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1 Audience

This paper is written assuming a working knowledge of the basics of programming language syntax
and semantics. Backus-Naur Form (BNF) is used to define grammars and natural-deduction style
inference rules are used to define logical judgments. Familiarity with typed A-calculi, in particular
features such as product, universal, and recursive types, is assumed. The Curry-Howard correspon-
dence is employed without remark throughout. Other concepts, such as modal logic, the adjoint
calculus, and hereditary substitution, are explained before use. Prior knowledge of these is not
necessary.

2 Motivation

Most formal literature on programming languages accounts for three processes: parsing, typecheck-
ing and execution. Even the ubiquitous process of compilation generally takes us outside the formal
realm; the target language is typically untyped, and arguing that compilation preserves the source
language semantics is done informally if at all. Fortunately, there is active research in this area,
in the form of verified compilers, typesafe assembly languages, and proof-carrying code. However,
there are two processes almost as ubiquitous as compilation that have been mostly ignored by
formal efforts: linking and loading.

We define the \'P-calculus, showing how a typed language with explicit support for linking and
loading may be formalized and implemented. Aside from the straightforward goal of filling a gap in
our formal understanding of computation, we are particularly motivated by the need of ConcertOS,
a project to build a typesafe operating system, for a model of linking and loading. The content of
this work is, however, not specific to ConcertOS.

3 Background

3.1 Modal logic and mobility

We initially expected to use some variety of modal logic as our typesystem. Modal logics are a
family of logics which deal with the concept of necessityﬂ “Necessity” is understood in terms of
“possible worlds”. In general, a proposition may be true in one possible world and false in another.

LAnd its dual, possibility, which we do not consider here



“Necessary” propositions are those true in all possible worlds. In contrast, “contingent” truths
may only be true in “our” world; or at least we only know they are true in our Worldﬂ

Modal logic adds a unary propositional connective expressing that a proposition 7 is “necessary”,
which we write O7. What suggested modal logic to us was that the O operator has been shown
to represent mobile types [2]. The notion of mobile code arises in distributed computation. In
general, code in a distributed system may depend on the resources of a particular computational
node to run. “Mobile” code is code that can run at any node. Modal logic models this if we let
our “possible worlds” be nodes: a necessary proposition is true in every world, just as mobile code
can run on any node. O7 is then the type of a piece of mobile code that returns a value of type 7.

Libraries are akin to mobile code: they are stored on-disk in a format portable to any machine
with the same operating system and instruction set—at least, as long as it can supply the library’s
dependencies. This is the sticking point: modal logic provides no good way to represent libraries
with dependencies. Explaining this problem requires a digression.

3.2 Dependencies

Suppose that O7 is the type of a library with no dependencies that contains code of type 7.
What then is the type of a library that does have a dependency? First, note that the primary
operation on a library with a dependency is linking it against a library fulfilling that dependencyﬁ
Second, libraries with dependencies are defined in terms of the depended-upon thing, as if it were
a free variable. Together these suggest that libraries with dependencies can be viewed as a kind of
function, taking their dependency as an argument, and returning their own contents as a result.

Consider then a library [ that depends on a 7 and produces a 7. If libraries are functions
of their dependencies, perhaps we can give [ the type O — O7p? Unfortunately this does not
suffice, because it is not mobile. Om — O7y is an ordinary function type, and its values are not
necessarily of a form that can be written to disk and shipped between machines the way a library
(even a library with as-yet unfilled dependencies) can.

Can we fix this by adding a surrounding O, giving [ : O(O7; — O7y)? Unfortunately, this still
does not suffice. While this type is mobile, it still uses an ordinary function as the mechanism for
linking against a dependency, which is undesirable for two reasons. First, it means that linking,
which involves calling the function contained in [, can have arbitrary side-effects (eg. nontermination
or malicious behavior), which is clearly undesirable.

Second, it makes partial linking, where we link a library against just one of its several depen-
dencies, impractical. Consider that curried functions must receive their arguments in order; given
f:1 — 1™ — 13 and y : o, I cannot apply f to y without also having some x: 7. I can get around
this by creating a wrapper function:

AT fxy

However, this merely delays the actual call to f until the first argument x is receivedﬁ If fis
the underlying function of a library with two dependencies, this means we cannot do the actual
work of linking the library against its second dependency until we have its first. Real linkers do
not suffer from this problem.

2This is an extremely rough characterization, and ignores many important varieties of modal logic.

3There is also the issue of mutually dependent libraries. For simplicity, and because we believe that it is in practice
quite feasible to avoid such circular dependencies, we ignore this problem entirely.

