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Abstract

Bayesian theories of the brain have provided insights into perception, but the underlying neural
mechanisms which could implement these computations remains unknown. To perform Bayesian
inference, sensory information must be combined with priorinformation about the natural world.
We investigated how these natural priors could be learned and encoded in populations of neurons in
primary visual cortex. We found that the distribution of neuronal tuning properties for depth-tuned
neurons was very similar to the distribution of depths occurring in natural scenes. This finding
is consistent with the hypothesis that neurons are performing optimal sampling of the natural en-
vironment based on the information maximization principle. By using the priors encoded in the
tuning properties of neuronal populations, we were able to develop a framework for performing
Bayesian inference in the brain.
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Chapter 1

Introduction

1.1 Overview

Numerous psychological studies have shown that human observers are able to optimally integrate
noisy sensory stimuli with prior information and resolve ambiguity [14, 8]. These studies show
that humans can perform optimal Bayesian inference in many tasks, and contexts. However, the
neural mechanisms which underly these computations remains unknown. To perform Bayesian
inference, the brain must store and utilize priors, which encode our prior beliefs, knowledge, and
experience about the world. Here we evaluate the encoding ofprior information in primary visual
cortex, and the role that this prior plays on information encoding.

Before we can adress how priors could be encoded, we must have abetter grasp on the representa-
tions used by neural populations in sensory systems such as primary visual cortex. Sensory systems
in the brain play the crucial role of connecting an individual to the outside world. These systems
have the job of encoding and representing external stimuli by converting analog input (such as
brightness of light on the retina) into binary spiking responses. The set of spiking responses of a
population of neurons is thought of as the neural representation, or neural code for that population.
Understanding what code is used by populations of neurons, and what information they encode
remains an open question in neuroscience. Until we understand how the activity of neurons en-
codes information, we cannot reliably understand the typesof computations being performed by
the brain.

One of the tremendous difficulties in deciphering the neuralcode is the tremendous number and
diversity of neurons in the human brain. The numerous biological cell types, structures, and activity
patterns create an incredibly complex system. Modern recording techniques can only capture a
small fraction of this activity, but these samples of the population can still yield insights into the
properties of the brain. When looking at a small (1mm cube) patch of primary visual cortex, there
still exists a tremendous diversity in neural properties. Some neurons will respond more to colors,
or textures, whereas others will respond to edges, curves, or binocular signals combined from both
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eyes. The diversity in properties makes the neural code muchmore complicated to decipher, but
also allows for a more robust representation of the externalworld[1]. Understanding how this
diversity comes about and how it aids in information coding has proved to be a difficult task.

Through evolution and learning, the brain has developed diverse neural populations which operate
to encode information about the environment. But what principle has guided this learning? In other
words, what is the information that this population is trying to encode, and how does its structure
and diversity aid in achieving that goal? If we can learn whatinformation a population of neurons
is encoding, we will have a better idea of the function the population serves.

Many prior studies have postulated that the function of sensory systems is to provide a maximally
informative representation of the world while limiting energy usage [14, 11, 9]. The classic study
by Olshausen and Field demonstrated that receptive fields inprimary visual cortex (V1) match the
bases learned from independent component analysis of natural images [11]. These learned bases
indicate that the receptive fields of brightness-tuned neurons in primary visual cortex are encoding
a sparse representation of the natural images that maximizes the information content.

However, very little work has gone into relating how other properties of the natural world may
influence the properties of the brain. Here we have attemptedto understand how statistics of
depth in the natural would are related to properties of neurons encoding depth in primary visual
cortex. However depth is not explicitly encoded in visual cortex, but instead is derived from
disparity, which measures the discrepancy between where anobject is projected onto your left eye
and where it is projected onto your right eye. In this thesis,we address the relationship between
disparity in the natural world and the brain, and how priors for disparity could be encoded in neural
populations.

We found that the distribution Fisher information in disparity-tuned neurons was nearly identical
to the distribution of disparities in natural scenes. This result indicates that disparity-tuned neu-
rons in primary visual cortex utilize a representation which maximizes the information about the
stimulus in the external world. Furthermore, this distribution of Fisher information represents an
encoding of prior information in the neural population. This bias in Fisher information may be the
brain’s way of using this prior for Bayesian inference. Further work needs to address what types
of algorithms could utilize this bias in Fisher informationto aid in Bayesian decoding.

We also evaluated the role of temporal dynamics in information encoding, and found that disparity-
tuned neurons increase the information encoded about the stimulus over time. This finding indi-
cates that even in primary visual cortex, populations of neurons are integrating information about
the stimulus over time. Thus low-level cortical areas are not just passively providing feed-forward
input to higher layers, but instead may be playing a larger role in our active perception.

