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Abstract

Bayesian theories of the brain have provided insights intoggion, but the underlying neural
mechanisms which could implement these computations resnaiknown. To perform Bayesian
inference, sensory information must be combined with pn@armation about the natural world.
We investigated how these natural priors could be learnd@aooded in populations of neurons in
primary visual cortex. We found that the distribution of renal tuning properties for depth-tuned
neurons was very similar to the distribution of depths ogogrin natural scenes. This finding
is consistent with the hypothesis that neurons are perfayroptimal sampling of the natural en-
vironment based on the information maximization principBy using the priors encoded in the
tuning properties of neuronal populations, we were ableeteelbp a framework for performing

Bayesian inference in the brain.
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Chapter 1

| ntroduction

1.1 Oveview

Numerous psychological studies have shown that human\arseare able to optimally integrate
noisy sensory stimuli with prior information and resolvelaguity [14,[8]. These studies show
that humans can perform optimal Bayesian inference in maskstand contexts. However, the
neural mechanisms which underly these computations remaiknown. To perform Bayesian
inference, the brain must store and utilize priors, whictogie our prior beliefs, knowledge, and
experience about the world. Here we evaluate the encodipgafinformation in primary visual
cortex, and the role that this prior plays on informationaaing.

Before we can adress how priors could be encoded, we must tmateeagrasp on the representa-
tions used by neural populations in sensory systems suaimaarg visual cortex. Sensory systems
in the brain play the crucial role of connecting an indivibieathe outside world. These systems
have the job of encoding and representing external stimukdnverting analog input (such as
brightness of light on the retina) into binary spiking respes. The set of spiking responses of a
population of neurons is thought of as the neural repregentar neural code for that population.
Understanding what code is used by populations of neurarswdoat information they encode
remains an open question in neuroscience. Until we undetdtaw the activity of neurons en-
codes information, we cannot reliably understand the tgfeomputations being performed by
the brain.

One of the tremendous difficulties in deciphering the necoale is the tremendous number and
diversity of neurons in the human brain. The numerous bioldgell types, structures, and activity
patterns create an incredibly complex system. Modern deagrtechniques can only capture a
small fraction of this activity, but these samples of the ydapon can still yield insights into the
properties of the brain. When looking at a small (Lmm cube&jtpat primary visual cortex, there
still exists a tremendous diversity in neural propertiesm8 neurons will respond more to colors,
or textures, whereas others will respond to edges, curvésnocular signals combined from both



eyes. The diversity in properties makes the neural code rmarle complicated to decipher, but
also allows for a more robust representation of the extenmald[1]. Understanding how this
diversity comes about and how it aids in information codiag proved to be a difficult task.

Through evolution and learning, the brain has developegrgé/neural populations which operate
to encode information about the environment. But what ppilednas guided this learning? In other
words, what is the information that this population is tyte encode, and how does its structure
and diversity aid in achieving that goal? If we can learn whetrmation a population of neurons
is encoding, we will have a better idea of the function theypajon serves.

Many prior studies have postulated that the function of @gnsystems is to provide a maximally
informative representation of the world while limiting egg usagel[14, 11.,/9]. The classic study
by Olshausen and Field demonstrated that receptive fieloismmary visual cortex (V1) match the
bases learned from independent component analysis ofahanages|[11]. These learned bases
indicate that the receptive fields of brightness-tuned oresim primary visual cortex are encoding
a sparse representation of the natural images that maxdrtiizenformation content.

However, very little work has gone into relating how otheogerties of the natural world may
influence the properties of the brain. Here we have attemymathderstand how statistics of
depth in the natural would are related to properties of nesiencoding depth in primary visual
cortex. However depth is not explicitly encoded in visuaitew, but instead is derived from
disparity, which measures the discrepancy between wheobjant is projected onto your left eye
and where it is projected onto your right eye. In this thesis,address the relationship between
disparity in the natural world and the brain, and how priargdisparity could be encoded in neural
populations.

We found that the distribution Fisher information in dispatuned neurons was nearly identical

to the distribution of disparities in natural scenes. Tleisult indicates that disparity-tuned neu-
rons in primary visual cortex utilize a representation vahmcaximizes the information about the

stimulus in the external world. Furthermore, this disttibn of Fisher information represents an

encoding of prior information in the neural population. Fhias in Fisher information may be the

brain’s way of using this prior for Bayesian inference. Farttvork needs to address what types
of algorithms could utilize this bias in Fisher informatitmaid in Bayesian decoding.

We also evaluated the role of temporal dynamics in inforame¢incoding, and found that disparity-
tuned neurons increase the information encoded aboutithalgs over time. This finding indi-
cates that even in primary visual cortex, populations ofroesi are integrating information about
the stimulus over time. Thus low-level cortical areas argumt passively providing feed-forward
input to higher layers, but instead may be playing a largkeriroour active perception.