4Uncurried functions f:71 X 72 — 73 exhibit a stronger version of this problem: they cannot be called until all
arguments are received.



3.3 The adjoint calculus

To deal with dependencies, we turn to Benton and Wadler’s adjoint calculus [1]. Adjoint calculi
are a family of A-calculi that can be used to “encode” both modal logic and other logics such as
intuitionistic linear logic. Here we concern ourselves only with its relation to modal logic.

The adjoint calculus “splits” modal logic into two layers, an “upper” and a “lower”. The upper
layer corresponds to necessary or mobile things—for us, libraries. The lower layer corresponds to
ordinary, contingent things—for us, an ordinary programming language to which we wish to add
explicit support for libraries. Thus we split our types into upper-layer library interfaces I and
lower-layer types 7; and our terms into libraries L and ordinary terms e. In Figure [I| we give the
syntax and relevant rules of our version of the adjoint calculus, which we proceed to develop into
the AP-calculus.

Syntax:
library contexts A = | Aju:l term contexts I' == |, z:7
interfaces I == [7]] .. types T u= |[I]]..
libraries L == u|codee| ... terms e = x|libL |uselL

| loadu=ejiney| ..

Judgments: AFL:[ and A;TFe:T
Rules:
A;-Fe:T 0 AFL:[7T]
At codee: [T] A;ThuseL:T [E]
AFL:IT 1] A;Thep: [I] Au:LiTkey:T
A;THIbL: |1

A;T'Floadu=ejiney: 7

Figure 1: Syntax and typing rules of an adjoint calculus for libraries

In place of the singular modal operator O, we have two operators. The first, [7] € I, projects
from the term to the library layer; it is the interface of a library containing code of type 7. The
second, |I|, projects from the library to the term layer; it is the type of a run-time reference to a
library with interface I. Thus the modal O7 becomes |[7]]: the type of a run-time reference to a
library containing code of type .

As we have two layers, we also have two contexts: A for library variables and I' for term
variables. Terms may depend on libraries, so the typing judgment A;I' F e : 7 for terms involves
both contexts. However, the typing judgment A F L : I for libraries lacks a term context, preventing
libraries from depending on arbitrary run-time values. Thus to embed a library in a program via
the lib operator, we must throw away our I' context, as in the |I] rule. Similarly, to embed code
into a library, it must typecheck with an empty term context, as in the [I] rule. The [E] rule
is straightforward: if we have a library L : [7] containing code of type 7, we can use it within a
program to retrieve the embedded 7. |E| is only slightly more subtle: given ey : |I], a reference to
a library with interface I, we can bind a library variable w: I to the library it refers to to.

3.3.1 Extending the library layer

The only library-layer operator needed to encode modal O is [7]|. But having separated the two
layers, we are free to add other connectives to I. It is this additional expressiveness that suits the



adjoint calculus to our purposes: library-layer connectives let us express the the “super-structure” of
a library, beyond merely the type of the code it contains. In particular, we can express dependencies
as library-layer functions, distinct from ordinary term-layer functions:

Io=.. |11
L:=..|X:I.L|LL

This cleanly separates the library-level computation of linking a library against its dependencies
from ordinary run-time function application. We can thus avoid arbitrary link-time side-effects
simply by not introducing any side-effectful operations to the library layer. Partial linking, as we
shall see, is more complicated, but still doable.

In general, by adding library layer connectives, we express that these correspond to the structure
of the library itself, not the code it contains. For a concrete example of this distinction, let us first
add library products:

Ii=..|IxI
L:=..|(L,L) | mL

Now, consider the following C-language header files:

File: A.h | File: B.h
int x; struct { int x; int y; } p;
int y;

A library implementing the interface expressed by A.h will contain two labels, each of type
int. A library implementing B.h will contain one label of type struct {int x; int y;} (in other
words, a pair of ints). The interface of A.h is thus best represented by [int]| x [int] (involving a
library-layer product), while B.h’s interface is [int X int]| (involving a term-layer product).

3.3.2 Polymorphism

Before presenting the full A'"-calculus, one complication remains. The adjoint calculus we have
presented so far lacks parametric polymorphism, the ability to universally quantify over types.
Adding support for this is straightforward syntactically, but requires adding a new context ¥ for
type variables, which raises the question of how this context behaves in our two-layer system. Is
U discarded like I' when we move into the library layer, or preserved like A? For the sake of
expressivity, we’d like ¥ to be preserved, otherwise it becomes impossible to implement a function
with a type such as Va. |[a]] — a. Since types 7 are conceptually lower-layer things, however, it’s
not immediately obvious that this is safe. Luckily for us, it turns out that it isE|

4 The MP_calculus

The AP calculus is a polymorphic adjoint calculus with functions and products at the library layer,
and functions, universals, and recursive types at the term layer. The library-layer connectives we
have discussed already; the term-layer type operators were chosen to make the term layer Turing-
complete with a minimum of bother, the better to model real programming languages and so serve
as a proof of concept. The syntax and typing rules are given in Figure

SExplanation and proof to be given in full thesis.