When looking at higher-order statistics, we found no correspondence between the co-occurrence
statistics in natural rangemaps and correlations between neurons. Thus disparity-tuned neurons in
primary visual cortex may not encode these more complex statistical structures.
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1.2 Learning priors from nature

Deriving natural statistics from the environment requiresa dataset which captures the natural
world. Here we analyze 50 rangemaps collected using LIDAR. These images provide a represen-
tative example of the types of visual input present in the natural world. We selected 50 rangemaps
that had resolutions near 22.5 pixels per degree, and maskedout people, cars, and other unnatural
objects. Typical images consisted of trees, shrubs, grass,and other natural objects.

To compare with neural data, we converted the depth from the rangemaps into disparity. This
conversion requires knowledge of where humans fixate in a particular scene. Here we make the
simplifying assumption that a human observer would randomly fixate on any particular pixel in
the rangemap with equal probability. This greatly oversimplifies the human fixation distribution,
but resembles the empirical fixation depth distribution [3]. For each fixation, we can convert the
given depth map into a disparity map. These disparity maps are then a representative example of
the types of inputs that the human visual system would experience.

Using these disparity maps, we can compute basic statisticssuch as the general distribution of
disparities found in natural scenes (histogram), or look atthe pairwise co-occurrence statistics
between certain pixels to learn higher-order structures indisparity.

1.3 Information content of neural populations

Information from the left and right eyes is first combined in the primary visual cortex (V1) to
compute disparity. In V1, large populations of neurons are found that respond preferentially to
certain disparity stimuli [5]. We performed recordings from V1 of an awake behaving monkey
while presenting dynamic random dot stereograms. Each trial contained a binocular movie which
showed a disc at a certain disparity for 1 second. These stimuli are essentially constant disparity
stimulus, and allow us to measure the firing rate of neurons asa function of disparity. Using a
multielectrode array, we were able to simultaneously record from up to 50 disparity-tuned neurons.
These simultaneous recordings allow us to analyze the temporal interactions and dynamics of a
large group of neurons.

Here we were interested in estimating the information content of this disparity-tuned population
of neurons. If the distribution of information contained inthe neural population matches the distri-
bution of disparities contained in natural scenes, then this population of neurons may be following
the information maximization principle.

Directly computing the information contained in a population of neurons is intractable. To reduce
the complexity of the problem, we first assumed that information is contained only in the firing
rate of a neuron over the entire trial, and not in the temporalpattern of spiking activity within the
trial. With this assumption, the mutual information between the stimulus and the neural response
can be computed for small populations. However, we are working with hundreds of neurons and
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must approximate this information metric. Instead of directly estimating mutual information, we
instead estimate Fisher information, which can be used to lower bound mutual information. Fisher
information can be computed analytically from the means andstandard deviations of neural activ-
ity.

However, this approach makes many assumptions about the variability of neural responses and
provides extremely noisy results. Neurons with very low firing rates but steep slopes would pro-
vide peaks in the information, even though their tuning was extremely weak. These “bad” cells
would tend to have predicted Fisher information orders of magnitude higher than the rest of the
population, and would tend to have extremely low firing rates. In typical analyses these types of
cells were thrown out, but we wanted to keep them in the analysis to estimate the information
contained in theentire population.

To cope with this difficulty, we approximated the Fisher information through the Cramer-Rao
bound. The Cramer-Rao bound is an inequality which states thatthe Fisher information is greater
than the inverse of the variance of any estimator. Thus if we can come up with an estimator for
the stimulus (disparity), then we can lower bound the Fisherinformation contained in the neural
population. Any estimator can provide a lower bound, but we seek to saturate the bound to get the
most accurate measure of Fisher information. In hopes of achieving a more accurate approxima-
tion, we tried using a variety of estimators including: Support vector machines, logistic regression,
Bayesian decoding, locally optimal linear estimators, and k-Nearest Neighbors. We found that
SVMs achieved the smallest variance, and used the variance of its estimates to approximate the
Fisher information of the neural population.

We found that the distribution Fisher information in disparity-tuned neurons was nearly identical
to the distribution of disparities in natural scenes. This result indicates that disparity-tuned neu-
rons in primary visual cortex utilize a representation which maximizes the information about the
stimulus in the external world. Furthermore, this distribution of Fisher information represents an
encoding of prior information in the neural population. This bias in Fisher information may be the
brain’s way of using this prior for Bayesian inference. Further work needs to address what types of
algorithms could utilize this bias in Fisher information tooptimally perform Bayesian inference.

1.4 Neural dynamics and correlations

One major flaw in the previous analysis is that spike count data is aggregated over the course of
an entire second. Our perceptual capabilities operate at a much faster speed, and thus must be
supported by a neural code which can perform inference at short timescales [6]. In chapter 3, we
analyzed the information content of our neural population as a function of time. Instead of using
spike counts from entire trials, we analyzed 5 to 50ms bins ofneural activity over the full 1000ms
trial. To model this time-varying neural response we used Generalized linear models (GLMs),
which can be used to represent the response of an individual neuron as a linear combination of
other factors. We used this model to predict the spiking activity of a neuron over time using the
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local field potential as well as the spiking history of other neurons in the population [7]. This model
was able to capture a large deal of the variability in a neuron’s spiking response, and provided
more accurate estimates of the information content of a neural population over time. We also used
the spike-count based techniques by sliding a window over time and normalizing the firing rate.
However, these techniques performed poorly in the temporaldomain due to the complex dynamics
of neurons. In particular, these models fail to capture the refractory period which occurs after a
neuron spikes, and inhibits it from firing again immediately.