When looking at higher-order statistics, we found no comesience between the co-occurrence
statistics in natural rangemaps and correlations betweerons. Thus disparity-tuned neurons in
primary visual cortex may not encode these more compleisstat structures.



1.2 Learning priorsfrom nature

Deriving natural statistics from the environment requieeslataset which captures the natural
world. Here we analyze 50 rangemaps collected using LIDARSEhHmMages provide a represen-
tative example of the types of visual input present in therztvorld. We selected 50 rangemaps
that had resolutions near 22.5 pixels per degree, and maskgxtople, cars, and other unnatural
objects. Typical images consisted of trees, shrubs, gaasispther natural objects.

To compare with neural data, we converted the depth fromahgamaps into disparity. This
conversion requires knowledge of where humans fixate in ticpdar scene. Here we make the
simplifying assumption that a human observer would rangdimhte on any particular pixel in
the rangemap with equal probability. This greatly overdifigs the human fixation distribution,
but resembles the empirical fixation depth distribution [Bdr each fixation, we can convert the
given depth map into a disparity map. These disparity mapshen a representative example of
the types of inputs that the human visual system would egpee.

Using these disparity maps, we can compute basic statsiics as the general distribution of
disparities found in natural scenes (histogram), or lookhatpairwise co-occurrence statistics
between certain pixels to learn higher-order structureisparity.

1.3 Information content of neural populations

Information from the left and right eyes is first combined e tprimary visual cortex (V1) to

compute disparity. In V1, large populations of neurons axndl that respond preferentially to
certain disparity stimuli[[5]. We performed recordingsrrd/1 of an awake behaving monkey
while presenting dynamic random dot stereograms. Eadhctirdained a binocular movie which
showed a disc at a certain disparity for 1 second. These bt@mauessentially constant disparity
stimulus, and allow us to measure the firing rate of neurores fasction of disparity. Using a

multielectrode array, we were able to simultaneously rémm up to 50 disparity-tuned neurons.
These simultaneous recordings allow us to analyze the texhperactions and dynamics of a
large group of neurons.

Here we were interested in estimating the information aundé this disparity-tuned population

of neurons. If the distribution of information containedine neural population matches the distri-
bution of disparities contained in natural scenes, thengbpulation of neurons may be following
the information maximization principle.

Directly computing the information contained in a popwatdf neurons is intractable. To reduce
the complexity of the problem, we first assumed that inforomats contained only in the firing
rate of a neuron over the entire trial, and not in the tempaaitern of spiking activity within the
trial. With this assumption, the mutual information betweke stimulus and the neural response
can be computed for small populations. However, we are wgriith hundreds of neurons and



must approximate this information metric. Instead of diseestimating mutual information, we
instead estimate Fisher information, which can be usediterdound mutual information. Fisher
information can be computed analytically from the meansstaddard deviations of neural activ-

ity.

However, this approach makes many assumptions about tiebwidy of neural responses and

provides extremely noisy results. Neurons with very lownfirrates but steep slopes would pro-
vide peaks in the information, even though their tuning weseenely weak. These “bad” cells

would tend to have predicted Fisher information orders ofnitade higher than the rest of the
population, and would tend to have extremely low firing ratestypical analyses these types of
cells were thrown out, but we wanted to keep them in the arsatpsestimate the information

contained in thentire population.

To cope with this difficulty, we approximated the Fisher mfation through the Cramer-Rao

bound. The Cramer-Rao bound is an inequality which stateshbdtisher information is greater

than the inverse of the variance of any estimator. Thus if are @me up with an estimator for

the stimulus (disparity), then we can lower bound the Fishirmation contained in the neural

population. Any estimator can provide a lower bound, but aekgo saturate the bound to get the
most accurate measure of Fisher information. In hopes aéeicly a more accurate approxima-
tion, we tried using a variety of estimators including: Sogiwector machines, logistic regression,
Bayesian decoding, locally optimal linear estimators, aridelarest Neighbors. We found that
SVMs achieved the smallest variance, and used the varidnte estimates to approximate the
Fisher information of the neural population.

We found that the distribution Fisher information in dispatuned neurons was nearly identical

to the distribution of disparities in natural scenes. Tleisult indicates that disparity-tuned neu-
rons in primary visual cortex utilize a representation vahicaximizes the information about the

stimulus in the external world. Furthermore, this disttibn of Fisher information represents an

encoding of prior information in the neural population. Jhias in Fisher information may be the

brain’s way of using this prior for Bayesian inference. Farttvork needs to address what types of
algorithms could utilize this bias in Fisher informationaptimally perform Bayesian inference.

