
Design and Implementation of a Power-Aware Load
Balancer

Ram Raghunathan
Advised By: Professor Mor Harchol-Balter, Anshul Gandhi

Abstract

Energy costs for data centers are
doubling every five years and have
already crossed $19 billion. How-
ever, much of this power is wasted as
servers are mostly idle. Idle servers
can also consume as much as 60% of
peak power consumption.

We introduce a power manage-
ment algorithm called AutoScale

which reduces power consumption
by over 30% while delivering re-
sponse times that are only slightly
longer, and still meet service level
agreements. AutoScale works by
dynamically provisioning data cen-
ter capacity as needed. AutoScale

is load-oblivious and can also be de-
ployed as a distributed application.
It is also computationally cheap.

We evaluate AutoScale in a
testbed structured as a multi-tier
data center. A new benchmark is
developed to test jobs which work by
performing key-value requests upon
a data storage. Emphasis is given
on testing by implementation rather
than by simulation and on compari-
son against existing power manage-
ment techniques.

1 Introduction

Data centers have now become a large part
of today’s IT infrastructure. Government in-
stitutions, hospitals, financial firms as well as
technology firms like Hewlett-Packard, IBM,
Amazon, and Google all use data centers to
perform or aid their activities. Nowadays, a
typical data center is structured as shown in
Figure 1.

In this structure, we have:

1. Front-end proxy servers

2. Application servers

3. Back-end Cache servers

4. Back-end Database servers

The typical request flow is as follows: First,
a request to the data center is routed to
one of the Front-end proxy servers. This
server’s duty is to simply route the request
onto one of the Application servers. The ap-
plication server does the actual job of serv-
ing the request. In the past, any persistent
data was stored on the back-end database
servers. However, accessing the database is
slow. Hence, many data centers employ a
tier of cache servers lying in between the ap-
plication and database servers. These cache
servers are used to cache data for faster ac-
cess later. In this way, most requests use the

1

Figure 1: Structure of a Data Center

cache and only a small fraction of the requests
will incur the response time increase due to
accessing the database.

Popular uses of data centers is in social net-
working e.g. Facebook, and in e-commerce
and banking e.g. Amazon and EBay. The
data centers for these services typically fol-
low a key-value storage system for data [2, 3].
This is true for data both on the cache as
well as in the database. When a request ar-
rives, the application server looks up the cor-
responding value for a key from the cache.
If the cache fails, it looks it up from the
database. Depending on the request, there
could be many value requests, and even value
requests depending on the value returned
from a previous value request [2]. Hence, each
request essentially generates a value request
tree.

These value request trees inherently change
the bottleneck of the request. Notice that
each value request has both an I/O compo-
nent as well as a processing component. Re-
questing a value is I/O bound and interpret-
ing the value is CPU-bound. Hence, a value
tree is has large breadth but low depth will
be CPU-bound whereas a tree that has large
depth but low breadth will be I/O-bound.

In addition, the I/O component can include
reads or writes to the cache or database, or
a combination of these. Despite the increas-
ing prevalence of this value tree based work-
load in data centers, no benchmark exists to
test out the performance of the data center
in this workload case. We introduce a simple
benchmark that is highly tunable in 4.3 that
effectively simulates the key-value paradigm.

Data centers are designed to meet certain ser-
vice level agreements (SLA’s). Many times,
these SLA’s are specified as percentile request
time guarantees e.g. 95% of requests must be
served in at most 200 milliseconds. However,
due to rising costs of running a data center,
energy efficiency has recently been considered
as a parameter for evaluating data centers.
Indeed, more money is spent on running and
cooling a server than it is on purchasing it.

Data centers consume a lot of energy while
running. Energy costs are doubling every five
years, and have already increased to $19 bil-
lion [1]. Much of this energy consumed is
wasted. Servers tend to be busy for only 10%
to 30% of the time [4, 5]. However, an idle
server can consume up to 60% of the power
that a busy server does.

2

Since load varies over time, data centers are
often provisioned for peak load to meet the
SLA’s. Hence, data centers are grossly over-
provisioned for much of the time, since peak
load occurs for only a fraction of the time.
The solution seems to be to simply turn
servers off when not needed and turn them
back on when they are. However, this situa-
tion only works in an ideal theoretical setup.
Many servers have large setup times before
which they can be productive. For example,
the servers used in our experiments took 200
seconds from the power on command to be
ready to accept requests. This overhead is
enough to cause SLA violations, hence mak-
ing this technique inviable in real data cen-
ters.

