
Automatic Heap Exploit Generation

Brent Lim Tze Hao, Advised by Professor David Brumley
Carnegie Mellon University, Pittsburgh, PA

{brentlim, dbrumley}@cmu.edu

Abstract

The automatic exploit generation (AEG) challenge is, given a program, automatically find vulnerabil-
ities and generate exploits for them. Avgerinos et al showed that, given the source code of the program,
AEG was possible for certain stack smashing and format string exploits. In Automatic Heap Exploit
Generation (AHEG), we do away with the need for source code and we extend AEG to automatically
find heap bugs and generate heap exploits on applications running on Windows XP SP3. Our contribu-
tions are: 1) we show how techniques developed by Avgerinos et al generalize to binary-only analysis,
2) we propose memory tagging, a technique used to infer the class of data, as opposed to the type of data,
base on semantic analysis of the program, 3) we introduce ”2-steps exploits”, which extends Avgerino’s
approach to exploit generation to heap exploits 4) we build an end-to-end system that takes executables
on Windows XP SP3 and automatically generates crashing inputs against them.

1 Introduction
Avgerinos et al showed that it is possible to automatically discover vulnerabilities and generate control
flow exploits, given only the source code of the target program [1]. The main idea of his work was to use
preconditioned symbolic execution to quickly search for pathological paths in the program and imposing
additional constraints on the crashing input so that the solution to these constraints is the exploit string.

This work builds heavily on and extends the work by Avgerinos et al. In particular, this work addresses
two of the common criticisms against AEG: 1) AEG was limited to stack-based buffer overflows and format
string exploits, which are regarded by some as ”trivial” exploits and 2) AEG required access to the source
code of the program.

This paper develops techniques and a proof-of-concept for automatic heap exploit generation (AHEG)
on executables compiled to run on Windows XP SP 3 on an x86 architecture and stripped of debugging
information.

Contributions
1. We develop Simple ASM, a subset of the x86 instruction set rich enough to express real-world pro-

grams. We provide the translation from x86 to Simple ASM, and show techniques developed in AEG
extend to programs expressed in Simple ASM.

2. We propose memory tagging, a technique used to infer the class of data, as opposed to the type of data,
based on semantic analysis of the program. For example, consider malloc(strlen(get user input()))
and malloc(get user input()). In both examples, the user can control the size of memory allocated by
malloc and in both cases, the function malloc expects an argument of type int. However, the actual
user input to influence the same outcome differs. In other words, the predicate imposed on the user
input differs. For example, to get the program to allocate 5 bytes of memory, in the first case, we might

1



provide the user input “aaaaa” and in the second case, we might provide the number “5”. Memory
tagging is important because in assembly, it is not immediately obvious that the input to a function,
in this case malloc, comes directly from user input or as a result of operations that are semantically
equivalent to strlen.

3. We introduce ”2-steps exploits”, an explicit construction of the predicates on the input space to gen-
erate exploits against doubly-linked linked list, commonly used in the implementations of heap allo-
cators, including the Windows Heap Manager. Brumley et al showed that exploit generation can be
automated by characterizing exploits as predicates on the program state space [2], hence the limita-
tions of AEG to stack-smashing attacks and format string attacks can be overcome by constructing
predicates for different classes of exploits.

4. We build an end-to-end system that takes executables running on Windows XP SP3 and automatically
generate crashing inputs as proof-of-concept of the techniques introduced in this paper.

2 Background
2.1 Bug Find
In AHEG, we are interested in finding exploitable bugs, which are flaws in programs that allow an attacker to
perform arbitrary code execution. Formally, we are searching for paths in programs which lead to violations
of enforceable security polices [11], in particular, that EIP does not contain user input.

Three popular techniques employed today in software verification to search for such pathological paths
are taint analysis [7] [9], symbolic execution [8] [6] [4] [5] [3] and concolic execution [13].

Taint Analysis The idea of taint analysis is to identify certain sources from which user input, also known
as tainted input, is introduced, such as from sockets, files or command line, and to propagate the taint
according to a taint policy. This technique is a form of data flow analysis and is used to identify the bytes
in memory which user has direct control over. A useful application of this technique is to check that EIP is
never tainted.

Forward Symbolic Execution Instead of supplying the program with real, or concrete, user input, in
forward symbolic execution, we emulate the program with symbolic bytes. Each time we condition branch
on a symbolic byte, we fork a new interpreter and explore both branches simultaneously. We also impose
contraints on the symbolic bytes at each branch, so that a string satisfying these constraints will take the
same path in the program. For more information on taint analysis and forward symbolic execution, we refer
the reader to a survey by Schwartz et al [12].

Concolic execution Concolic execution is a variant of symbolic execution, except that instead of emulat-
ing the program with symbolic user input, we run the program with concrete user input. We then instrument
the program and treat these concrete bytes as symbolic, so that whenever we condition branch on user input,
we impose an additional constraint, which we can negate and solve for to get another input that traverses a
different path in the program. The main advantage concolic execution has over symbolic execution is that
in implementing concolic execution, we do not have to keep track of the program state for every branch.