1.4 Neural dynamicsand correlations

One major flaw in the previous analysis is that spike courd gatggregated over the course of
an entire second. Our perceptual capabilities operate aich fiaster speed, and thus must be
supported by a neural code which can perform inference at shwescales/[6]. In chapter 3, we
analyzed the information content of our neural populatism dunction of time. Instead of using
spike counts from entire trials, we analyzed 5 to 50ms binseafal activity over the full L000ms
trial. To model this time-varying neural response we useddgaized linear models (GLMs),
which can be used to represent the response of an indivicuabn as a linear combination of
other factors. We used this model to predict the spikingvagtof a neuron over time using the



local field potential as well as the spiking history of otheurons in the population|[7]. This model
was able to capture a large deal of the variability in a nearspiking response, and provided
more accurate estimates of the information content of aah@apulation over time. We also used
the spike-count based techniques by sliding a window owvee &and normalizing the firing rate.
However, these techniques performed poorly in the templanalain due to the complex dynamics
of neurons. In particular, these models fail to capture #feactory period which occurs after a
neuron spikes, and inhibits it from firing again immediately

In chapter 4, we extend the work on relating natural scerissta to neural properties by looking
at the second-order statistics of pixel co-occurrence anvjse correlations. Based on our find-
ings in chapter 2, we anticipated that neural populationg peaoptimally encoding higher-order
structures such as surfaces and planes in the 3D world. Fon@e, if surfaces are generally
tilted away from the viewer (i.e the ground plane), then naarwhich encode the top and bottom
of the visual field may be negatively correlated. To evaluhie hypothesis, we first computed
co-occurrence statistics from the rangemap data. Thisvatlaus to create a prior over pairs of
disparities, instead of just a single disparity as in chaptelo compare this prior with the neural
data, we must estimate the connectivity between each pagwbns. An estimate of the connec-
tivity, or coupling strength, between pairs of neurons cafdund using the GLM used in chapter
3. The coupling strength provides a measurement of the mfkief one neuron on another, but we
cannot know whether these neurons are anatomically cogshedte found that there was no cor-
respondence between the predicted correlation derivenl fin@ co-occurrence statistics, and the
measured coupling strength determined by the GLM. Thisrigaindicates that disparity-tuned
neurons in primary visual cortex may not encode these statistructures. Instead, it may be
the job of neurons in higher-level cortical areas to capthese more complex relationships and
encode the associated priors.



Chapter 2

Natural and neural priors

2.1 Datasets

2.1.1 Neural Recordings

Information from the left and right eyes is first combined e tprimary visual cortex (V1) to

compute disparity. In V1, large populations of neurons axenfl that respond preferentially to
certain disparity stimuli[[5]. We performed recordingsrrd/1 of an awake behaving monkey
while presenting dynamic random dot stereograms. Eadhctirdained a binocular movie which
showed a disc at a certain disparity for 1 second. These b@maiessentially constant disparity
stimulus, and allow us to measure the firing rate of neurores fasction of disparity. Using a

multielectrode array, we were able to simultaneously ré@m up to 50 disparity-tuned neurons.
These simultaneous recordings allow us to analyze the texhpderactions and dynamics of a
large group of neurons.

We recorded from a total of 958 neurons over 12 days. Durich day, we presented 11 different
disparities at least 30 times each. For each neuron, we dechfhe mean firing rate as a function
of the stimulus (disparity) to get tuning curvess), and we also computed the standard deviation
as a function of the stimulus;(s). We then used a 1-way ANOVA with < 0.05 to select cells
with significant disparity tuning.

We found 202 neurons that were significantly tuned to digpafor each of these neurons, we fit
Gabors to the tuning curve shape, and looked at the distiibof Gabor parameters for the 202
cells. The distribution of preferred disparities (the ezrmtf the Gaussian envelope for the Gabor)
exhibits a strong bias towards 0 disparities with very fewroas outside of-1 degree disparity.

We also found that the variability of these disparity-tunedirons was higher than typically found
in cortex. In general neurons in cortex are thought to exfbisson-like variability, with a Fano
factor (ratio of the variance over the mean) of around 1. Indataset we found that the majority
of cells had Fano factors greater than 1, indicating treroesdariability.
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Figure 2.1: Example tuning curve. The x-axis is the stim(tlisparity in degrees) and the y-axis
is the average firing rate of the cell for that particular stiws. The black points correspond to
measured disparities (with error bars representing twadstal deviations), and the green line is
the Gabor fit to this tuning curve.
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Figure 2.2: Distribution of preferred disparities for 202unons

We believe this variability is actually due to the dynamiostli we are presenting. Over the course
of a trial we are actually presenting 11 slightly differeabhdom dot stereograms to elicit a greater
response. The refreshes for each frame of the stimulus ncaviges an increase in the firing rate
of the cell, an introduces more variability into the spikeiocb For some cells, the refresh of these
frames greatly modulated their firing rate.

2.1.2 Rangemap | mages

The database consists of 50 optical images and associaige maaps. They have been selected to
have close to 22.5 pixels per degree. People and cars mdwimggh the scene were masked out,
and multiple scans were averaged together for greater aocand fewer invalid pixels. These
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Figure 2.3: Distribution of Fano factors for disparity-adhcells
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Figure 2.4: An example neuron who's mean firing rate over tismgreatly modulated by the
refreshes of the dynamic random dot stereogram stimulush Eae represents the mean firing
rate over time for one of the 11 different disparity stimuli.

images were taken of “natural” scenes, primarily contajrfialds, trees, and shrubs. An example
image pair is shown below.