There are many ways of provisioning data
centers so as to reduce power. The one
employed now is to simply leave all servers
on, whereby no power is saved. While this
guarantees the best response times, it also
wastes power excessively. We call this policy
AlwaysOn. There has also been extensive re-
search into more aggressive provisioning algo-
rithms. These algorithms can be divided into
reactive and predictive approaches. However,
most of these algorithms have only been stud-
ied via simulation, and not on a data center.

Reactive algorithms typically have thresholds
of parameters to determine when to turn a
server on or off. For example, they may
have an upper and lower limit response time,
power usage, or a combination of both. This
is an optimal solution in an ideal environment
of zero setup time. However, in a real envi-
ronment, where setup time is significant, this
method may perform badly. This is because
it starts to fix the problem only when it is
detected, and the effects of trying to fix the
problem are only seen once the server is set
up.

Due to the inadequate performance of reac-

tive approaches in non-ideal environments,
research has turned to predictive algorithms
(for example, see [6, 7]). These methods seek
to predict future load and pro-actively provi-
sion the data center for the forecasted load.
These predictions typically use data from a
moving window of past information. This
is especially true of techniques like Moving
Window Average (referred to as the MWA al-
gorithm) and Linear Regression (referred to
as the LR algorithm).

Predictive algorithms tend to be effective
in periodic or seasonal load, which varies
slowly. However, we doubt their effectiveness
for bursty load patterns. Some papers e.g.
[7] have shown significant improvements by
predictive approaches, but these were always
compared against a weak version of AlwaysOn
where twice the peak number of servers are
kept on at all times. While this tends to
be industry standard, it is to be expected
that aggressive data center provisioning algo-
rithms such as the aforementioned predictive
approaches perform well against it.

One of the major problems of predictive ap-
proaches is that it tries to estimate load far
in the future (typically for a server’s setup
time) using limited past data. Clearly, not all
of past data can be used as that is not rep-
resentative of current load conditions. How-
ever, less data leads to less accurate fore-
casts of future conditions. If predicted load
is wrong, predictive approaches can struggle
to cope. Predictive approaches tend to be
designed with minimal tolerance for devia-
tions from predictions. This leads to poor
responses when reality does not meet expec-
tations. Finally most predictive approaches
have large overheads in computation time.

A subtle problem with previous research is
that their load balancing algorithms seek to
balance load across all servers evenly using
a load balancing algorithm like Round-Robin

3

or Join-Shortest-Queue. While this is effec-
tive from a performance perspective, it is
clear that it is the most effective when the
goal is to meet performance goals and reduce
power consumption. For more information
about prior work, please refer to section 2.

Our approach to data center provisioning,
AutoScale is very different. It does not try to
predict future load, and is very simple. It can
also be implemented as a distributed solution,
leading to efficient deployment. AutoScale

consists of two components, the provisioning
algorithm and the load balancing algorithm.
The provisioning algorithm is trivial. Each
server can independently decide when it is to
turn off based on certain “idle-timers” which
are timers deciding how long a server is per-
mitted to remain idle before being turned off.
These timers inherently build tolerance into
the algorithm for large changes in demand in
short periods of time. The load balancing
algorithm tries to saturate a server to a pre-
set number of jobs before allowing load to
be routed to another server. Hence, load is
sent to the minimal number of servers neces-
sary. This allows more servers to be turned
off, lowering power usage.

In our tests, we used a data center setup
in same way as shown in Figure 1. We
use the data center provisioning algorithms
only on the application-tier servers. Our
benchmark consists of value request tree.
We compare AutoScale against AlwaysOn,
Reactive, MWA, and LR. For more information
about the experimental structure, please re-
fer to Section 4. For more information about
the algorithms that AutoScale is compared
against, please refer to 5

We find that AutoScale performs well
against the other algorithms. Response time
is only about 20% more than for AlwaysOn

while power consumption is less. In con-
trast, the other algorithms have extremely

long response times, although they do use less
power. However, meeting SLA’s takes pri-
ority over energy consumption, so the lower
power is meaningless.

2 Prior Work

There are many methods of reducing power
consumption in a data center. For exam-
ple, we can optimize the server architecture
(see for example [8, 9]), use frequency scaling
and dynamic voltage adjustments for proces-
sors (see for example [10, 11]), or use virtu-
alization (see for example [12, 13]). We limit
my discussion of prior work to those meth-
ods that dynamically provision data center
capacity i.e. turn servers on and off.

