
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Applications of Spectral Algorithms

Anonymous Author(s)
Affiliation
Address
email

Abstract

Spectral algorithms exploit information on the graph spectrum to gain compu-
tational speedups. Advances in spectral algorithms, such as spectral sparsifiers
and fast symmetric diagonally dominant (SDD) system solvers, have created very
powerful tools for the algorithmist. In this thesis, we would study the applications
of spectral algorithms on a selection of problems where different classical algo-
rithms are incorporated into a common spectral framework. Particularly, problems
which can be represented as undirected graph are studied. The key advantages of
such an approach is that it allows a common data structure, the graph laplacian,
and a common subroutine, the SDD solver, to be shared across the various algo-
rithms. In the application portion of the thesis, we using the grpah optimization
framework in a spectral setting to perform various image processing tasks such
as image restoration and segmentation. By apprioperiate choice of parameters,
the graph optimization framework is capable of expressing classical signal pro-
cessing and control theory algorithms such as guassian low pass filters. Also we
show that it can be a viable upstream preprocess which can significantly boost the
performance of downstreams processes such as segmentation.

1 Introduction

1.1 Previous Work

Currently, the state of the art solver approximate flow algorithms involve solving electrical flows
[CKM+11] [KMP10]. This involves solving optimization problems by computing multiple feasible
electric flows to a graph and using the multiplicative weight schemes to solve for desired norms
on the solution. In this thesis, we show that many graph algorithms have a natural formulation in
spectral graph framework.

2 Formulation

In the spectral graph approach, the problems are presented as optimization problems on a weighted
undirected graph that has an associated set of reweighting function on subsets of edges which we
call clusters.

2.1 Graph Optimization

We solve problems in the following form
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Informally speaking, S is the set of vertices which takes in the input. Hence the XdS = s since the
values s are fixed. X is the set of vertices which are our output. The edge set E is determined by
our belief on the vertices. Also the reweighting function wc, wij is used to expressed the task which
we are going to solve. Through difference choices of the weights, we can express different norms
for different applications. Currently, we can express L1, L2, L∞ norms in this framework.

2.2 Spectral Cuts

find x, Lx = λDx

Solving the above system of equation gives the k-spectral cuts. This is the same problem as spectral
clustering. However, instead of doing an expensive spectral decomposition, we can iteratively com-
pute the k eigenvalues and eigenvectors using the SDD solver. Also we can refine the spectral cuts
using spectral rounding approaches which are stuided in [KMT09]

3 Applications

Currently, we are applying this approach to image processing problems, even though it can be easily
adapted to any undirected graph based problem. We are currently working on conversion of direct
graphs problem to undirected graphs problem.

3.1 Signal Processing

In classical signal filtering approaches, prior belief of the noise structure is encoded in the choice
of the filter. However, classical filters are unable to express mixtures of priors due to the lack of a
framework. For example, given a step signal corrupted by gaussian noise,

We can encode a Gaussian belief on the the noise structure by using a L2 norm on the clusters
running across the X − S and encode a laplacian belief on the edges within X . We are able to
achieve the following result.

Note that the solution recovered simulatenously statisfies both beliefs on the noise and signal struc-
ture. This has many applications in both signal processing and control theory.
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3.2 Image Denoising

Noisy optical coherence tomography image of retina denoise image that preserve key features.

In this application, using L1/L2 total variation minimization algorithms we are able to denoise
images obtain from optical coherence imaging of the retina. Using a combination of the L1/L2
reweighting schemes, remove noise while preserving the sharpness between the nerve fiber layers.
The nerve fiber layers are of clinical importance as anomalities often are indication of diseases.

3.3 Spectral Segmentation

OCT image of retina top 4 cuts of the OCT image

Using the spectral cut algorithm, we are able to obtain segmentations of very thin nerve fiber layers.
This approach is superior over edge based segmentation techniques as we can incorperate different
priors on the segmentation. In this example, we incorperate the prior that nerve fibers are thin
horizontal strips.

3.4 Segmentation Guide

Original lung tissues Naive segmentation using MATLAB Aggressive denoising Same segmentation algorithm

If specialized segmentation algorithm are preferred, we can use the denoising result as a guide for
the downstream segmentation algorithm. Since denoised result remove local noise while maintain-
ing global features such as long edges, it has a tendency of boosting the accuracy of the downstream
algorithms. In this example, MATLAB’s builtin segmentation algorithm is used to segment the nu-
cleus (the black dots) of lung cell in a lung scan. Since the algorithm uses only local morphological
operators, it is naive and and not robust. However, by doing denoising and using the denoise image
as a guide, we can get closer segmentations.
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3.5 Color Correction

Color image Globally stable features

By setting the apprioriate ratio between the reweighting schemes of the input layer and the output
layer, we are able compute globally stable features of images such a global illumination. These
are features that likely to remain unchange under local transformation and they appear different
scale spaces. Previous approaches that compute such features uses gaussian filtering which is an L2
optimization essentially. Our approach allows the preservation of sharp features such as edges. Such
features are of interest to applications such as SIFT and object tracking.

newpaper scan with visual artifect corrected image

In addition to grayscale images, we can treat color images as graphs with vertices in 3 dimensional
space, where each pixel is a combination of the RGB channel. We can reformulate the denoising
problem as color correction if there are visual artifect that are present in a single color channel. This
would have applications in optical character recognition tasks as the characters are preserve while
large artifects, such as the yellowing of newspaper, are corrected.

3.6 Signal Boosting

blood platelet with visual artifects and occlusions boosted image

Combing all the approaches, we can boost weak signals by iteratively removing global features
while accentuating local features. However, the algorithm is able to distinguish noise from true
local features, such as blood platelets in the above example.
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