In chapter 4, we extend the work on relating natural scene statistics to neural properties by looking
at the second-order statistics of pixel co-occurrence and pairwise correlations. Based on our find-
ings in chapter 2, we anticipated that neural populations may be optimally encoding higher-order
structures such as surfaces and planes in the 3D world. For example, if surfaces are generally
tilted away from the viewer (i.e the ground plane), then neurons which encode the top and bottom
of the visual field may be negatively correlated. To evaluatethis hypothesis, we first computed
co-occurrence statistics from the rangemap data. This allowed us to create a prior over pairs of
disparities, instead of just a single disparity as in chapter 2. To compare this prior with the neural
data, we must estimate the connectivity between each pair ofneurons. An estimate of the connec-
tivity, or coupling strength, between pairs of neurons can be found using the GLM used in chapter
3. The coupling strength provides a measurement of the influence of one neuron on another, but we
cannot know whether these neurons are anatomically connected. We found that there was no cor-
respondence between the predicted correlation derived from the co-occurrence statistics, and the
measured coupling strength determined by the GLM. This finding indicates that disparity-tuned
neurons in primary visual cortex may not encode these statistical structures. Instead, it may be
the job of neurons in higher-level cortical areas to capturethese more complex relationships and
encode the associated priors.
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Chapter 2

Natural and neural priors

2.1 Datasets

2.1.1 Neural Recordings

Information from the left and right eyes is first combined in the primary visual cortex (V1) to
compute disparity. In V1, large populations of neurons are found that respond preferentially to
certain disparity stimuli [5]. We performed recordings from V1 of an awake behaving monkey
while presenting dynamic random dot stereograms. Each trial contained a binocular movie which
showed a disc at a certain disparity for 1 second. These stimuli are essentially constant disparity
stimulus, and allow us to measure the firing rate of neurons asa function of disparity. Using a
multielectrode array, we were able to simultaneously record from up to 50 disparity-tuned neurons.
These simultaneous recordings allow us to analyze the temporal interactions and dynamics of a
large group of neurons.

We recorded from a total of 958 neurons over 12 days. During each day, we presented 11 different
disparities at least 30 times each. For each neuron, we computed the mean firing rate as a function
of the stimulus (disparity) to get tuning curves,fi(s), and we also computed the standard deviation
as a function of the stimulus,σi(s). We then used a 1-way ANOVA withp < 0.05 to select cells
with significant disparity tuning.

We found 202 neurons that were significantly tuned to disparity. For each of these neurons, we fit
Gabors to the tuning curve shape, and looked at the distribution of Gabor parameters for the 202
cells. The distribution of preferred disparities (the center of the Gaussian envelope for the Gabor)
exhibits a strong bias towards 0 disparities with very few neurons outside of±1 degree disparity.

We also found that the variability of these disparity-tunedneurons was higher than typically found
in cortex. In general neurons in cortex are thought to exhibit Poisson-like variability, with a Fano
factor (ratio of the variance over the mean) of around 1. In our dataset we found that the majority
of cells had Fano factors greater than 1, indicating tremendous variability.
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Figure 2.1: Example tuning curve. The x-axis is the stimulus(disparity in degrees) and the y-axis
is the average firing rate of the cell for that particular stimulus. The black points correspond to
measured disparities (with error bars representing two standard deviations), and the green line is
the Gabor fit to this tuning curve.
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Figure 2.2: Distribution of preferred disparities for 202 neurons

We believe this variability is actually due to the dynamic stimuli we are presenting. Over the course
of a trial we are actually presenting 11 slightly different random dot stereograms to elicit a greater
response. The refreshes for each frame of the stimulus moviecauses an increase in the firing rate
of the cell, an introduces more variability into the spike count. For some cells, the refresh of these
frames greatly modulated their firing rate.

2.1.2 Rangemap Images

The database consists of 50 optical images and associated range maps. They have been selected to
have close to 22.5 pixels per degree. People and cars moving through the scene were masked out,
and multiple scans were averaged together for greater accuracy and fewer invalid pixels. These
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Figure 2.3: Distribution of Fano factors for disparity-tuned cells

Figure 2.4: An example neuron who’s mean firing rate over timeis greatly modulated by the
refreshes of the dynamic random dot stereogram stimulus. Each line represents the mean firing
rate over time for one of the 11 different disparity stimuli.

images were taken of “natural” scenes, primarily containing fields, trees, and shrubs. An example
image pair is shown below.
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Figure 2.5: Example image pair from natural image database.The left image shows the optical
intensity image, and the right image contains the depthmap.Cool colors represent nearer points,
and warmer colors represent further points. Regions with no signal, such as the sky, were masked
out from the analyses.

