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ABSTRACT
 
Problem Diagnosis and debugging in concurrent environments such as the cloud and popular distributed systems 
frameworks has been a traditionally hard problem. We explore an evaluation of a novel way of debugging 
distributed systems frameworks by using system calls. We focus on Google's MapReduce framework, which enables 
distributed, data-intensive, parallel applications by decomposing a massive job into smaller (Map and Reduce) 
tasks and a massive data-set into smaller partitions, such that each task processes a different partition in parallel. 
Performance problems in such systems can be hard to diagnose and to localize to a specific node or a set of nodes. 
Additionally, most debugging systems often rely on forms of instrumentation and signatures that sometimes cannot 
truthfully represent the state of the system (logs or application traces for example). We focus on evaluating the 
performance of the debugging these frameworks using the lowest level of abstraction – system calls. By focusing 
on a small set of system calls, we try to extrapolate meaningful information on the control flow and state of the 
framework, providing accurate and meaningful automated debugging.
 
I. INTRODUCTION
 
Performance problems are both common and inevitable in large scale computing, with root causes varying widely, 
from hardware issues to logical errors in software. One of the most prevalent forms of large scale computing is 
afforded by Google’s MapReduce framework. MapReduce is a programming framework and paradigm for parallel 
distributed computation on commodity computer clusters [1]. The MapReduce framework allows programmers to 
easily process large data, by abstracting away low-level details of distributed execution from user code and as a 
result, the framework has gained enormous popularity both in academia and the industry. The leading open-source 
implementation, Hadoop is used daily at large companies such as Yahoo! and Facebook to process petabyte-scale 
data [2] [3]. 
 
Debugging MapReduce frameworks is a conventionally hard problem due to it massive scale and distributed 
nature.  Often various forms of instrumentation have been used to debug MapReduce frameworks, that include 
programmer-chosen debugging logs, MapReduce system logs, application traces, etc. Although these methods 
have various benefits, they are often highly dependent on programmer responsibility and often have a limited use 
in a distributed setting. Although, logs, traces and its variants may provide a verbose description of the state of a 
current node in MapReduce frameworks, they often only provide information from the context of the application, 
node or environment they are running and cannot be effectively used in the use of debugging the overall state of the 
MapReduce framework.
 
Another issue that makes MapReduce profiling difficult is the nonhomogeneous performance of MapReduce nodes. 
Unlike conventional distributed frameworks where most nodes in the framework can be thought of as replicas, 
MapReduce nodes make no guarantee on being identical replicas. Since we do not know the scheduling of tasks 
on nodes, it is inevitable that certain nodes may be used or accessed more often than others. Some reasons for this 
could be the locality of accesses to a certain node, a shorter network latency from the master node or Namenode or 
the nature of a type of MapReduce job. This node asymmetry is further complicated because MapReduce follows 
a master-slave architecture and as a result, master nodes are qualitatively different from slave nodes. Since our 
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black-box debugging technique has no guarantee on being provided with information on which nodes are masters or 
slaves, it becomes even harder to accurately localize a fault to a given node.
 
Of the most interesting and relevant problems to localize in such systems are errors that do not cause an 
outright “crash” in the system, but cause significant degradation in the system’s overall performance. Our work 
with system calls targets problem diagnosis in the distributed MapReduce framework used for high performance 
computing (HPC), and focuses on diagnosing any performance issues that might occur within the system. 
Specifically, we focus on diagnosing disk and network related issues that can affect MapReduce performance. Our 
work seeks to explore and evaluate the extent to which syscall-based instrumentation is useful in diagnosing these 
problems in MapReduce frameworks.
 
The contributions of this paper are -- (1) a new approach that exploits system call instrumentation to automatically 
and transparently diagnose performance problems in MapReduce frameworks, (2) a statistical diagnosis algorithm 
that correlates system calls occurrences and timings to localize a node that is responsible for a performance problem, 
and (3) a semantic diagnosis algorithm that correlates error numbers ..
 
II.  BACKGROUND & PROBLEM STATEMENT
 
A. MapReduce Framework
 
A MapReduce job consists of two main abstractions, a Map task and a Reduce task that are specified by the 
programmer. The Map task is first applied locally on each node on some segment of the input data, and its ouptut is 
then acted upon by the Reduce task.  The MapReduce framework splits the input dataset into smaller independent 
partitions, and creates multiple instances of Map and Reduce tasks to operate on each partition in parallel.  Another 
intermediate phase before the Reduce phase is the Shuffle phase that is transparently managed by the MapReduce 
framework. This phase sorts the output of the Map phase and feeds it to respective Reduce tasks. 
 