There are typically two approaches to dy-
namic provisioning algorithm. The first is the
reactive approach, also known as the control-
theoretic approach. For example, both Hor-
vath et al [15] and Wang et al [14] use
feedback mechanisms to control the power-
performance tradeoff in multi-tier systems.
The authors used Dynamic Frequency and
Voltage Scaling in addition to data center
provisioning to achieve their results. Reac-
tive approaches work well in ideal situations
where the setup time for a server is zero.
However, they do not work well in reality. By
definition, reactive approaches only attempt
to solve a problem once it occurs. However,
due to setup time, the attempt to fix the
problem only shows after the server is setup.
While it is being setup, it is entirely possible
that the server becomes unneeded, or SLA
violations occur. This is not acceptable for a
commercial data center.

The second approach to data center provi-
sioning is predictive. Krioukov et al [7] used
various predictive methods such as Last Ar-
rival, Moving Window Average (referred to as

4

the MWA algorithm), Exponentially Weighted
Average, and Linear Regression (referred to
as the LR algorithm). These methods were
used to predict future load by a server’s setup
time, thereby turning on servers now to be
ready in time for future load. The authors
considered Wikipedia.org traffic and found
that MWA and LR did best. Using simula-
tion, the authors found that MWA and LR

provided significant power advantages over
AlwaysOn. However, the authors used a ver-
sion of AlwaysOn that does not know the
peak arrival rate ahead of time. Hence,
their AlwaysOn algorithm is weaker than ours
where exactly as many servers are provisioned
in AlwaysOn as necessary, and no more. Chen
et al [6] use an auto-regression method to
predict future load. They then use simple
thresholds to decide whether or not a server
should be turned on or off. These thresh-
olds are implemented in the load balancing
algorithm much like AutoScale does. Each
server has a preset threshold for number of
active jobs and the load balancer seeks to
saturate a server before routing requests to
another server. However, the authors do not
consider tolerance of the system, and turn off
servers as soon as possible. They also test
their method only on a single-tier data center
architecture using simulations. The authors
conclude that their method performs well on
periodic load which repeats daily, say.

While predictive methods tend to perform
well for periodic loads, it is uncertain whether
they perform as well on non-periodic loads.
We find that they are not as effective, whereas
AutoScale is effective for both periodic and
non-periodic loads. In addition, these meth-
ods tend to be computationally-intensive due
to the complexity of the prediction algorithm.

3 AutoScale

When designing a data center provisioning al-
gorithm, there are three questions that need
to be answered:

1. When should a server be turned on?

2. When should a server be turned off?

3. Which server should a request be
routed to?

3.1 When should a server be
turned on?

This question’s answer depends heavily on
the load balancing algorithm being used.
However, regardless of algorithm, a server
must be turned on when the load balancing
algorithm determines that the existing set of
servers is insufficient to handle the existing
load. We will discuss how we answer the ques-
tion in subsection 3.3.

3.2 When should a server be
turned off?

Prior work concentrates on using a central-
ized system in which a “master” will dictate
when a server is to turn off (Note: by turn
off, we mean complete any pending jobs and
then turn off). The master will base it’s de-
cision on future prediction of load in case of
a predictive algorithm.

Since a data center is typically distributed, it
is awkward to see a centralized system being
deployed for power management. In addition,
we notice that these methods do not allow for
any tolerance of unexpected conditions. Ev-
ery server is either busy, off, or in setup. None
are left idle. While this will work well when

5

setup costs are low or predictions are perfect,
this is not the case in reality.

To allow for a distributed design, AutoScale
permits each server to decide when to turn
itself off, simply informing the load balancer
that it is no longer available. In addition to
this, AutoScale builds tolerance into it’s sys-
tem by setting a time twait for which each
server remains idle before turning itself off.
If a request is routed to a server while it is
idle, but before it has been idle for twait time,
it simply accepts the request. When it be-
comes idle once more, it waits for twait once
again.

3.3 Which server should a re-
quest be routed to?

We notice that much of prior work uses rout-
ing algorithms that are proven to optimize re-
sponse times, such as Round-Robin or Join-
Shortest-Queue. However, it is not appar-
ent that these algorithms lend themselves to
energy efficiency. Hence, AutoScale uses a
routing algorithm based on the load-skewing
request dispatch algorithm discussed in [6].
In our load balancing algorithm, we first pre-
set a packing factor p. When a request is dis-
patched, we send it to the first server in our
list that has less than p jobs pending. Hence,
we tend to saturate a server before routing
to other servers. This lowers the number of
servers being used. More servers will turn off,
and hence power consumption reduces.