2.1.3 Converting Depth to Disparity

To convert depth from the rangemaps to disparity, we must have an optical model of the human
eye. Using this model, for any fixation point in an image, we can compute the horizontal disparity
for any point in the horizontal plane.

We used the same model as (Liu et al., 2008) which approximates the human eye as a perfect sphere
with its center at its nodal point. The interpupillary distance is assumed to be 0.065m, with nodal
points at(−0.0325, 0, 0) and(0.0325, 0, 0). The observer/camera is assumed to be pointing in the
negative z direction. See Figure 1 in Liu et al., 2008 for a picture (reproduced without permission
below).

Consider some fixation point,F = (xf , yf , zf ). Let Oc be the midpoint between the two eyes
(0, 0, 0). We assume mid-sagittal fixation, that isxf = yf = 0. The distance fromOc to F is
then justzf . We can find the disparity,d, of an arbitrary pointP = (xp, yp, zp), using the following
equations:

d = βr − βl = α− φ

α = 2atan(−0.0325/zf )

φ = atan

(

−xp − 0.0325

zp

)

− atan

(

−xp + 0.0325

zp

)

We need to determine a fixation point in an image before we can compute horizontal disparity.
Thus to determine the distribution over disparity, we first need to decide on which fixation points
to use. Here we make the simplifying assumption that a view isranodmly fixating at any point in
the image with uniform probability. This assumption is not correct, as certain visual features such
as edges are more salient. Future work will need to address this shortcoming.
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Figure 2.6: Optical model of the human eye. Taken from Bovik 2008

Given a fixation point, we can use the equations stated above to compute the horizontal disparity at
any point along the row in which that point belongs in the range image. We can repeat this process
over and over again, randomly sampling fixation points and computing the disparity. We can then
compute a histogram of the disparities to come up with our natural prior over disparities.

The resulting distribution is roughly Laplacian-shaped, with most of its mass concentrated at 0 and
fat tails.

2.2 Connecting Natural Priors to the Brain

Through evolutionary pressures and adaptation, the brain has become optimized to encode its
environment. The statistics and properties of the environment can shape the distribution of neural
responses, but what exactly is this mapping?

In the case of one neuron, Laughlin proposed a simple equal response criteria, where the goal of a
single neuron is to distribute equal regions of its responseto equal probability regions in stimulus
space. In the case of a population, one might expect that the population response should contain as
much informatoin as possible about the stimulus. Furthermore, we may want to allocate more re-
sources to stimuli which have a higher probability of occuring, and less resources to stimuli which
have a lower probability. This intuition of allocating resources proportional to a prior distribution
has showed up in a variety of fields, from vector quantizationin electrical engineering to impor-
tance sampling in statistics. What this means for a population of neurons is that they would choose
to have more neurons encoding regions of high probability. If we think of the preferred disparity

11



Figure 2.7: Example of computing disparity from a fixation point. The red square in the range
image represents the current fixation point. We can then select the depth data to the left and
right of the fixation point and use it to compute the distribution over disparity as a function of the
eccentricity (horizontal distance in degrees) from the fixation point.

(the point of maximum slope or maximum firing rate) for a particular neuron as the resource which
it encodes, then we may expect the distribution of preferreddisparities to match the distribution
of disparities in natural scenes. When we superimpose these distributions, we see that they are
somewhat consistent but do not match well.

The problem with this approach is that it assumes that a neuron only encodes information at its
preferred disparity. However, the flanks of a neuron’s tuning curve can also encode a great deal
of information! Knowing that a neuron is not firing tells you that the stimulus is not at its peak.
Thus if we want to measure information in a neural populationwe will need to use a more global
metric.
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Figure 2.8: Distribution of disparities in natural scenes.Most disparities are near 0, with less mass
concentrated in the tails.

Figure 2.9: Scene statistics distribution superimposed onthe distribution of preferred disparities
from the neural population. We see that the yare similar in their over-representation of 0 but do not
match very well

2.3 Information content of neural populations

To assess the performance of a decoding algorithm, we would like to know how close it is to the
optimal decoder. If a decoder can recover all the information contained in a neural population
about the stimulus, then it is said to be optimal. The information stored in a neural population thus
provides a bound on how accurately we can decode. Similarly,we can use an optimal decoder to
estimate the information content of a neural population [10, 12].

Due to noise in the stimulus as well as the encoding process inthe brain, the spike counts for a
neuron on any particular trial will vary. These noisy spike counts will in turn lead to noisy estimates
of the stimulus. To quantify the performance of a decoding algorithm, we can look at the mean
square error (MSE), which measures the squared difference between the estimated stimulus value
and the true stimulus value. This MSE term can be decomposed as the sum of two quantities: bias
and variance. The bias term measures the difference betweenthe mean estimate of the stimulus
and the true stimulus, and reflects systematic errors in the decoder which always over or under-
estimate the stimulus value. The variance term measures hownoisy the estimated stimulus value
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is between trials. Ideally the bias should be 0 and the variance should be as small as possible. This
would imply that the stimulus estimate was always close to the true stimulus value.