AHEG employs a combination of all three techniques.

2.2 Exploit Generation
In APEG [2] and AEG [1], exploit generation is reduced to the problem of generating predicates on the input
space so that the exploit is the satisfying input to the predicates. In AHEG, we take this approach further
by explicitly constructing predicates for different classes of exploits. The key insight in constructing such
predicates is in encoding the influence the user has on specific bytes in memory. The most obvious influence

2



is direct influence, in which the byte in memory is exactly what the user entered. Another influence is
transformation influence, in which the byte in memory has been transformed by a series of operations (such
as ADD, SUB, etc) from the original user input, so that to control the byte in memory, we have to apply
an inverse to the series of operations to get the required user input. This inverse is usually performed by
a solver. Both of these influence can be identified via data flow analysis and are used in APEG and AEG.
However, there exists other influence over bytes which user might have indirect control over. To use the
same example in the introduction, in malloc(strlen(user input)), the user can control the argument of malloc
by varying the size of the input buffer. By extending symbolic execution to loops, Saxena et al showed that
we can identify such length influence [10].

3 Simple ASM
We adopt the usual 32-bit x86 architecture: byte-addressable memory model with 232 entries and a processor
with 8 32-bit general purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP), an instruction register
EIP, and a EFLAGS register. EFLAGS include the Sign Flag (SF), Zero Flag (ZF) and the Overflow Flag
(OF). Instructions are stored on memory together with data.

Instructions in Simple ASM are divided into 4 categories:

Data flow instructions These are the binary operations, MOV, ADD, SUB, MULT, DIV, OR, XOR and
AND, which take destination and source operands (in that order), perform the corresponding operation and
save the results in the destination operand. An operand is a general purpose register or an immediate value.
If the destination operand is an immediate value, the results are not saved. This is to emulate instructions
like CMP and TEST, which are essentially SUB and AND instructions respectively, except that the results of
the operations are not saved. All data flow instructions might set/unset certain flags in the EFLAGS register,
depending on the result of the operation performed, and are governed by the rules provided in the Appendix.
Data flow instructions propagate user input, or taint, as commonly known in taint analysis.

Control flow instructions These are UncondJump, which takes one operand and sets EIP to the value of
the operand, and CondJump, which takes two operands, the cond operand and the location operand, checks
the cond operand against the EFLAGS, and if the conditions are met, sets EIP to the value of the location
operand. Otherwise, it sets EIP to the address of the next instruction. An example of a cond operand is EQ,
which is true if the ZF is set. The list of cond operands and the corresponding EFLAGS conditions are given
in the Appendix. Control flow instructions propagate control flow information, or implicit flow.

User input source These are the functions which introduces user input into the system. In SimpleASM,
there are only 2 sources of user input, SymFile and SymArgv. ReadFile takes 3 arguments, buf, NumByte-
sToRead, and & NumBytesRead, where buf is the memory address of the start of the buffer where user input
is copied into, NumBytesToRead is the maximum number of user input to copy, and & NumBytesRead is the
memory address to store the actual number of bytes copied. SetFilePointer takes 2 arguments, namely a des-
tination operand and one of three values: FILE BEGIN, FILE CUR, and FILE END. The exact behavior of
SetFilePointer is detailed in the Appendix, but informally SetFilePointer moves the file pointer of SymFile
based on the second argument and saves the position of the file pointer in the destination operand. Finally,
the last function is GetCommandLine() which returns the address of the buffer containing user input. We
assume that during the initialization phase, the loader copies user data from SymArgv into a predefined
location in memory and GetCommandLine() returns the address of that predefined location.

Macros Given an operand x, (x) refers to the value of x. If x is a register, then (x) is the value stored in
the register, which is always an immediate value. Otherwise, x is an immediate value and (x) = x. Given an
immediate value y, [y] refers to the value stored in memory at the address y.

3



4 Memory Tagging
Definition Let A be a set of user input. Let f be a function from a set of user input A to the set N∪{⊥}.
Then the influence the user has over a byte i, is a function fi, such that if fi(x) = n,x ∈ A,n ∈N, the value of
byte i when the program terminates is n. The value of the byte is undetermined if fi(x) = ⊥. The user has
no influence over byte i if fi(x) =⊥,∀x ∈ A.

Suppose we are given a program P, and we have found a path in the program which performs Uncond-
Jump (i), where i is some address in memory. Given fi, we can then ask the question, does there exist x ∈ A,
such that fi(x) = n, for some n we choose? If the answer is yes, we have essentially found an input that
controls EIP, i.e. a control-flow hijack exploit. We call x the satisfying input such that fi(x) = n, and given
fi, we can recover x with the help of constraint solvers. Hence, the goal is to find fi.