Our work focuses on Hadoop, which is an open-source, Java implementation of MapReduce: Hadoop MapReduce 
programs consist of Map and Reduce tasks written as Java classes.
 
B. Hadoop Architecture <largely based on the visual log based paper>
 
Hadoop has a master-slave architecture as indicated in Fig 1., with a single master and multiple slave hosts. Hadoop 
involves an execution layer which executes Map and Reduce tasks, and the Hadoop Distributed Filesystem (HDFS), 
an
implementation of the Google FileSystem. The master node runs the JobTracker daemon, which is responsible for 
scheduling task execution on slaves and implements fault-tolerance using heartbeats sent to slaves. Another daemon, 
the NameNode provides the namespace for HDFS in the framework.  The TaskTracker daemon, is run by each 
slave host and is responsible for executing Map and Reduce tasks locally on each node. Additionally. the DataNode 
daemon, stores and serves data blocks for HDFS. In Hadoop, each daemon is a Java process, and natively generates 
logs which record error messages, as well as system execution events, e.g. starts and ends of Maps and Reduces.
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Fig 1 : Hadoop Architecture  <I’ll replace this  with a better image soon>
 
C. Motivation
 
We propose the use of system-calls as a novel way of debugging MapReduce frameworks, as we believe that syscall 
event-streams present a rich source of statistical and semantic information for problem diagnosis in MapReduce 
frameworks. Syscalls are preferred in MapReduce frameworks  for the following reasons:
 

(i) High Reliability. Syscalls in various architectures are essentially always consistent and provide a 
uniform way of analyzing a given characteristic, as opposed to application traces or programmer-inspired 
debugging that can be variable and unreliable.
 
(ii) Low Overhead. Syscalls tracing can be much cheaper than other alternatives of debugging.
 
(iii) No dependence on Hardware Architecture. Often many debugging solutions assume a given 
architecture, which is not a safe assumption in MapReduce frameworks that themselves make no 
assumptions on the underlying system architecture of the cluster/system.
 
(iv) Deep insight into underlying system information. Syscalls involve switches to kernel space and can 
provide arguably superior information on kernel decisions, the involved file system, networking, threading, 
etc. Such rich insight is rarely achieved in alternative debugging solutions that do not leverage the use of 
system calls.

 
D. Goals
 
(i) Application-transparency. There should be no modifications to current MapReduce programs or software. Our 
approach should ensure it is independent of the underlying MapReduce software or operation.
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(ii) Minimize false-positive rate. Our approach should be able to correctly distinguish between anomalous behaviour 
with a low rate of false-positives.
 
(iii) Problem Coverage. Our approach aims to diagnose performance problems, system misconfigurations, resource 
exhaustion or degradation and terminal errors that result in the termination of the MapReduce instance.
 
E. Non-Goals
 
(i) Code-level debugging. We do not aim to provide indicators of where software might be failing, but only seek to 
identify the culprit node in the MapReduce framework that is experiencing problems.
 
(ii) Optimized instrumentation overheads. Our current implementation of syscall-instrumentation imposes 
significant monitoring overhead on I/O in the MapReduce system and this paper focuses only on an evaluation of 
proof-of-concept implementation that can provide automated performance debugging in MapReduce frameworks.
 
F. Assumptions
 
(i) A majority of the MapReduce nodes exhibit fault-free behaviour.
 
(ii) All of the MapReduce nodes have identical hardware configurations, memory, network access, etc. This is 
not an unreasonable or unrealistic assumption as most instances of MapReduce clusters are designed to have 
the same “technical specifications”, as varying specifications can only contribute to a bottleneck in the overall 
performance of the system. 
 
(iii) Time on each MapReduce node is synchronized. We need this assumption, since we use time-based syscall 
instrumentation to correlate behaviour across nodes in the MapReduce framework.
 