The variance term can be related to Fisher information via the Cramer-Rao bound. Fisher infor-
mation is defined as the expected value of the derivative of the log-likelihood function squared:

J(s) = E

(

(

∂

∂s
logP (r|s)

)2

| s

)

wherer is the random vector of spike counts, ands is the stimulus value. The Fisher information,
J(s), is a function of the stimulus and measures the amount of information thatr encodes abouts.
Fisher information is related to discriminability, mutualinformation, and the variance of estimators
[4]. Here we are interested in the Cramer-Rao bound, which specifies that the smallest variance that
any unbiased estimator,ŝ = T (r), can achieve is inversely proportional to the Fisher information:

Var(ŝ) ≥
1

J(s)

If ŝ is biased, whereb(s) = E (ŝ)− s, then the bound becomes:

Var(ŝ) ≥
(1 + b′(s))2

J(s)

Given the Fisher information we can compute the smallest variance of any estimator. However, we
can also use this bound to compute the Fisher information. Given any unbiased estimator,ŝ, we
know that:

J(s) ≥
1

Var(ŝ)

Thus the variance of any esimator provides a lower bound on the FIsher information. If we have
a non-optimal estimator, then it’s variance will be greaterthan the minimal variance, and the pre-
dicted Fisher information will be smaller. One can thus try using a multitude of estimators, and
use the one with the lowest variance to bound Fisher information. This technique for estimating
information has been used in a variety of papers and allows one to avoid analytically computing
the Fisher information [2, 13].

2.3.1 Analytical Computation of Fisher information

If we assume that the neural response variability for a particular stimulus,rs, is drawn from a
simple distribution then the Fisher information can be computed analytically.

For independent Gaussian variability, the Fisher information can be computed from the tuning
curves (fi) as:

J(s) =
N
∑

i=1

f ′

i(s)
2

σi(s)2
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For independent Poisson variability, this reduces to:

J(s) =
N
∑

i=1

f ′

i(s)
2

fi(s)

Additionally, for the case of correlated Gaussian variability (population response has a multivariate
Gaussian distribution) we have:

J(s) = f ′(s)TΣ−1(s)f ′(s) +
1

2
Trace

(

Σ′(s)Σ−1(s)Σ′(s)Σ−1(s)
)

wheref(s) is a column vector of tuning curve means, andΣ is the covariance matrix.

These equations for the Fisher information all require the computation of the derivative of the
tuning curves. As we only have discrete points, we need to somehow estimate the form of the
tuning curve to get the derivative. I’ve tried three different approaches:

1. Linear interpolation between points,f ′(s) = f(s+δ)−f(s−δ)
2δ

2. Cubic interpolation between points

3. Gabor fit of tuning curve, which has a closed form solution for the derivative

The first two approaches, linear and cubic interpolation, would often lead to values of the Fisher
information which were far too high. The derivative would bemuch greater than the variance, and
the Fisher information for that particular cell would be orders of magnitude higher than the rest of
the population. These bad cells tended to be ones with low mean firing rates, but having a “noisy”
peak at some disparity, so the variance is low but the derivative is reasonably high.

Using the Gabor fits led to a more stable result, but many of ourcells are not Gabor-like. So the
mean firing rate and the derivative were fairly inaccurate compared to the data.

For the multivariate Gaussian case, we have to compute both the covariance matrix and the deriva-
tive of the covariance matrix. This requires fitting a tremendous number of paramaters with a
relatively small amount of data. The covariance matrices are almost certainly overfitting, and we
need to interpolate these covariance matrices to get estimates of derivatives (as well as the co-
variance matrix at points which were not tested). The resulting Fisher information was sharper
compared to the independent case.

Thus assuming response variability and estimating Fisher information analytically led to very un-
stable results. This is most lkely due to the incorrect assumptions of the form of the response
variability.

2.3.2 Estimating Fisher information

Due to the instability of the analytical approach, we decided to estimate the Fisher information
using the Cramer-Rao bound described earlier. I used a varietyof regression and classification
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techniques to predict the stimulus value from the neural response, and computed the estimated
Fisher information as the inverse of the variance of the estimates. The final estimated Fisher
information was the technique which

The first technique I tried was simple maximum likelihood decoding. If we assume some form of
neural response variability, such asr ∼ N(f(s), σ(s)), then we can find the stimulus value which
maximizes the likelihood. For computing the Fisher information at one particular disparity, I first
computed the mean and variance of the tuning curve for each neuron from 29 out of 30 trials. The
mean and variance of the tuning curves were then used to do maximum likelihood decoding on the
remaining trial. If we repeat this for each of the 30 trials, we get 30 different estimates of the true
stimulus, one for each trial. The inverse of the variance of these estimates is then the approximate
Fisher information. The actual computations are:

ŝ = argmin
s

P (r|s)