Syntax:

I == 71| |I—>1]|IxI
T u= |I||7T—=7|a|Va.T|pa.t
L = w|M:I.L|LL| (L,L) |mL]|codee
e == x| Ar:T.elee|Aae|elr]]|roll e | unrolle
| libL|useL |loadu=c¢eine
Judgments:
W I [ iface U:AFL:T
U b 7 type U:A;T'ke: T e valish
Rules:
U I iface WEmtype WETtype
U, o,V F a type Uk |I] type U 71 — 7 type
U, a7 type U, a7 type
U I Va. 7 type U pa. T type
U 7 type W+ I iface W Iy iface W I iface W Iy iface
Ut [7] iface U+ I, — I iface W I x I iface
N ZWANETEN BVANESRTR |
\I/;A,’U,:Ill—L:IQ \I/;Al_Ll:Il—>IQ \I/;Al—Lgtjl
\I’;Al_)\Ule.Llll—)Iz \IJ;AI_LlLQIIQ
W;A"thfl \I’;Al—LQZIQ \I/;Al—Ltflxlg
U A (Ly,Lo) : Iy x Iy WA LI
evalish U:A;-Fe:7 U:AFL: (7]
U: Ak codee: [1] W:A;Tkusel :7
LEWANS IR o R
AT z:mbe:m U:A;Tker:mm =1 VA THe:n
U A THEA:m.e:m — 7 U:A;T'Fepeg:m
U o A;THe: T U7 type U;A;TkHe:Va.r
U, AT HAace: Va7 U AT Eelr] [ /a] T
U, AT Fe: [pa.m/a] T AT Fe: pa. 1
U AT Frollyg. e pa T U A;T Founroll e @ [pa. 7/a) T
U ARL:T U:AFL: (7] U:A;T ke |[I] YA u:I;T ey 7
U AT HIbL: [ U:A;T'FuseL:T U:A;T'Fload u=-¢e1iney: T
e valish
Az :T. e valish Aa. e valish roll .. - € valish lib L valish

Figure 2: Syntax and typing rules of the A®-calculus



4.1 Suspensions versus values

Careful inspection of Figure [2] reveals the unusual judgment e valish. This is meant to convey that
e is close enough to being a value as makes no difference. The troubling rule here (the reason we
don’t just call it e value) is the axiom lib L valish, which puts no constraints on the form of L. We’ll
see why this is acceptable later; for now, e valish can be read as if it said “e is a value”.

e valish notably makes an appearance as a premise of the [I] rule:

evalish W:A;-Fe:T
U: At codee: [7]

In contrast with the adjoint calculus presented so far, the A"-calculus requires that in the
library code e, the enclosed term e be a value. Without this constraint, we are forced into an ugly
choice: either evaluating a library term L may involve evaluating embedded terms e, bringing back
the danger of unrestricted side-effects during linking; or, we must understand codee as a suspension
that delays evaluating e until it is extracted via use. The former is clearly unacceptable. The latter
is a principled solution, but fails to capture the semantics of real-world libraries. We therefore add
the e valish restriction, on the grounds that it better models real-world semantics at a neglible cost
to expressivity.

4.2 Partial linking and hereditary substitution

As yet we have not presented dynamic semantics for the A"™-calculus. The primary issue we face
in constructing such a semantics is accounting for partial linking: the ability to link a library with
multiple dependencies against any one of them independently. Since we are representing libraries
as functions of their dependencies, this reduces to the problem of partial evaluation: reducing a
function applied to some known and some unknown arguments to a function of only the unknown
arguments.

Partial evaluation is usually considered in the context of compiler optimization, but unfortu-
nately we do not have the luxury of treating it as a mere optimization. Luckily, there is a standard
technique for achieving this, known as hereditary substitution. Hereditary substitution can intu-
itively be thought of as keeping all terms “as normalized as possible given their free variables” at
all times. As such, all the actual work of reduction in a system of hereditary substitution occurs
during substitution—when we eliminate free variables.