III. SYSTEM CALL INSTRUMENTATION
 
A. Tools 
 
We are using the unix tool strace to attain syscall instrumentation. strace provides various utilities that 
are useful in attaining time-based and count-based syscall instrumentation on a running MapReduce instance. 
Specifically we use two modes of strace:
 
(i) strace -cf. This provides the following information --

● Total calls made to a set of chosen syscalls
● Average time spent for each syscall
● Number of failed syscalls
● Percentage of time of spent in the syscall with respect to other monitored syscalls

 
(ii) strace -fttt. This provides a time-based log that prints out syscall invocations with their arguments, 
which can be used to trace the control flow of the MapReduce instance in a distributed manner.
 
The -f flag in strace ensures that child processes spawned on a given node are also recursively monitored and 
profiled.
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B. System call scope
 
We focus on a small set of syscalls that to our knowledge can be used in determining common performance and 
erroneous issues in a MapReduce framework. We focus on 2 primary classes of syscalls - network and filesystem 
related syscalls. We also monitor the syscall execve() and its other variants.
 
Network related syscalls:

● accept() (accepts a network request to connect)
● connect() (sends a request to connect to a port)
● bind() (adds an address to a given connection)
● socket() (creates a connection socket to listen or broadcast across the network)

 
Filesystem related syscalls:

● access() (checks if a file can be accessed by a process)
● stat() (gets information on a file)

 
Other syscalls:
execve() (runs a process)
 
C. Justification for choice of System-calls
 
Network related syscalls:
We believe that the above syscalls form the basis of networking at a low level and performance of network 
communication can be estimated by analyzing the performance of these syscalls. For example, socket() gives us 
an estimate of the number of valid connections that are currently open, while the remaining syscalls give us a better 
understanding of the behaviour of network requests and responses in the MapReduce framework.
 
Filesystem related syscalls:
We believe that any filesystem access much use the following two methods at least once and as a result paint a good 
picture of how the filesystem is used and how well it performs.
 
Other syscalls:
We believe that execve() and its variants provide an idea of how a spawned task performs on the overall in the 
MapReduce framework, and as a result can be useful in providing information any underperforming or terminal-
error prone error nodes.
 
IV METHODOLOGY
 
A. Experimental Setup
 
We perform our experiments and instrumentation on a cluster of <Specific tech specs to filled in>. The machines 
run in stock configuration and with no background tasks. The results we report are based on Hadoop MapReduce 
jobs being run on 6 machines, with a single master node and 5 slave nodes. Additionally, we restrict the number 
of maximum maps to be 4 on each node and the number of maximum reduce tasks as 4 on each node. However,  
Hadoop’s architecture ultimately decides the number of map tasks based on the input the MapReduce job acts on. 
Experimentally, for our workloads this ends up running 2 map tasks on each node and 1 reduce task on each node.
 
To ensure a consistent experimental setup, we reboot each machine immediately prior to the start of each  
experiment. This reboot process in detail is as follows: 
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1. Each node is a rebooted
2. Time synchronization is performed at boot-time using ntpdate
3. NFS file daemons are restarted on each node
4. NameNodes in each Hadoop node are formatted
5. A data transfer of the relevant files into appropriate HDFS directories is performed
6. A source sync is performed
7. Each node is put to sleep for 30 seconds

 
From here we run a given workload and either run a control run (no fault injection) or inject a given fault. Once the 
workload begins, we monitor the syscall activity with strace and record the local output of strace on each node. 
After the workload is finished, we run into the diagnosis phase if a fault was injected. Here we analyze all the logs 
from each node and make an assertion on which node is a culprit node in the setup, and diagnose it as a problematic 
node with a given cause.
 
B. Workloads:
 
We run one of two possible workloads. The first workload wc is a naive MapReduce wordcount of each word 
occurring in a relatively large corpus of 100000 words. The second workload sort sorts 100000 integers. We run two 
instances of this program, one as a control experiment and one instance with a certain fault injected into a specific 
node at a given time and for a certain duration (360s in our setup). We have designed a framework that is able 
to run strace on all the nodes in MapReduce cluster and synchronize this information across the nodes. After 
the experiment terminates, we collect the log information in an automated manner and diagnose a possible bug or 
problem on a specific node in the MapReduce instance, by analyzing the syscall instrumentation. We evaluate the 
discussion of common faults such, which specifically are -
 
C. Performance problems:
 
(i) disk-hog. In our setup we write 2GB chunks to the disk and “hog” access to the disk for a fixed time period.
 