Figure 2.5: Example image pair from natural image datababe. left image shows the optical
intensity image, and the right image contains the depthr@aml colors represent nearer points,
and warmer colors represent further points. Regions withgrag such as the sky, were masked
out from the analyses.

2.1.3 Converting Depth to Disparity

To convert depth from the rangemaps to disparity, we must laavoptical model of the human
eye. Using this model, for any fixation point in an image, we campute the horizontal disparity
for any point in the horizontal plane.

We used the same model as (Liu et al., 2008) which approxstlagehuman eye as a perfect sphere
with its center at its nodal point. The interpupillary dista is assumed to be 0.065m, with nodal
points at(—0.0325,0,0) and(0.0325, 0,0). The observer/camera is assumed to be pointing in the
negative z direction. See Figure 1 in Liu et al., 2008 for aysie (reproduced without permission
below).

Consider some fixation poinfy = (zy,ys, z7). Let O, be the midpoint between the two eyes
(0,0,0). We assume mid-sagittal fixation, thatidg = y, = 0. The distance fron®, to F' is
then justz;. We can find the disparity, of an arbitrary point” = (x,, y,, 2,), using the following
equations:

d=p—f=a—-¢
a = 2atar(—0.0325/ z¢)
—x, — 0.0325 — 0.0325
b= atan(xp> — atan(w)
~p <p

We need to determine a fixation point in an image before we oampate horizontal disparity.
Thus to determine the distribution over disparity, we firséd to decide on which fixation points
to use. Here we make the simplifying assumption that a vielnsdmly fixating at any point in
the image with uniform probability. This assumption is notrect, as certain visual features such
as edges are more salient. Future work will need to addresshbrtcoming.

10
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Figure 2.6: Optical model of the human eye. Taken from Bovi@&0

Given a fixation point, we can use the equations stated aba@tpute the horizontal disparity at
any point along the row in which that point belongs in the imgage. We can repeat this process
over and over again, randomly sampling fixation points andpding the disparity. We can then
compute a histogram of the disparities to come up with owmaaprior over disparities.

The resulting distribution is roughly Laplacian-shapedhwnost of its mass concentrated at 0 and
fat tails.

2.2 Connecting Natural PriorstotheBrain

Through evolutionary pressures and adaptation, the brasnblecome optimized to encode its
environment. The statistics and properties of the enviemoan shape the distribution of neural
responses, but what exactly is this mapping?

In the case of one neuron, Laughlin proposed a simple egsabnse criteria, where the goal of a
single neuron is to distribute equal regions of its respaosgual probability regions in stimulus
space. In the case of a population, one might expect thatjiglation response should contain as
much informatoin as possible about the stimulus. Furtheemee may want to allocate more re-
sources to stimuli which have a higher probability of ocogriand less resources to stimuli which
have a lower probability. This intuition of allocating resoes proportional to a prior distribution
has showed up in a variety of fields, from vector quantizatielectrical engineering to impor-
tance sampling in statistics. What this means for a populatimeurons is that they would choose
to have more neurons encoding regions of high probabilitwel think of the preferred disparity

11
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Figure 2.7: Example of computing disparity from a fixationrgo The red square in the range
image represents the current fixation point. We can therctséie depth data to the left and
right of the fixation point and use it to compute the distribatover disparity as a function of the
eccentricity (horizontal distance in degrees) from thetiorapoint.

(the point of maximum slope or maximum firing rate) for a partar neuron as the resource which
it encodes, then we may expect the distribution of prefedisgdarities to match the distribution

of disparities in natural scenes. When we superimpose theséudtions, we see that they are
somewhat consistent but do not match well.

The problem with this approach is that it assumes that a meointy encodes information at its
preferred disparity. However, the flanks of a neuron’s tgréorve can also encode a great deal
of information! Knowing that a neuron is not firing tells yduat the stimulus is not at its peak.
Thus if we want to measure information in a neural populatiewill need to use a more global
metric.
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Figure 2.8: Distribution of disparities in natural sceneast disparities are near 0, with less mass
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Figure 2.9: Scene statistics distribution superimposetherdistribution of preferred disparities
from the neural population. We see that the yare similarer thver-representation of O but do not
match very well

2.3 Information content of neural populations

To assess the performance of a decoding algorithm, we wikédd know how close it is to the
optimal decoder. If a decoder can recover all the infornmationtained in a neural population
about the stimulus, then it is said to be optimal. The infdramestored in a neural population thus
provides a bound on how accurately we can decode. Similadycan use an optimal decoder to
estimate the information content of a neural population ).