Hereditary substitution requires separating the terms being dealt with (in our case, libraries)
into “canonical” and “atomic” forms. We give the splitting of libraries L into canonical M and
atomic R in Figure [3| and the corresponding changes required in other parts of the A-calculus
syntax. Canonical forms consist of introduction forms (Au:I. M, (M, M), code e) and embedded
atomic forms (at R). Atomic forms consist of a series of elimination forms (R M, m; M) applied
to a “head” variable (u). Directly replacing this head variable with a canonical term, as in naive
substitution, would be syntactically invalid. Thus, only irreducible uses of elimination forms are
expressible. Hereditary substitution is the algorithm by which we replace variables without violating
this syntactic constraint, and its rules are also given in Figure

The translation from the original A"-calculus into the form needed for hereditary substitution
can be accomplished without much dif‘ﬁcultyﬂ and it is this translation that justifies the laxness of
the judgment e valish. Post-translation, lib L becomes lib M, and thanks to the syntactic restrictions
of hereditary substitution, M is guaranteed not to require further reduction (modulo containing
some free variables). In light of this we rename the judgment to e value.

STranslation to be given in full thesis.



Modified syntax:

u|RM|mR

M == atR|Xu:I.M | (M,M) | codee
R
e u= ..|libM |useR

Modified typing judgments:
W:AF L: 1 splitsinto V;AFM: 1 and V;AFR: T
e valish is replaced by e value

Modified typing rules:

U AFM:T VAR [7T]
WA T HlibM: | U:A;T'FuseR: 7T

UV:AFR:T evalue U;A;-Fe:T
U;AbatR: T U A u: I, A Fu: T U: At codee: [7]
WA u:l1 =M: I UAFR: I -1, V;AFM: 1L
AR LM : 1) — I UV:AFRM: I
\I/;Al—Mllfl \I’;AFMQZIQ \I/;Al—Rifleg
U A E (M, M) : I) x Iy U:AFmR:I;
Ax ;7. e value Aa. e value roll . - value lib M value

Substitution judgments: [M/u|M — M, [M/ulR — M, [M/ule —e

Substitution rules:

[M/u]R — N [M/u]e — ¢
[M/u]at R — N [M/u] code e — code €
[M/ul]N - N (u # v) [M/u] My — M{ [M/u] My — M;
[M/ulAv:I.N — Mv:1. N’ [M /u] (M, Ma) — (M7, M)
(u 7 v)
[M/u]u — M [M/u]v — atw
[M/ul|R — atR" [M/u]N — N’ [M/u] R — at R/
[M/u]R N — at R N’ [M/u]m; R — m; R’
[M/ulR— M:1.0 [M/u]N — N [N/v]O — O’ [M/u] R — (M, M)
[M/u]R N — O’ [M/u] 7 R — M,
[M/u] N — N’ [M/u] R — at R/ [M/u] R — code e

[M/u]lib N — lib N’ [M/u]use R — use R/ [M/uJuse R — e

(All other [M/u]e — e rules just distribute the substitution across subexpressions.)

Figure 3: Modified A"P-calculus using hereditary substition



4.3 Dynamic semantics

Having defined hereditary substitution we can proceed to define a full dynamic semantics for the
modified A"™-calculus, given in Figure

Judgments: e — ¢

Rules: . .
e; — €] e1 value ez — €
] 7 .
el eg — €] ez e1 ex — e e (Ax:T.e1) e — [ea/x] €1
/ /
€1 — € er value ez > ey e e e1 value ey value
/ / /
(e1,e2) — (€], e2) (e1,e2) — (e1,€h) mie > e m (e1,ea) — e
e e
elr] — €'[7] Aa.e[r] = [t/a]e
e e e e e value
rollya. - € > roll o - € unroll e = unroll € unroll (roll .. - €) — €
/ /
e €} [M/u] ea — €}
load u = €1 in ez +— load u = €] in ey load u = lib M in e +— €}

Figure 4: Dynamic semantics of \'®-calculus with hereditary substitution

Proofs of progress and preservation will be given in full thesis.

5 CAM'P

The “Categorical Abstract Machine”, or CAM, is a simple abstract machine used as a compilation
target for A-calculi and other functional languages. We extend a simplified version of the CAM
with instructions that implement our hereditary-substitution library operations. Efficient imple-
mentation requires careful use of explicit substitutions to avoid deep-copying. Details will be in
full thesis.

6 Implementation

We have implemented, in Standard ML, a typechecker and compiler for the A"™-calculus, translating
through the A"-calculus with hereditary substitution, targetting the CAMUP. We have also imple-
mented a bytecode interpreter for the CAMYP (written in C). Link to source code and examples
will be included in full thesis. Current work may be found at https://github.com/rntz/ttol.
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