(ii) network-hog. In our setup we perform three levels of network-hog, by dropping 5%, 20% and 50% of the 
packets in a network stream for a fixed time period.
 
D. Statistical Syscall-based diagnosis
 
In this approach, we build a histogram of a syscall counts for a given syscall for its average duration. We then use 
some predefined analysis to automatically distinguish any anomalous behaviour. We go into detail into predefined 
analysis later. In short, we hypothesize syscall behaviour in an anomalous setting and see if a given node fits that 
behaviour, and if so flag it as a culprit node. This analysis essentially considers a histogram of each syscall (number 
of invocations that have a certain time) as a Probability Density Function (PDF) and checks if a given node’s syscall 
instrumentation passes a given threshold and/or fits a certain behaviour. This then allows our method to indicate a 
certain type of failure or problematic performance in a given node. Based on these indicators, if we realize that a 
certain predetermined threshold is exceeded in these tests, then we can diagnose a node as being faulty and provide 
its cause.
 
Semantic Syscall-based diagnosis
 
<Need to talk to advisor about this >
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V. RESULTS AND DISCUSSION
 
Very Summarized Results (only Statistic for now. Semantic analysis will be completed after talking to advisor).
 
A. Terminology
 
We define diagnosis success as the ratio of runs where a fault-injected node was correctly identified with the right 
cause over that of all fault-injected runs for a particular fault. If we incorrectly identify a node or provide a wrong 
cause, we contribute this run to a false positive run and define false positive to be the ratio of false positive runs over 
all fault-injected runs for a particular fault.
 
B. Results: Statistical Syscall-based diagnosis
 
(i) disk-hog
 
We realize that for disk-hog behaviour we have the following characteristics for a faulty node that is experiencing a 
significant disk-hog load:
 

● Majority of process’ time is spent in a stat() syscall. Since the node is experiencing a disk-hog, it takes 
it a much larger time to access file information for files. Since MapReduce files are allocated in blocks of 
at least 128MB, most of these files are stored on disk, and a disk-hog will significantly increase the time 
needed to access accurate information on the state of the file.

● The average time spent in a stat() call is significantly higher than that of other nodes. Since disk-hog 
is affecting a common distributed filesystem, the HDFS, we see that it should take a longer time for file 
information to be accessed.

● With high occurrence, a much smaller chunk of the process’ time is is spent in the execve() call as 
compared to that of other nodes. Since a large amount of time is spent in accessing file information, we 
hypothesize that either the Hadoop schedulers schedules a task on other nodes till the the task can be run 
normally, or that a large file-related time reduces the percentage of time spent in other non-file related calls 
such as execve()

● Occasional very high access() times. Permissions for accessing a file can be reduced when the node is 
experiencing a disk-hog in a distributed file system, where other nodes are also possibly accessing the same 
file (if it is not replicated sufficiently on other nodes).

 
We were able to diagnose disk-hog faults with a diagnosis success of 1.00. Our false positive rate was 0.00.
 
(ii) network-hog
 
We realize that for network-hog behaviour we have the following characteristics for a faulty node that is 
experiencing a significant network-hog load:
 

● A significant increase in connect() latency. Since the faulty node is experiencing a network-hog, it follows 
that there should be an increased latency for making an end-to-end connection with another listening/
broadcasting network port.

● A significant drop in accept() times as compared to that of other nodes. Non-faulty nodes can accept 
connections normally, however because the faulty node is experiencing a network-hog, it cannot validate 
and accept a connection as fast as non-faulty nodes. 
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● More marked exhibition of the above behaviour at higher network-hog levels. This intuitively follows since 
the greater we hog the network, the more apparent the effects it would have on the syscalls responsible on 
handling network-related information and flow.

 
 
We summarize our results below:
 

Level of network-hog False positive rate Diagnosis success

5% 0.00 0.76

20% 0.00 0.84

50% 0.00 1.00

 
 
C. Results: Semantic Syscall-based diagnosis
 
<NEED TO DISCUSS with advisor >
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TODOS:
<Talk about different workloads and their minimal effect on diagnosis algorithm in detail after discussing with 
advisor>
<Discuss Future Work + overhead in method>
<Acknowledgements + Biblio>
 
<Look into future work of DRAM clusters, which links well into embedded and cloud computing. >
http://www.youtube.com/watch?v=lcUvU3b5co8&fb_source=message
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