Due to noise in the stimulus as well as the encoding proceti®ibrain, the spike counts for a
neuron on any particular trial will vary. These noisy spikeiets will in turn lead to noisy estimates
of the stimulus. To quantify the performance of a decodiggpathm, we can look at the mean
square error (MSE), which measures the squared differegiveeln the estimated stimulus value
and the true stimulus value. This MSE term can be decompastteaum of two quantities: bias
and variance. The bias term measures the difference betitveenean estimate of the stimulus
and the true stimulus, and reflects systematic errors in ¢sedakr which always over or under-
estimate the stimulus value. The variance term measuresib®y the estimated stimulus value

13



is between trials. Ideally the bias should be 0 and the vegiahould be as small as possible. This
would imply that the stimulus estimate was always close ¢dithe stimulus value.

The variance term can be related to Fisher information \@aGhamer-Rao bound. Fisher infor-
mation is defined as the expected value of the derivativeeoldfy-likelihood function squared:

J(s) =E ((% log P(r|s)) 2 | s>

wherer is the random vector of spike counts, anid the stimulus value. The Fisher information,
J(s), is a function of the stimulus and measures the amount ofrimgiion thatr encodes about
Fisher information is related to discriminability, mutusfiormation, and the variance of estimators
[4]. Here we are interested in the Cramer-Rao bound, whichfggethat the smallest variance that
any unbiased estimatér= 7'(r), can achieve is inversely proportional to the Fisher infation:

1

Var(§) > 70

If §is biased, wheré(s) = E (s5) — s, then the bound becomes:

(L+V(s)”

Var(s) > 76)

Given the Fisher information we can compute the smalleshnae of any estimator. However, we
can also use this bound to compute the Fisher informatiomerGany unbiased estimatat, we
know that: )

I(s) 2 Var($)
Thus the variance of any esimator provides a lower bound er-teher information. If we have
a non-optimal estimator, then it's variance will be gredlamn the minimal variance, and the pre-
dicted Fisher information will be smaller. One can thus tsyng a multitude of estimators, and
use the one with the lowest variance to bound Fisher infaomafThis technique for estimating
information has been used in a variety of papers and allowst@@void analytically computing
the Fisher informatiori|2, 13].

2.3.1 Analytical Computation of Fisher information
If we assume that the neural response variability for a @algr stimulus,rg, is drawn from a
simple distribution then the Fisher information can be catad analytically.

For independent Gaussian variability, the Fisher inforomatan be computed from the tuning
curves (f;) as:




For independent Poisson variability, this reduces to:
N
fi(s)?
J(s) = S
; i(s)

Additionally, for the case of correlated Gaussian varigbfpopulation response has a multivariate
Gaussian distribution) we have:

J(s) = f'(s)'S7(s) f/(s) + %Trace(z’(s)z1(3)2’(3)21(5))

wheref(s) is a column vector of tuning curve means, anhé the covariance matrix.

These equations for the Fisher information all require tbegutation of the derivative of the
tuning curves. As we only have discrete points, we need toebom estimate the form of the
tuning curve to get the derivative. I've tried three diffier@pproaches:

1. Linear interpolation between pointg(s) = W

2. Cubic interpolation between points
3. Gabor fit of tuning curve, which has a closed form solutnthe derivative

The first two approaches, linear and cubic interpolationyld@ften lead to values of the Fisher
information which were far too high. The derivative wouldrbach greater than the variance, and
the Fisher information for that particular cell would be ersiof magnitude higher than the rest of
the population. These bad cells tended to be ones with lowmiiag rates, but having a “noisy”
peak at some disparity, so the variance is low but the dére/&t reasonably high.

Using the Gabor fits led to a more stable result, but many otcelis are not Gabor-like. So the
mean firing rate and the derivative were fairly inaccurat@gared to the data.

For the multivariate Gaussian case, we have to compute bettovariance matrix and the deriva-
tive of the covariance matrix. This requires fitting a tremh@ms number of paramaters with a
relatively small amount of data. The covariance matricesaémost certainly overfitting, and we
need to interpolate these covariance matrices to get estnud derivatives (as well as the co-
variance matrix at points which were not tested). The respisher information was sharper
compared to the independent case.

Thus assuming response variability and estimating Fistiermation analytically led to very un-
stable results. This is most Ikely due to the incorrect aggioms of the form of the response
variability.

2.3.2 Estimating Fisher information

Due to the instability of the analytical approach, we deditte estimate the Fisher information
using the Cramer-Rao bound described earlier. | used a variaggression and classification

15



techniques to predict the stimulus value from the neurgdalese, and computed the estimated
Fisher information as the inverse of the variance of themedts. The final estimated Fisher
information was the technique which

The first technique | tried was simple maximum likelihood ai#iag. If we assume some form of
neural response variability, suchmas- N(f(s),o(s)), then we can find the stimulus value which
maximizes the likelihood. For computing the Fisher infotima at one particular disparity, | first
computed the mean and variance of the tuning curve for eastonérom 29 out of 30 trials. The
mean and variance of the tuning curves were then used to domaaxlikelihood decoding on the
remaining trial. If we repeat this for each of the 30 trialg get 30 different estimates of the true
stimulus, one for each trial. The inverse of the variancéne$é estimates is then the approximate
Fisher information. The actual computations are:

§ = argmin P(r|s)
= argminH P(ri|fi(s),0i(s))

1

I(5) ~ Var(s)

In order for this to be an accurate estimate of Fisher infoionathe estimator must be close to
efficient (lowest variance unbiased estimator). Our eggno@ Fisher information gives a lower
bound on the true Fisher information, but I’'m not sure howselave are to saturating that bound.
If we are close, then our estimate is good, if not, then oumedé could be awful. To verify
that the MLE was close to optimal, we tried a variety of otHessifiers including:-NN, logistic
regression, ridge regression, and SVMs. We found that S\idgigied the best results, but only
increased Fisher information by about 10%,thus we used tHe iMdsults for our estimated Fisher
information as the distribution of information was simikross multiple recording days.

The final estimated Fisher information matches the scetistgta disparity distribution extremely
well. It has fat tails, unlike the distribution of preferredparities, and has a similar shape near
0 disparity as well. Thus the information encoded in didpartined neurons in V1 is propor-
tional to the prior distribution over disparity in the naabworld. This finding is consistent with
the information maximizatoin principle proposed by Barlomdahe recent theoretical work by
Simoncelli’s group.

The correspondence between Fisher information and theahgtuor is much better than between
the preferred disparity distribution and the natural priocorporating more global properties of
the tuning curve instead of just the peak location was ther&agon for these results. We believe
that more neural data analysis needs to take advantagelal ghetrics of information instead of
simply looking at the distribution of properties of indiwvdl tuning curves.

16
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Figure 2.10: Fisher information as a function of disparityre green line is the disparity distri-
bution derived from the rangemaps. The black line is the matimed Fisher information derived
from 11 days of neural recordings. Standard error bars ctedpising bootstrapping.

2.4 Effect on Neural Representations

Although we have identified that the distriubtion inforneatiin the neural population is propor-

tional to the scene statistics distribution, we have notgtérmiend how this bias effects neural
representations. To evaluate the role of this informatias bn neural coding, we performed max-
imum likelihood decoding using the probabilistic popuaticode framework. This framework

argues that populations of neurons are not estimating desesjimate of the stimulus, but are
instead representing a probability distribution over slins space. Thus neural activity is able
to encode estimates of the stimulus as well as the certagstycaated with that estimate. Being
able to encode uncertainty allows one to optimally combioisynstimuli and perform Bayesian

inference. Recent research has shown that under certaimpissas, inference using probabilis-
tic population code only requires adding together the neses from different neural populations

[10].

For each trial, we computed the posterior distribution dfierstimulus given the neural response
we observed during that trial. We then computed the geometeian of these posterior distribu-
tions to identify the typical shape of the posterior disitibn for that particular stimulus. We found
that near O disparity, the posterior distributions wereghadicating a high degree of certainty in
the estimate. At more distal disparities, the posteridrithistions were generally wider, indicating
less certainty. Thus it seems as though the distributiopesented by these neural populations
are able to incorporate the bias in Fisher information toesgnt uncertainty.
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Chapter 3

Second-order statistics

3.1 Overview

Given that the first-order statistics of disparity are reé#tdan the Fisher information of the neu-
ral population, we were interested in evaluating whethersiacond-order statistics from natural
scenes were also encoded neural populations. One potemlydior these interactions to be en-
coded is in the correlated activity of neurons. If certaspdirities are more likely to co-occur than
others, then the neurons encoding these disparities mayta $tronger connectivities. This con-
nectivity could be learned through a Hebbian-like learninig@ where neurons firing at a similar
time would grow stronger connections. To evaluate this Hygss, we first needed a framework
to estimate connectivity between pairs of neurons. We a@@iL;-regularized pairwise MRF to
model the neural data and estimate these connectivities.

3.2 Markov Random Fields

One way to understand the dependencies between actiortipbéetivity, or firing, of one neuron
with those of its neighbors is to treat each neuron as a nodegiraphical model and model the
interactions between nodes using a Markov Random Field ¢diman et al. 2006; Truccolo,
Hochberg, and Donoghue 2010). The activity of each of theareuis collapsed across time into
discrete time bins (Figure 1). If a neuron fires in a particbia, it is registered as a ‘1’ and ‘0’
otherwise; so the firing of all the neurons within a time bimsiitutes a binary word.

We modeled the probability distribution over these bindrings using a MRF. The MRF frame-

work presents a way to represent these complex patternsemaact form. These models can
capture a variety of complex interactions, such as coroglatdue to common input. An example
of a learned MRF from a group of neurons with common input sthbale edges between neurons

1The majority of this chapter was completed as a final projec1 0-708 with Shreejoy Tripathy.
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Figure 3.1: Example neural data and discretization ints.l@pSpiking data for 50 neurons. Each
tick mark represents the time of an action potential, anth eaw represents spiking data for one
neuron over timeb) Discretization of neural data into binary strings. The dnegs represent the
extent of the time bins (20msg) The activity of each neuron is converted to a binary stringctvh
is 1 if the corresponding neuron has at least one action patevithin the bin and 0 otherwise.

sharing common input (Figure 2). The presence of these efgksonnections could be used to
better understand the relationships and structures ameunmgms in large populations.

