our 
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current system mainly through the cost functions. In essence, we can also view the mobile 

recharger as being charge-aware and planning its schedule accordingly. The only difference 

would be that the mobile recharger’s work tasks are not point tasks but recharging tasks. 
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6 | Conclusion & Future Work 

We began our work into autonomous recharging motivated by the importance of this topic to 

the field of mobile robotics. An analysis of current approaches led us to the conclusion that 

current systems were too greedy in nature, too near-sighted, exhibited too many edge cases that 

exhibit poor performance, and coordination was always seen as an after-thought. 

We then set out to design a system that utilized all known information to create better schedules 

for all robots. We aimed to have coordination be a real and present part of our whole system 

with scalability as a close goal. 

In general, we believe that our system exhibits a clear advancement in the state of the art for 

autonomous recharging. We are now better able to utilize past, present, and future knowledge 

of the robot’s state and schedule of tasks. Utilizing this knowledge, we are able to create optimal 

recharging schedules which greatly reduce the distance, time, and power used by the robots to 

perform their work. This leads to an increase in the total amount of work performed by the 

group of robots as a whole. 

We also see our implementation as sufficiently generic to be used for any type of task necessary 

for the completion of a group’s goals. The choice of a market-based approach has also given us 

the inherent advantage of ease of scalability. Our system is able to handle a large number of 

workers and mobile rechargers in its current form with no changes and no sacrifice of 

robustness in coordination. 

We see great room for improvement as the work presented here is just the beginning of more 

detailed and complete work. Autonomous recharging is an important and underdeveloped 

topic in robotics. It is a topic that holds much promise for the future and it is currently found in 

its infancy. Our goal is to develop a more complete, more robust, and less limited system. 

With that in mind, we see this research continuing in multiple fronts, as listed below. 

One of the first things we would like to consider is to optimize the robot’s tasks for time. 

Motivated by the results of our distance-optimized schedules, we believe that there is room for 

improvement in terms of time. Such an approach must start with some cost applied to 

recharging time. This will emphasize the need to minimize this time in order to lower the total 

time. This will create systems that are more efficient in their use of power and will only 

recharge the necessary amount for completing scheduled tasks.  

As the mobile recharger’s role increases in importance, it is crucial for our simplifications to be 

removed. Mobile rechargers must also be charge-aware and schedule their own tasks around 
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the very real nature of their finite batteries. We believe that these changes can be reached 

through changes in our existing cost functions. These changes will see the worker’s and 

recharger’s cost functions becoming increasingly similar. 

We found our state estimator to accurate but with room for improvement. We believe that 

excellent state estimation is essential for the optimization of the placement of recharging tasks. 

It is through this estimation that we are able to predict robot conditions and schedule 

accordingly. With the goal of better power estimation in mind we consider the previously-

discarded approach of direct power estimation. We can directly measure the power usage of 

each of the robot’s components. We can then separate a robot’s work tasks into how much 

energy is used per component. Knowing the power capacity of the battery alongside the power 

usage of all components will allow us to better estimate remaining runtime. This approach 

holds promise as it has been used to measure and reduce power consumption of cellular phones 

[16]. We can use a similar approach coupled with marking and automatic recognition of 

batteries. This will allow each robot to store battery usage history and better predict the power 

available with any given battery it uses. 

In the current implementation all distance measurement is done via straight line distances. 

While this works for the simple environments we use for testing, it is an assumption that will 

start to break down as we test on more complex environments. In order to mitigate this, we 

wish to move towards a better distance measurement heuristic such as D* Lite. D* Lite is an 

advanced heuristics-based path planner that is able to provide the shortest paths in 

environments with known obstacles and unknown areas. Utilizing D* Lite, will allow us to use 

our system in any environment currently traversed by mobile robots. 

An important issue not discussed in this research is robot low power states. A robot may find 

itself idle at many times while either waiting for work or waiting for another robot or event. 

Modern computers have sophisticated power management frameworks that allow the system to 

consume little to no power while idle. We believe that such approaches can be extended to 

robotics in order to create robot low power states. In these states, robots will be able to switch 

off computing or sensors as deemed appropriate for the expected idle time. The robots can use a 

Wake-on-LAN mechanism to receiving a signal to leave the low power state. In this way, a 

robot queued for recharging could wait a nearly unbounded amount of time until it could 

recharge. 

Another topic that must be considered by mobile rechargers is the importance of the tasks 

executed by the worker robots. Some robots might be performing mission-critical tasks with 

much higher priority than any other tasks. Mobile robots must be able to recognize and 
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prioritize cases like these. Other issues to consider include the state of the battery of the robot, 

giving preference to robots less likely to make it to the home recharging station. 

One final item for future work is the role of a mobile recharger with multiple capabilities. In 

many systems, including our own, the mobile recharger has capabilities beyond just recharging. 

Our rechargers are also equipped with mapping capabilities. Thus, it might be beneficial at 

times to use these other capabilities while the recharger is mostly idle. Careful consideration 

and costing must be performed in order for this to succeed. This strategy will move a recharger 

from a support role into a worker role. We must take care not to have these roles conflict and 

cause less work to be completed by the group as a whole. 
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