The packing factor must be chosen with care.
A good choice would be the maximum num-
ber of jobs that a single server can handle
while still meeting SLA’s. For example, from
Figure 2 we notice that a 95% guarantee of
500 millisecond response time means that the
we should set p to 30.

Figure 2: Response Time vs Packing Factor
under AutoScale

This method of load balancing provably min-
imizes the number of servers utilized. Con-
trast this with Join-Shortest-Queue. In Join-
Shortest-Queue, a certain number of servers
N are available for load balancing, and the
algorithm seeks to use each equally. This
does not differentiate between servers and no
server can be turned off, although each is min-
imally used.

As mentioned in subsection 3.1, the load
balancing algorithm has the responsibility
of deciding when to turn on a server. In
AutoScale we turn on a server as soon as all
available servers are saturated. While waiting
for the server to turn on, load-balancing falls
back onto Join-Shortest-Queue if all servers
are saturated.

4 Experimental Setup

In this section, we discuss the 4-tier archi-
tecture used in our experiments. We discuss
the software used and modifications made to
them. We finish the section with a descrip-
tion of the job used as our benchmark and
the different workloads we tested on.

6

4.1 4-tier Testbed Architecture

Our testbed is modeled after a typical data
center architecture as shown in Figure 1. This
architecture consists of a front-end proxy
server that does request routing; application
servers actually execute the request. Data
is cached on the third-tier cache servers.
Persistent storage is found on the back-end
database servers.

Our testbed consisted of 23 machines that
used Intel Xeon E5520 processors. Each ma-
chine has two quad-core processors as well
16GB of memory. We employ one of these
servers as a load generator using a modified
version of httperf [16]. Another server is used
as the front-end load balancer. This server
runs a modified version of the Apache web-
server [17]. Modified software is described
in more detail in subsection 4.2. 16 servers
are used as the application servers running an
unmodified Apache server [17]. Four servers
are used as cache servers running memcached,
a popular distributed cache used even in
many commercial data centers [18]. Finally,
1 server is used to store the database. The
database is approximately 500 GB in size,
and is stored in the BerkeleyDB format [19].
We use IPMItool [20] to remotely turn servers
on and off.

The servers used have the following charac-
teristics:

• Consume 140W when idle

• Consume 200W when busy and in setup

• Consume 0W when off

• Take about 200 seconds to setup

4.2 Software Used

Load generation was done using httperf [16].
This software reports accurate statistics re-
garding response times for web servers. It
is also capable of generating high request
rates, which are necessary to mimic commer-
cial data centers as well as to load up the
testbed sufficiently. Httperf only supports a
single request rate, however. It was modified
to also support variable request rates, where
a certain number of requests are sent at a
particular request rate, and the next set of
requests are sent at a different request rate.

The load balancer used was the
Apache web server [17] along with it’s
mod proxy balancer extension [21]. This ex-
tension allows one to specify a set of servers
to balance among. It also allows one to spec-
ify the algorithm used to perform load bal-
ancing. This extension was modified signif-
icantly. First, support for the packed load
balancing algorithm described in subsection
3.3 was added to the extension. After this,
full support for AutoScale was added. This
was done by spawning a thread at the be-
ginning of Apache’s execution to monitor
the application servers. Whenever the job
queue size was more than the set of ready
servers was able to handle, another server
was turned on. When a server was idle for a
predetermined time, it was shut down. The
commands to turn on and off a server, as
well as the AutoScale parameters p and twait

were set as user-defined parameters, for ease
of use. Finally, support was added to output
statistics at a certain rate.

The application servers ran an unmodified
version of the Apache [17] webserver.

The cache servers used memcached [18].
Memcached is a popular distributed cache
that has a key-value paradigm. It is even used
in commercial data centers.

7

The database server runs memcachedb [22],
a simple key-value database that is based on
memcached. It uses BerkeleyDB [19] as its
storing mechanism.

4.3 Job Used

Many commercial data centers use a key-
value paradigm for their activities. A re-
quest spawns off one or more value requests
at the application servers. Depending on the
responses, more value requests may occur.
Hence, every request is essentially a request
job tree. This job has the nice feature of re-
quiring both I/O and CPU. In fact, the value
request tree can be skewed to be either I/O-
bound or CPU-bound. If the value request
tree is very broad but not very deep, the re-
quest becomes CPU-bound. On the other
hand, if it is very deep but not very broad, the
request becomes I/O-bound. However, there
does not exist any benchmark for this kind of
job.