= argmin
s

∏

i

P (ri|fi(s), σi(s))

J(s) ≈
1

Var(ŝ)

In order for this to be an accurate estimate of Fisher information, the estimator must be close to
efficient (lowest variance unbiased estimator). Our estimate of Fisher information gives a lower
bound on the true Fisher information, but I’m not sure how close we are to saturating that bound.
If we are close, then our estimate is good, if not, then our estimate could be awful. To verify
that the MLE was close to optimal, we tried a variety of other classifiers includingk-NN, logistic
regression, ridge regression, and SVMs. We found that SVMs provided the best results, but only
increased Fisher information by about 10%,thus we used the MLE results for our estimated Fisher
information as the distribution of information was similaracross multiple recording days.

The final estimated Fisher information matches the scene statistics disparity distribution extremely
well. It has fat tails, unlike the distribution of preferreddisparities, and has a similar shape near
0 disparity as well. Thus the information encoded in disparity-tuned neurons in V1 is propor-
tional to the prior distribution over disparity in the natural world. This finding is consistent with
the information maximizatoin principle proposed by Barlow and the recent theoretical work by
Simoncelli’s group.

The correspondence between Fisher information and the natural prior is much better than between
the preferred disparity distribution and the natural prior. Incorporating more global properties of
the tuning curve instead of just the peak location was the keyreason for these results. We believe
that more neural data analysis needs to take advantage of global metrics of information instead of
simply looking at the distribution of properties of individual tuning curves.
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Figure 2.10: Fisher information as a function of disparity.The green line is the disparity distri-
bution derived from the rangemaps. The black line is the normalized Fisher information derived
from 11 days of neural recordings. Standard error bars computed using bootstrapping.

2.4 Effect on Neural Representations

Although we have identified that the distriubtion information in the neural population is propor-
tional to the scene statistics distribution, we have not yetdetermiend how this bias effects neural
representations. To evaluate the role of this information bias on neural coding, we performed max-
imum likelihood decoding using the probabilistic population code framework. This framework
argues that populations of neurons are not estimating a single estimate of the stimulus, but are
instead representing a probability distribution over stimulus space. Thus neural activity is able
to encode estimates of the stimulus as well as the certainty associated with that estimate. Being
able to encode uncertainty allows one to optimally combine noisy stimuli and perform Bayesian
inference. Recent research has shown that under certain assumptions, inference using probabilis-
tic population code only requires adding together the responses from different neural populations
[10].

For each trial, we computed the posterior distribution overthe stimulus given the neural response
we observed during that trial. We then computed the geometric mean of these posterior distribu-
tions to identify the typical shape of the posterior distribution for that particular stimulus. We found
that near 0 disparity, the posterior distributions were sharp, indicating a high degree of certainty in
the estimate. At more distal disparities, the posterior distributions were generally wider, indicating
less certainty. Thus it seems as though the distributions represented by these neural populations
are able to incorporate the bias in Fisher information to represent uncertainty.
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Figure 2.11: Top: Posterior distribution for 30 individualtrials from a disparity stimulus of 0.
Bottom: Geometric mean of posterior distributions over 30 trials for each of the 11 disparities.
Note that the posteriors near 0 are sharper, while more distal disparities have a broader posterior.
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Chapter 3

Second-order statistics

3.1 Overview

Given that the first-order statistics of disparity are reflected in the Fisher information of the neu-
ral population, we were interested in evaluating whether the second-order statistics from natural
scenes were also encoded neural populations. One potentialway for these interactions to be en-
coded is in the correlated activity of neurons. If certain disparities are more likely to co-occur than
others, then the neurons encoding these disparities might have stronger connectivities. This con-
nectivity could be learned through a Hebbian-like learningrule where neurons firing at a similar
time would grow stronger connections. To evaluate this hypothess, we first needed a framework
to estimate connectivity between pairs of neurons. We applied aL1-regularized pairwise MRF to
model the neural data and estimate these connectivities.1

3.2 Markov Random Fields

One way to understand the dependencies between action potential activity, or firing, of one neuron
with those of its neighbors is to treat each neuron as a node ina graphical model and model the
interactions between nodes using a Markov Random Field (Schneidman et al. 2006; Truccolo,
Hochberg, and Donoghue 2010). The activity of each of the neurons is collapsed across time into
discrete time bins (Figure 1). If a neuron fires in a particular bin, it is registered as a ‘1’ and ‘0’
otherwise; so the firing of all the neurons within a time bin constitutes a binary word.

We modeled the probability distribution over these binary strings using a MRF. The MRF frame-
work presents a way to represent these complex patterns in a compact form. These models can
capture a variety of complex interactions, such as correlations due to common input. An example
of a learned MRF from a group of neurons with common input should have edges between neurons

1The majority of this chapter was completed as a final project for 10-708 with Shreejoy Tripathy.
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Figure 3.1: Example neural data and discretization into bins. a) Spiking data for 50 neurons. Each
tick mark represents the time of an action potential, and each row represents spiking data for one
neuron over time.b) Discretization of neural data into binary strings. The greylines represent the
extent of the time bins (20ms).c) The activity of each neuron is converted to a binary string which
is 1 if the corresponding neuron has at least one action potential within the bin and 0 otherwise.

sharing common input (Figure 2). The presence of these edgesand connections could be used to
better understand the relationships and structures among neurons in large populations.