The key idea of memory tagging is it encodes the influence the user has over a byte and approximates
fi. For each byte in memory, we are interested in the amount of control we have of that byte as a function of
user input. In AHEG, we introduce 4 tags, DAT, SYM, LEN and PTR.

4.1 Tag introduction
DAT tag If a byte has been tagged DAT(x, y), where x is a number and y ∈ {SymArgv, SymFile}, then that
byte is under direct influence from the xth byte of user input from the command line or from a file. This
means that to set that byte to a particular value, say 42, we need only set the xth byte of user input to 42.

Recall that in Simple ASM, there are only two functions that retrieve user input, namely GetCommand-
Line and ReadFile. In both cases, we have a buffer containing user input and we tag each byte in the buffer
with DAT since these buffers came directly from user input.

SYM tag If a byte has been tagged SYM(y), where y is an expression involving a set A of user input bytes,
then the byte is under transformation influence from the user input bytes x1, ...,xn ∈ A. This means that to
set the byte to a particular value, say z, we need to set x1, ...,xn, so that they evaluate to z in y.

Whenever either operands of a data flow instruction, except MOV, is tagged, we might introduce a
SYM tag to the destination operand. The exact rules governing the introduction of SYM tags are listed
in the Appendix, but intuitively, the SYM tag “remembers” all the operations performed on user input.
For example, given the instruction ADD EAX, EBX, where [eax] = 5, and EBX is tagged with DAT(7,
SymArgv), then we will tag EAX with SYM(ADD(5, DAT(7, SymArgv)). If later, we encounter yet another
instruction, say SUB ECX, EAX, where ECX is tagged with DAT(5, SymArgv), then we retag ECX with
the tag SYM(SUB(DAT(5, SymArgv), SYM(ADD(5, DAT(7, SymArgv)))), which means that ECX really
is the difference between the 7th and 5th byte of user input and the sum of the constant 5.

PTR tag The tag PTR(n, p), where n is a unique buffer id, and p, an address in memory, tells us that
the value of this byte has been used as a pointer to access address p, i.e. this byte has been dereferenced.
Inferring pointers in the program allows us to perform fat pointer analysis to determine check for unsafe
dereferences (such as dereferencing beyond the buffer).

LEN tag To be filled in...

Multiple tags It is possible that a byte can be tagged in more than one way. For example, if a byte that
user controls is used to dereference memory, then it will be tagged with DAT and PTR. In these cases, we
concatenate the tags DAT . PTR.

4.2 Tag propagation
MOV is the only data flow instruction which guarantees that user input is copied from one location to another
unaltered. If the source operand of MOV is tagged, then we copy this tag to the destination operand.

4



4.3 Buffer inference
Some of the analysis we perform, such as fat pointer analysis, requires buffer information, which is available
in source code analysis, but not in assembly. Hence, in this section, we describe ways to recover these buffer
information, so that we may employ those techniques.

In AHEG, we treat every data structure as a buffer, which we define to be a contiguous sequence of
bytes in memory as used by the program. For example, an int is a buffer of 4 bytes. Buffer is a semantic (as
opposed to syntactic) property of programs;

References
[1] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. Aeg: Automatic exploit generation. In Proceedings of the Network

and Distributed System Security Symposium, Feb. 2011.
[2] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-based exploit generation is possible: Techniques and

implications. In Proceedings of the IEEE Symposium on Security and Privacy, May 2008.
[3] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of high-coverage tests for complex systems

programs. In Proceedings of the USENIX Symposium on Operating System Design and Implementation, 2008.
[4] C. Cadar and D. Engler. Execution generated test cases: How to make systems code crash itself. In Proceedings of the

International SPIN Workshop on Model Checking of Software, 2005.
[5] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: A system for automatically generating inputs of death using

symbolic execution. In Proceedings of the ACM Conference on Computer and Communications Security, Oct. 2006.
[6] L. Clarke and D. Richardson. Symbolic evaluation methods for program analysis. In S. S. Muchnick and N. D. Jones, editors,

Program Flow Analysis: Theory and Applications. Prentice Hall, 1981.
[7] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis framework. In International Symposium on Software

Testing and Analysis, pages 196–206, New York, NY, USA, 2007. ACM.
[8] J. King. Symbolic execution and program testing. Communications of the ACM, 19:386–394, 1976.
[9] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on

commodity software. In Proceedings of the Network and Distributed System Security Symposium, Feb. 2005.
[10] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended symbolic execution of binary programs. In International

Symposium on Software Testing and Analysis, 2009.
[11] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System Security, 3(1):30–50, Feb.

2000.
[12] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic taint analysis and forward

symbolic execution (but might have been afraid to ask). In Proceedings of the IEEE Symposium on Security and Privacy,
May 2010.

[13] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proceedings of the joint meeting of the
European Software Engineering Conference and the ACM Symposium on the Foundations of Software Engineering, 2005.

5


	Introduction
	Background
	Bug Find
	Exploit Generation

	Simple ASM
	Memory Tagging
	Tag introduction
	Tag propagation
	Buffer inference