To create a key-value benchmark, we first
populate the database with keys and corre-
sponding values. The values themselves are
a set of keys. When a request comes in, the
application server first requests the value of
a random key. The value is then parsed to
obtain the set of keys. Each key is then re-
quested again. This process can continue it-
eratively. We refer to the number of value
requests made as the depth and the number
of keys in a value request as the breadth. In
this way, each request creates a value request
tree. By varying the maximum depth and
breadth, we can change the behavior of the
value request tree. In our experiments, we set
breadth to three and depth to eight. This re-
sults in a job size of approximately 3500 value
requests. On a server with no resource con-
tention and with 100% hit rate in the cache,
a job takes an average of 400 milliseconds to

complete.

By picking the first key out of a distribution,
we can also affect the probability of a certain
key being selected. This directly affects the
hit rate of the cache. In our experiments, we
used the Zipf distribution [23], where proba-
bility of a generating a key is inversely pro-
portional to the power of a key.

4.4 Workload

We used realistic arrival traces to generate
the workload in our experiments. We use a
wide variety which have unique qualities in
each. The full list is seen in Table 1. Results
are discussed in conjunction with the Quickly
Varying and Slowly Varying trace. However,
results were collected for all traces.

5 Other Algorithms Used

We compared AutoScale to many other al-
gorithms. Here, we will describe those algo-
rithms and their behaviors.

5.1 AlwaysOn

AlwaysOn is the simplest algorithm that we
compare against. It is the algorithm being
used commercially, in which all servers are
on.

We want to keep as many servers on as needed
to meet SLA’s for the peak load. For exam-
ple, in Figure 3, we notice that for a server
to meet a 95% response time of 400 millisec-
onds, it should not be allowed to handle more
than 60 requests per second. Hence, if the
peak arrival rate is 630 requests per second,

8

Name Trace Plot

Slowly Varying ITA [24]

Quickly Varying Synthetic

Quickly Varying with Big Spike NLANR 1 [25]

Dual Phase NLANR 2 [25]

Dual Phase with large Variations NLANR 3 [25]

Table 1: Traces Used in Experiments

we will need to provision the data center with
d630

60
e = 11 servers.

Figure 3: Response Time vs Request Rate for
a single server

In reality, it is difficult to know what the
peak arrival rate is going to be. As such,
most implementations of AlwaysOn provision
the data center for more than the peak re-

quest rate. This clearly wastes much power.
Some papers choose to use a weak version
of AlwaysOn. For example Krioukov et al
[7] use a version of AlwaysOn which provi-
sions the data center for twice the peak ar-
rival rate. In our experiments, we empower
AlwaysOn by knowing the peak arrival rate
beforehand. Hence, our version of AlwaysOn

will use the minimum number of servers re-
quired to meet SLA’s. More importantly, this
version of AlwaysOn is provably best of all
versions.

We expect AlwaysOn to have high power con-
sumption but low response times.

9

5.2 Reactive

The reactive algorithm reacts to the request
rate every second. Assuming that the incom-
ing request rate is R and the maximum re-
quest rate a server can handle to meet SLA’s
is r, the algorithm seeks to adjust the num-
ber of servers to dR

r
e. Of course, the effect

of turning on a server won’t be noticed for
200 seconds (the setup time) and the effect
of turning off a server won’t be seen until the
server finishes the pending jobs on it.

5.3 MWA

The Moving Window Average algorithm is re-
ferred to as MWA. It was explored in many pa-
pers and was also considered most powerful
by [7]. In this algorithm, we look at a win-
dow of previous request rates for some time
t, which is granular on a second level, say.
To estimate the request rate for time T + 1,
where T is the current time, we average the
request rates seen in the (T − t, T] interval.
Given this prediction for T + 1, we can pre-
dict the request rate for T + 2 by averaging
the rates in the ((T + 1)− t, T + 1] interval.
By using this iterative method, we can pre-
dict the request rate at time T + p for any
p. In our experiments, we set t = 10 and
p = 200, which is the setup time for a server.

Given the predicted request rate for the time
T + 200, we can then make decisions about
whether to turn a server on, off, or to not do
anything. If the predicted request rate is R
and the maximum request rate a server can
handle to meet SLA’s is r, we predict that we
need N = dR

r
e servers at time T +200 to han-

dle the load. If N is more than the number
of servers currently ready, we turn on more
servers now to make up the difference. The
effect will be seen at time T + 200.