Prior studies have fit MRFs using exact methods on groups abnswf sizex~ 10. They found
that 2nd but not 1st order MRFs were required to fit neurona datlected from more simple
brain regions, like the eye (Schneidman et al. 2006). Mocenty, other groups have found
that 3rd order MRFs were required to represent the distohatcollected from data from monkey
visual cortex (Ohiorhenuan et al. 2010). However, theseltesere based solely on the results
on training data. To our knowledge, no group has compareédeéeaccuracy using this technique.
It is possible that these higher order models are just otiedfithe data and that 3rd order models
are not required for modeling neural activity. In this patjeve attempted to answer this question
as well as provide insights into scaling these models uprgefanetwork structures.

3.3 Complexity of Neural Connectivity

To evaluate the complexity of the factors we needed to moelalai activity, we looked at a large
number of small subgroups of neurons. From the 50 neuronsabaecorded, we randomly
formed 500 groups of 10 neurons each and fit MRFs for each group.used the maximum
entropy toolbox provided with the SciPy Python distribatto perform the parameter estimation.
Specifically we fit fully-connected 1st, 2nd and 3rd order mlsedising 80% of the data, and then
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Figure 3.2: Example network and MRF structuagHypothetical neural network with unobserved

common input influencing activity in recorded neurons. Ehesmmon inputs cause correlated
activity in the recorded datd) Possible recovered MRF from neural data which has learnesbedg
between nodes that share common input.

tested these models on the remaining 20% of the data. Weagedlthese models by comparing
the probability distribution derived from the data with fbability distribution encoded by the
trained model. We used the Jensen-Shannon Divergence suredhe dissimilarity between these
two distributes. JS-divergence is a normalized measuteedifference between two distributions:

Di(P, Q) = 2Pl ; Dy (Q[|M)

whereM = (P + Q)/2

When the JS-divergence is small, the probability distrdmgiare similar, and we say that error is
small. When the JS-divergence is large, the probabilityidisions are more distinct and we say
that the error is large.

(3.1)

We first looked at training set error, which has been the pymaetric in evaluating models in
neuroscience. Our results were qualitatively similar tsthfrom prior studies. Third order models
had the lowest training set error followed by 2nd and 1st ordedels (Figure 3a, 4a). These
results are consistent with the idea that higher order nsoalel able to represent a larger number
of probability distributions than lower order models.

When considering testing set error (JS-divergence), weddoat while the 3rd order model had
the lowest error, the relative difference between the 3iZd order models was small (Figure
3b, 4b). Furthermore, for 22% of the 500 subsamplings of th@duron groups, the test error
was lower for the 2nd order model than the 3rd order modeli€i®) despite the fact that the 3rd
order models had lower training error. This is one indicatioat the third-order models may be
overfitting the training data and may not be required. Anoiheication of overfitting is that the
space of all second order models is a subset of the spacetbirdlbrder models. Thus any third
order model can represent any second order model by justgsétird order cliques to be 1. So
when the second order model is better, it is likely that theltbrder model is overfitting.

Our findings indicate that a first order model is not sufficiemtmodeling the activity of groups
of neurons in primary visual cortex. This result makes seissese neurons share common input
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Figure 3.3: Scatter plots of true vs. predicted probabdistributions. Each point represents the
probability of one of2!° binary patterns in the samplespace. The black line indictite unity
line. Points which deviate from the unity line indicate deliénce between the predicted and true
probability of a pattern. Colors indicate the order of modekt, second, third (blue, red, green
respectively)a) true probability based on training data). true probability based on testing data.

from other groups of neurons which would correlate them. 3é&eond and third order models
performed similarly, although the third order model waglsliy better. Despite this slight increase
in performance, we decided to stick with the second orderatsddr two reasons. The first reason
for using the second order model was computational traddtalbncluding all third order factors in
our networks tremendously slowed down computation and weai believe it would be feasible
to use them in large networks. Our second reason for not tisirjorder models is that they are
not biologically plausible. The types of connections arndractions between neurons in the brain
are thought to only include pairs of neurons communicatamgl not triplets. Additionally, prior
work in our research lab using iterative proportional sgahas shown that third order interactions
are not present in this data (unpublished). For these reasendecided to exclusively utilize
second order models for fitting larger networks.
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Figure 3.5: Scatter plot of the JS-divergence between gtentedistribution and the model dis-
tribution for 2nd and 3rd order models. Each of the 500 paigpsesents one 10-neuron subsam-
plings.