Prior studies have fit MRFs using exact methods on groups of neurons of size≈ 10. They found
that 2nd but not 1st order MRFs were required to fit neuronal data collected from more simple
brain regions, like the eye (Schneidman et al. 2006). More recently, other groups have found
that 3rd order MRFs were required to represent the distributions collected from data from monkey
visual cortex (Ohiorhenuan et al. 2010). However, these results were based solely on the results
on training data. To our knowledge, no group has compared test set accuracy using this technique.
It is possible that these higher order models are just overfitting the data and that 3rd order models
are not required for modeling neural activity. In this project, we attempted to answer this question
as well as provide insights into scaling these models up to larger network structures.

3.3 Complexity of Neural Connectivity

To evaluate the complexity of the factors we needed to model neural activity, we looked at a large
number of small subgroups of neurons. From the 50 neurons that we recorded, we randomly
formed 500 groups of 10 neurons each and fit MRFs for each group.We used the maximum
entropy toolbox provided with the SciPy Python distribution to perform the parameter estimation.
Specifically we fit fully-connected 1st, 2nd and 3rd order models using 80% of the data, and then
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Figure 3.2: Example network and MRF structure.a) Hypothetical neural network with unobserved
common input influencing activity in recorded neurons. These common inputs cause correlated
activity in the recorded data.b) Possible recovered MRF from neural data which has learned edges
between nodes that share common input.

tested these models on the remaining 20% of the data. We evaluated these models by comparing
the probability distribution derived from the data with theprobability distribution encoded by the
trained model. We used the Jensen-Shannon Divergence to measure the dissimilarity between these
two distributes. JS-divergence is a normalized measure of the difference between two distributions:

DJS(P,Q) =
DKL (P ||M) +DKL (Q||M)

2
(3.1)

whereM = (P +Q)/2

When the JS-divergence is small, the probability distributions are similar, and we say that error is
small. When the JS-divergence is large, the probability distributions are more distinct and we say
that the error is large.

We first looked at training set error, which has been the primary metric in evaluating models in
neuroscience. Our results were qualitatively similar to those from prior studies. Third order models
had the lowest training set error followed by 2nd and 1st order models (Figure 3a, 4a). These
results are consistent with the idea that higher order models are able to represent a larger number
of probability distributions than lower order models.

When considering testing set error (JS-divergence), we found that while the 3rd order model had
the lowest error, the relative difference between the 3rd and 2nd order models was small (Figure
3b, 4b). Furthermore, for 22% of the 500 subsamplings of the 10 neuron groups, the test error
was lower for the 2nd order model than the 3rd order model (Figure 5) despite the fact that the 3rd
order models had lower training error. This is one indication that the third-order models may be
overfitting the training data and may not be required. Another indication of overfitting is that the
space of all second order models is a subset of the space of allthird order models. Thus any third
order model can represent any second order model by just setting third order cliques to be 1. So
when the second order model is better, it is likely that the third order model is overfitting.

Our findings indicate that a first order model is not sufficientfor modeling the activity of groups
of neurons in primary visual cortex. This result makes senseas these neurons share common input

21



10
−5

10
0

10
−10

10
−5

10
0

Actual probability (train)

M
o

d
e

l−
P

re
d

ic
te

d
 p

ro
b

a
b

il
it

y

10
−5

10
0

10
−10

10
−5

10
0

Actual probability (test)

M
o

d
e

l−
P

re
d

ic
te

d
 p

ro
b

a
b

il
it

y

a

b

1st order

2nd order

3rd order

Figure 3.3: Scatter plots of true vs. predicted probabilitydistributions. Each point represents the
probability of one of210 binary patterns in the samplespace. The black line indicates the unity
line. Points which deviate from the unity line indicate a difference between the predicted and true
probability of a pattern. Colors indicate the order of model:first, second, third (blue, red, green
respectively).a) true probability based on training data.b) true probability based on testing data.

from other groups of neurons which would correlate them. Thesecond and third order models
performed similarly, although the third order model was slightly better. Despite this slight increase
in performance, we decided to stick with the second order models for two reasons. The first reason
for using the second order model was computational tractability. Including all third order factors in
our networks tremendously slowed down computation and we did not believe it would be feasible
to use them in large networks. Our second reason for not usingthird order models is that they are
not biologically plausible. The types of connections and interactions between neurons in the brain
are thought to only include pairs of neurons communicating,and not triplets. Additionally, prior
work in our research lab using iterative proportional scaling has shown that third order interactions
are not present in this data (unpublished). For these reasons we decided to exclusively utilize
second order models for fitting larger networks.
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tribution for 2nd and 3rd order models. Each of the 500 pointsrepresents one 10-neuron subsam-
plings.