If the number of servers required is less than

currently provisioned, we look at the maxi-
mum arrival rate M predicted in the inter-
val (T, T + 200]. If a request rate of M re-
quires less servers than currently provisioned,
we turn some servers off. We will not need
them for the next 200 seconds, assuming our
prediction is true.

5.4 LR

In Linear Regression, we also use a window
of 10 seconds as our past data. We then pre-
dict load 200 seconds in the future by linear
regression.

We use the same method as outlined in sub-
section 5.3 for turning servers on and off.

6 Results

In this section we focus on results of a simpli-
fied experiment run without any interaction
with the database. All requests were reads
from the cache. We focus on the results of the
Slowly Varying and Quickly Varying traces
shown in Table 1.

6.1 AlwaysOn

Figure 4 plots the state of servers as a func-
tion of time, overlaid on the trace load. Ob-
viously, no server changes state during the
course of the test. We find that the Slowly

Varying trace has a 95th percentile response
time of 298 milliseconds with an average
power consumption of 1132W. The Quickly

Varying trace has a 95th percentile response
time of 278 milliseconds with an average
power consumption of 798W. As expected,
response time is very low while power con-
sumption is high.

10

(a) Slowly Varying Trace (a) Quickly Varying Trace

Figure 4: Plot of AlwaysOn server states

(a) Slowly Varying Trace (a) Quickly Varying Trace

Figure 5: Plot of Reactive server states

(a) Slowly Varying Trace (a) Quickly Varying Trace

Figure 6: Plot of MWA server states

11

(a) Slowly Varying Trace (a) Quickly Varying Trace

Figure 7: Plot of LR server states

(a) Slowly Varying Trace (a) Quickly Varying Trace

Figure 8: Plot of AutoScale server states

12

6.2 Reactive

Figure 5 plots the state of servers as a func-
tion of time, overlaid on the trace load. We
see that servers only change state as soon as a
change in arrival rate occurs, and no sooner.
We find that the Slowly Varying trace has

a 95th percentile response time of 18940 mil-
liseconds with an average power consumption
of 414W. We also find that the Quickly Vary-

ing trace has a 95th percentile response time
of 12896 milliseconds with an average power
consumption of 568W. Although power con-
sumption is relatively low as servers are only
provisioned when a change occurs, the re-
sponse time is extremely high, and a gross
violation of SLA’s.

6.3 MWA

Figure 6 plots the state of servers as a func-
tion of time, overlaid on the trace load. We
see that servers change state only as soon as
a change occurs, due to the nature of aver-
aging. However, during a change, MWA ap-
propriately reacts. We find that the Slowly

Varying trace has a 95th percentile response
time of 21719 milliseconds with an average
power consumption of 414W. We also find

that the Quickly Varying trace has a 95th

percentile response time of 11439 milliseconds
with an average power consumption of 576W.
Although power consumption is relatively low
as servers are only provisioned when a change
occurs or is happening, due to the nature of
MWA, the provisioning is not done fast enough.
This leads to SLA violations.

6.4 LR

Figure 7 plots the state of servers as a func-
tion of time, overlaid on the trace load. On

the Slowly Varying trace we find that servers
are provisioned correctly, due to the slow vari-
ation, but too late. However, LR does not
do well on the quickly varying trace. Due
to the quick variations, predicting 200 sec-
onds ahead results in far too aggressive pre-
dictions. We find that the Slowly Varying

trace has a 95th percentile response time
of 13214 milliseconds with an average power
consumption of 546W. We also find that the

Quickly Varying trace has a 95th percentile
response time of 556 milliseconds with an av-
erage power consumption of 2163W. For the
Slowly Varying trace, we find that response
time is quite high, probably due to the un-
predictable nature at certain areas of the load
due to past data. We find that the Quickly
Varying trace has a low response time, due
to the large number of servers provisioned.
However, power consumption is very high,
even higher than AlwaysOn

6.5 AutoScale

Figure 8 plots the state of servers as a func-
tion of time, overlaid on the trace load. On
the Slowly Varying trace we find that servers
are provisioned accurately, with an adequate
number of servers available to service the
load. We also find in the Quickly Varying
trace that servers are provisioned a bit ag-
gressively, but never conservatively. We find

that the Slowly Varying trace has a 95th per-
centile response time of 348 milliseconds with
an average power consumption of 715W. We
also find that the Quickly Varying trace has a

95th percentile response time of 341 millisec-
onds with an average power consumption of
583W. For both traces, we see low response
times as well as low power consumption lev-
els. While more power is consumed compared
to the other algorithms (with the exception
of AlwaysOn), response times are within rea-

13

Trace
Algorithm AlwaysOn Reactive MWA LR AutoScale

T95 Pavg T95 Pavg T95 Pavg T95 Pavg T95 Pavg

Slowly Varying 298ms 1132W 18940ms 414W 21719ms 414W 13214ms 546W 348ms 725W

Quickly Varying 278ms 798W 12896ms 568W 11349ms 576W 556ms 2163W 341ms 583W

Table 2: Comparison of All Algorithms

sonable limits, and power is still considerably
low.