3.4 Using regularization to learn sparse MRFS for large net-
works

We were interested in extending the framework we used onGreeliron networks to larger groups

of neurons. However, these larger models would have a meetegrnumber of parameter3((?)

for the pairwise models) which would be difficult to fit with olimited dataset. To help prevent
overfitting we tried to add af; penalty on the values of the factors. We encountered a number
of problems with extending our previous framework in PythdiVe were not able to achieve
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convergence using a number of different gradient-basduhigaes which led to fitting the models
being extremely slow.

Due to time constraints and the slowness of our Python imgieation, we decided to investi-
gate other frameworks for fittind-regularized MRFs. We found that the UGM Matlab tool-
box \Wwv. cs. ubc. ca/ schm dt m’ Sof t war e/ UGM ht i ) provided most of the tools we
needed to learn these models. After porting our Python codddtlab, We were finally able
to learn the parameters df;-regularized MRFs using loopy belief propagation and the UGM
toolbox’s projected quasi-Newton algorithm for constearoptimization. This framework also
allowed us to place a group, penalty on the edge parameters instead of on all the paresmete
individually. The regularized objective function we opirad was:

min — log P(X|w,v) + A\ Z g1

g

Herew are the parameters associated with nodese the parameters associated with edges,
represents the groups (1 for each edge in the modely gisdhe set of edge parameters associated
with groupg.

We learned MRFs for 3 different conditions: 1. a model with stfarder structure (no edges); 2. a
model with a fully connected second order structure; 3. arsgorder model with sparse structure
learned through a group, regularization among factors associated with an edge. Wedthat
by enforcing anl; penalty, the edges which remained after regularizationldvba those which
were most essential and reflect the conditional indeperdassumptions inherent in the data. For
each model, we divided the data into 80% training data andt28%ng data, and performed 5-fold
cross validation on the training data to learn the models.

To assess the performance of each model we used a condiiecading scheme where we com-
puted the conditional spiking probability of a single naugiven the spiking of all other neurons
as evidence. For each testing example we computed the wovadispiking probability for every
node in the graph and averaged errors over nodes. We usedrworetrics: 1. a simple MAP
based decoding accuracy; 2. the predictive power compeldeaarea under the ROC curve of
the conditional spiking probability (Figure 6).

3.5 Largenetwork results

We found that with both decoding metrics the fully conneced-order and.; models outper-
formed the 1st order model (Table 1). Interestingly, whike full andZ; models had similar levels
of decoding accuracy the penalized model had substantallgr edges. These findings indicate
that many of the edges which are retained in the fully coreteotodel are unnecessary and can be
removed by regularization with little to no detriment in dding accuracy. This is also indicated
by the L, regularization path (Figure 7).
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Figure 3.7: Regularization path for cross-validated datdséembers indicate the number of edges
in each regularized graph.

We further studied which edges between neurons remain igrth following regularization. We
found that with small_; penalties, the graph was almost fully connected with nesicomnected
to others large physical distances away. By increasing thalfyethe edges which remained were
between neurons in close proximity with one another (Fig@)reThis result is precisely in line
with published anatomical studies (Ohiorhenuan et. al 20M0us our methodology is exciting in
that it may serve as a novel way to recover the underlyingoio&l circuitry using data collected
in this fashion.

3.6 Discussion

Our work has shown that MRFs provide a viable framework folyaiag neural activity. In small

networks, we were able to use MRFs to evaluate the requiregleaity needed to model our
the activity of groups of neurons. We found that while firstlemr models were not sufficient,
second and third order models provided a good match to tlae Hatvever, the third order models
required a much greater computational cost, and could aeoisgly be fit into biological models
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Table 3.1: Final model results on a 49-neuron network foodewy accuracy, predictive power,
and number of edges.

MODEL ACCURACY POWER EDGES

1sT ORDER 48.70% 0.00 0
2ND ORDER 64.41% 0.37 1176
Ly 64.34% 0.39 867

of the brain.

By using L; regularization we were able to apply MRFs to larger networkS@neurons. Al-
though using.; regularization did not improve the accuracy of our modelembompared to full
models, it did greatly reduce the number of edges in the éshnetworks. This reduction in edges
tremendously reduced the computational complexity reguin fitting and performing inference
on these models. In the future, we hope to use these spatsarke to perform more interesting
inference queries in groups of neurons.

Using theL, penalty to increase the sparsity of our networks, we fouatltthe edges which re-
mained in the network were those with shorter lengths. Thidiriig indicates that the important
connections in our neural networks are between neuronsose groximity. Biological studies
have also found that connections between neurons are fyirfzaral, with very few long-range

connections (Ohiorhenuan et al. 2010). We believe thatgukinregularization not only to se-
lect the best model, but also to select the best edges colgdrhanderstanding the underlying
connectivity among neurons in the brain.
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Figure 3.8: Graph structures learned using regularizatibime left column indicates the graph
structure for eactl; penalty given in the center.
between neurons in the graph to its left. As thepenalty is increased, the edges that remain are

between neurons in close proximity.
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Chapter 4

Conclusions

See: Introduction.
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