3.4 Using regularization to learn sparse MRFS for large net-
works

We were interested in extending the framework we used on the 10-neuron networks to larger groups
of neurons. However, these larger models would have a much greater number of parameters (O(n2)
for the pairwise models) which would be difficult to fit with our limited dataset. To help prevent
overfitting we tried to add anL1 penalty on the values of the factors. We encountered a number
of problems with extending our previous framework in Python. We were not able to achieve
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convergence using a number of different gradient-based techniques which led to fitting the models
being extremely slow.

Due to time constraints and the slowness of our Python implementation, we decided to investi-
gate other frameworks for fittingL1-regularized MRFs. We found that the UGM Matlab tool-
box (www.cs.ubc.ca/ schmidtm/Software/UGM.html) provided most of the tools we
needed to learn these models. After porting our Python code to Matlab, We were finally able
to learn the parameters ofL1-regularized MRFs using loopy belief propagation and the UGM
toolbox’s projected quasi-Newton algorithm for constrained optimization. This framework also
allowed us to place a groupL1 penalty on the edge parameters instead of on all the parameters
individually. The regularized objective function we optimized was:

min
w,v

− logP (X|w, v) + λ1

∑

g

||vg||1

Herew are the parameters associated with nodes,v are the parameters associated with edges,g
represents the groups (1 for each edge in the model) andvg is the set of edge parameters associated
with groupg.

We learned MRFs for 3 different conditions: 1. a model with a first order structure (no edges); 2. a
model with a fully connected second order structure; 3. a second order model with sparse structure
learned through a groupL1 regularization among factors associated with an edge. We hoped that
by enforcing anL1 penalty, the edges which remained after regularization would be those which
were most essential and reflect the conditional independence assumptions inherent in the data. For
each model, we divided the data into 80% training data and 20%testing data, and performed 5-fold
cross validation on the training data to learn the models.

To assess the performance of each model we used a conditionaldecoding scheme where we com-
puted the conditional spiking probability of a single neuron given the spiking of all other neurons
as evidence. For each testing example we computed the conditional spiking probability for every
node in the graph and averaged errors over nodes. We used two error metrics: 1. a simple MAP
based decoding accuracy; 2. the predictive power computed as the area under the ROC curve of
the conditional spiking probability (Figure 6).

3.5 Large network results

We found that with both decoding metrics the fully connected2nd-order andL1 models outper-
formed the 1st order model (Table 1). Interestingly, while the full andL1 models had similar levels
of decoding accuracy the penalized model had substantiallyfewer edges. These findings indicate
that many of the edges which are retained in the fully connected model are unnecessary and can be
removed by regularization with little to no detriment in decoding accuracy. This is also indicated
by theL1 regularization path (Figure 7).
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Figure 3.7: Regularization path for cross-validated dataset. Numbers indicate the number of edges
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We further studied which edges between neurons remain in thegraph following regularization. We
found that with smallL1 penalties, the graph was almost fully connected with neurons connected
to others large physical distances away. By increasing the penalty, the edges which remained were
between neurons in close proximity with one another (Figure8). This result is precisely in line
with published anatomical studies (Ohiorhenuan et. al 2010). Thus our methodology is exciting in
that it may serve as a novel way to recover the underlying biological circuitry using data collected
in this fashion.

3.6 Discussion

Our work has shown that MRFs provide a viable framework for analyzing neural activity. In small
networks, we were able to use MRFs to evaluate the required complexity needed to model our
the activity of groups of neurons. We found that while first order models were not sufficient,
second and third order models provided a good match to the data. However, the third order models
required a much greater computational cost, and could not plausibly be fit into biological models
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Table 3.1: Final model results on a 49-neuron network for decoding accuracy, predictive power,
and number of edges.

MODEL ACCURACY POWER EDGES

1ST ORDER 48.70% 0.00 0
2ND ORDER 64.41% 0.37 1176
L1 64.34% 0.39 867

of the brain.

By usingL1 regularization we were able to apply MRFs to larger networks of 50 neurons. Al-
though usingL1 regularization did not improve the accuracy of our models when compared to full
models, it did greatly reduce the number of edges in the learned networks. This reduction in edges
tremendously reduced the computational complexity required in fitting and performing inference
on these models. In the future, we hope to use these sparser networks to perform more interesting
inference queries in groups of neurons.

Using theL1 penalty to increase the sparsity of our networks, we found that the edges which re-
mained in the network were those with shorter lengths. This finding indicates that the important
connections in our neural networks are between neurons in close proximity. Biological studies
have also found that connections between neurons are primarily local, with very few long-range
connections (Ohiorhenuan et al. 2010). We believe that using L1 regularization not only to se-
lect the best model, but also to select the best edges could help in understanding the underlying
connectivity among neurons in the brain.
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Chapter 4

Conclusions

See: Introduction.
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