6.6 Discussion

The results of the test are summarized in Ta-
ble 2

As we can see, AutoScale consistently gets
the best response times, excepting AlwaysOn.
The response time is also very comparable
to AlwaysOn, with a 17% increase for the
Slowly Varying trace and a 23% increase for
the Quickly Varying trace. In addition, we
find that AutoScale has a competitive power
consumption that is approximately 36% less
than AlwaysOn. For the Slowly Varying trace,
AutoScale’s power consumption is more than
the other algorithms. However, the other
algorithms all have extremely high response
times that would violate most SLA’s. For the
Quickly Varying trace, power consumption is
comparable to the other algorithms, but once
again, the other algorithms have extremely
high response times. The exception to this is
LR. However, LR consumes too much power,
even more than AlwaysOn.

It is clear from these results that AutoScale

shows promising results in balancing power
and performance.

7 Future Work

AutoScale shows much promise in balanc-
ing the power-performance tradeoff. In the
future we plan to explore using sleep states
of processors instead of turning off servers
to reduce setup time. However, low-power
sleep states do not yet exist in desktop pro-
cessors, although they do exist in mobile pro-
cessors. We also seek to combine AutoScale

with predictive approaches to better provi-
sion the data center for anticipated load. We
will also see how AutoScale scales with data
center size.

8 Conclusion

Data center costs are mounting each year,
and much of these costs are directly at-
tributable to energy requirements of data cen-
ters. One of the many ways to reduce power
consumption is to dynamically provision the
data center capacity to meet demand with
the minimum number of servers. Compared
to past research that yielded reactive and pre-
dictive approaches, AutoScale performs ad-
mirably. AutoScale is also a simple algo-
rithm and lends itself well to the distributed
nature of modern data centers. We believe
that AutoScale effectively manages power
consumption and meets SLA’s all while be-
ing simple and computationally cheap.

14

References

[1] Greed Grid. Unused Servers Sur-
vey Results Analysis. http:/
/www.thegreengrid.org/en/
Global/Content/white-papers/
UnusedServersSurveyResultsAnalysis,
2010.

[2] Giuseppe DeCandia, Deniz Hastorun,
Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo:
amazon’s highly available key-value
store. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 205-
220, New York, NY, USA, 2007. ACM.

[3] Paul Saab. Scaling memcached at
Facebook. http://www.facebook.com/
note.php?note id=39391378919, Decem-
ber 2008.

[4] L. A. Barroso and U. Holzle. The case for
energy-proportional computing. Com-
puter, 40(12):33-37, 2007.

[5] Michael Armbrust, Armando Fox, Rean
Grifth, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee,
David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the
clouds: A berkeley view of cloud com-
puting. Technical Report UCB/EECS-
2009- 28, EECS Department, University
of California, Berkeley, Feb 2009.

[6] Gong Chen, Wenbo He, Jie Liu, Suman
Nath, Leonidas Rigas, Lin Xiao, and
Feng Zhao. Energy-aware server provi-
sioning and load dispatching for connec-
tion intensive internet services. In NSDI
’08: Proceedings of the 5th USENIX
Symposium on Networked Systems De-
sign and Implementation, pages 337-350,

Berkeley, CA, USA, 2008. USENIX As-
sociation

[7] Andrew Krioukov, Prashanth Mohan,
Sara Alspaugh, Laura Keys, David
Culler, and Randy Katz. Napsac: De-
sign and implementation of a power-
proportional web cluster. In First ACM
SIGCOMM Workshop on Green Net-
working, August 2010.

[8] David Meisner, Brian T. Gold, and
Thomas F. Wenisch. Powernap: elim-
inating server idle power. In ASPLOS
’09: Proceeding of the 14th international
conference on Architectural support for
programming languages and operating
systems, pages 205-216, New York, NY,
USA, 2009. ACM.

[9] David G. Andersen, Jason Franklin,
Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan.
Fawn: a fast array of wimpy nodes.
In SOSP ’09: Proceedings of the ACM
SIGOPS 22nd symposium on Operat-
ing systems principles, pages 1-14, New
York, NY, USA, 2009. ACM.

[10] Anshul Gandhi, Mor Harchol-Balter,
Rajarshi Das, and Charles Lefurgy. Op-
timal power allocation in server farms.
In SIGMETRICS ’09: Proceedings of
the eleventh international joint confer-
ence on Measurement and modeling of
computer systems, pages 157-168, New
York, NY, USA, 2009. ACM.

[11] Qiang Wu, Philo Juang, Margaret
Martonosi, and Douglas W. Clark. Volt-
age and Frequency Control With Adap-
tive Reaction Time in Multiple-Clock-
Domain Processors. In HPCA ’05: Pro-
ceedings of the 11th International Sym-
posium on High-Performance Computer
Architecture, pages 178-189, Washing-
ton, DC, 2005.

15

http://www.thegreengrid.org/en/Global/Content/white-papers/UnusedServersSurveyResultsAnalysis
http://www.thegreengrid.org/en/Global/Content/white-papers/UnusedServersSurveyResultsAnalysis
http://www.thegreengrid.org/en/Global/Content/white-papers/UnusedServersSurveyResultsAnalysis
http://www.thegreengrid.org/en/Global/Content/white-papers/UnusedServersSurveyResultsAnalysis
http://www.facebook.com/note.php?note_id=39391378919
http://www.facebook.com/note.php?note_id=39391378919

[12] Xiaoying Wang, Zhihui Du, Yinong
Chen, and Sanli Li. Virtualization-
based autonomic resource management
for multi-tier web applications in shared
data center. Journal of Systems and
Software, 81(9):1591 - 1608, 2008.

[13] P. Ranganathan R. Nathuji S. Kumar,
V. Talwar and K. Schwan. M-channels
and m-brokers: Coordinated manage-
ment in virtualized systems. In Work-
shop on Managed Multi-Core Systems,
2008.

[14] Peijian Wang, Yong Qi, Xue Liu, Ying
Chen, and Xiao Zhong. Power manage-
ment in heterogeneous multi-tier web
clusters. International Conference on
Parallel Processing, pages 385-394, 2010.

[15] Tibor Horvath and Kevin Skadron.
Multi-mode energy management for
multi-tier server clusters. In PACT-08:
Proceedings of the 17th international
conference on Parallel architectures and
compilation techniques, 2008.

[16] David Mosberger and Tai Jin. httperf-A
Tool for Measuring Web Server Perfor-
mance. ACM Sigmetrics: Performance
Evaluation Review, 26:31-37, 1998.

[17] The Apache HTTP Server Project. See
http://httpd.apache.org.

[18] Brad Fitzpatrick. Distributed caching
with memcached. Linux J., 2004(124):5,
2004.

[19] Michael A. Olson, Keith Bostic, and
Margo Seltzer. Berkeley db. In Pro-
ceedings of the annual conference on
USENIX Annual Technical Conference,
pages 43-43, Berkeley, CA, USA, 1999.
USENIX Association.

[20] IPMItool. See http://
ipmitool.sourceforge.net.

[21] Mod Proxy Balancer Exten-
sion for Apache. See http://
httpd.apache.org/docs/2.2/mod/
mod proxy balancer.html.

[22] Memcachedb. See http://
memcachedb.org.

[23] M. E. J. Newman. Power laws, pareto
distributions and zipf’s law. Contem-
porary Physics, 46:323-351, December
2005.

[24] The internet traffic archives:
WorldCup98. Available at http:/
/ita.ee.lbl.gov/html/contrib/
WorldCup.html.

[25] U.S. Environmental Protection Agency.
Epa report on server and data center en-
ergy efficiency. 2007.

16

http://httpd.apache.org
http://ipmitool.sourceforge.net
http://ipmitool.sourceforge.net
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://memcachedb.org/
http://memcachedb.org/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

	Introduction
	Prior Work
	AutoScale
	When should a server be turned on?
	When should a server be turned off?
	Which server should a request be routed to?

	Experimental Setup
	4-tier Testbed Architecture
	Software Used
	Job Used
	Workload

	Other Algorithms Used
	AlwaysOn
	Reactive
	MWA
	LR

	Results
	AlwaysOn
	Reactive
	MWA
	LR
	AutoScale
	Discussion

	Future Work
	Conclusion

