
Modes for Non Strict Functional Logical
Languages

Matthew Mirman

April 17, 2012

Abstract

Functional logical programming is a paradigm that introduces predi-
cate satisfaction as a first class construct into the functional setting. In
consolidating logical and functional semantics, a complete logical query
primitive is desirable. In the non strict, breadth first evaluation strategy,
it is possible to return unground logical variables. This makes useless the
notion of the scope of logical variable declaration. Given the small step
operational semantics for a practical lazy functional logical language, I
approximate them with natural semantics for a lambda calculus with lazy
logical primitives for which I supply a type and mode system. Types are
annotated with modes denoting their intended groundedness attributes.
Furthermore, given that the analysis is to be performed on functional logi-
cal code, the type system allows annotation of higher order function types
with modes, and thus supports grounding functions. Modes are observed
as forming a natural ordering, and thus type and mode checking supports
limited subtyping. I prove in Twelf the soundness of the annotations pro-
duced from type checking, and type preservation. A proof of progress
depending on the existence of the resolving property of positively moded
terms is discussed. It is also noted that positively moded corresponds
with the notion of strict, and that the mode analysis could be considered
a specialized strictness analysis.

While mode analysis prevents logical variables from leaving the scope
of the search that introduced them, it does not prevent them from being
declared outside of the scope of a search. Such results are meaningless in
the context of the determinism necessary for meaningful I/O. A method of
ensuring that logical variables are not introduced outside of the scope of
search is also introduced by the introduction of a second arrow constructor
denoting nondeterministic functions.

Introduction
Logic programming is a paradigm where rather than describing the action the
computer should take to achieve a result, properties of the desired result are
listed. Pure logic programming involves listing predicates over simple data
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types. Logic programming is a powerful model for describing complex queries,
and encourages programmers to very often write less verbose code. Logic pro-
gramming alone is not always ideal. While logic programming is very good for
describing a single static data input and output, it alone is not adept at de-
scribing dynamic interactions. Because logic programming describes so much
computation in so little code by way of automation, the operational meaning of
code is often obfuscated if not entirely unspecified. In cases where the action of
the computer is to be specified, functional code is ideal. While it is simple to
write a language where functional code can call logical code written separately,
mixing the two to allow functional code to be accessed within logical code would
be ideal. The ability to write mostly legible logical code and optimize a few cases
would allow the programmer to choose what sacrifices to make, and allow for
more interactive queries.

In this thesis, I provide static analysis for a lambda calculus with additional
logical primitives, in order to inform practical functional logical languages. The
language I analyze here is an extension of the lambda calculus which includes the
logic primitives free, findAll, and caseof. free is a function which initializes
a variable as a free parameter in it’s scope. findAll searches for any or all
instances of a variable which satisfy a predicate. caseof non-deterministically
branches when given a logic variable as an argument.

Nondeterministically branching for every free variable at every switch state-
ment could very easily result in an unnecessarily slow programs, and thus a non
strict evaluation strategy is desired. The Needed Narrowing evaluation strategy
optimal in this respect. It proceeds by lazily reducing a term, and only initial-
izing logical variables if they are used as the argument to a caseof statement
who’s results are required to continue execution. Beyond simply being more
efficient, Needed Narrowing is complete [4] in the same sense as non strict pro-
gram evaluation. A reduction strategy for lambda calculus is complete if every
expression for which there exists a reduction resulting in a value reduces under
that strategy to a value. Similarly, a reduction strategy for lambda calculus is
complete if it has the previous property, and also has the property that for all
values such that predicate passed to findAll has a reduction to success when
applied to that value, then that value will appear somewhere in the result of
the findAll.

Example. To illustrate a case where functional logical programming would be
convenient, consider the following Haskell code:

step (App (Lam f) e2) res =
res == f e2

step (App e1 e2) (App e1’ e2’) =
(e1’ == e1 ‘and‘ step e2 e2’)

‘or‘ (e2’ == e2 ‘and‘ step e1 e1’)

This code defines a predicate that ensures it’s second lambda term is a single step
nondeterministic reduction of the first. It is far simpler and more usefull than
the code that performs that single step nondeterministic reduction. Just given



this predicate, we can not easily construct a function which lists all possible
single step reductions of a term. A naive attempt might list all possible terms,
and use this predicate as a filter.

reductions term = filter (step term) listAllTerms

In a functional logical language an efficient function to output the same set of
items can be defined far more easily:

reductions term = findAll red in step term red

Motivation
While functional logical programming has become more present with the for-
mulation of small step semantics, it appears as though less attention has been
made to the static analysis and verification of such languages. There do exist
non strict functional logical programming language implementations[5], but no
practical language appears to statically verify runtime safety entirely. If the
language is intended to be efficiently compiled to safe code, statically ensuring
safety is essential. Furthermore, functional logical programming presents an
incredible paradigm shift from traditional imperative or functional paradigms.
It is thus necessary for the compiler to provide as much feedback as possible to
inform the programmer of the correct use of the language, without hindering
the readability of code. As reasoning about the time complexity of logical code
is undesirable and difficult in the intended setting, the non strict and complete
evaluation strategy known as Needed Narrowing is used. In consolidating logical
and functional semantics, the primitive findAll is both an accessible and nec-
essary means to make use of successful queries. I note that in conjunction with
a non strict evaluation strategy, it is possible for findAll to return unground
logical variables, despite being the only block against nondeterminism. Mode
analysis(author?) [13] is suggested as a means of ensuring results from findAll
are ground. As logical code can be considered a non-deterministic search, the
primitive findAll can be easily parallelized. However, the unconstrained use of
free variables throughout code could easily result in space leaks and uninten-
tional non-deterministic IO. I present a type level system for constraining the
scope of non determinism in plausible programs.

In a non strict evaluation strategy, logic variables are never initialized un-
til they are needed to make progress. It is important that if there are values
that when input to a predicate result in success, that the primitive findAll will
output those values rather than diverging before outputting them. This com-
pleteness property of findAll can be ensured by a breadth first search of possible
variable initializations and evaluations. While both depth first and breadth first
searches are possible in Curry and Prolog in the absence of a findAll primitive,
I show that the introduction of findAll as a language primitive make controlling
non-determinism in the I/O monad possible. The introduction of findAll as a
complete primitive in the presence of non strict semantics makes mode checking
a necessity.



Example. Consider the following Hypothetical Korma code

list = findAll $ \a -> free $ \z -> case z of
A -> left a =:= A
B -> (right a,left a) =:= ([A],A)

Given the needed narrowing evaluation strategy, list would contain two values,
“{left = A & right = ? }” and “{ left = A & right = [A] }”. We can thus
infer that the type of list is “[ (A+B) * [ A + B ] ]”. However, if we were to
ask for “right (head list)”, we would have encountered a logical variable. This
code is thus non resolving. The effects from non resolving code can be non local
and unintuitive for a novice logic programmer, and thus preventing findAll from
accepting non resolving functions is necessary.

Language Definition
It is first necessary to provide a language as a target for the analysis. To simplify,
unification, recursive types, and polymorphism are omitted, although it is likely
that they will not pose much of a problem when reconsidered.

The grammar is as follows:

m ::= ⊕ | 	

t ::= t→ t | t� t | ∅ | answer | t× t | t+m t

e ::= x | λx : t.e | λv.e | (e e) |

findAllt | freet | success | fail |

obj | getLeft | getRight |

left | right | caseof | unit | unresolved

For purposes of the proof, the term unresolved is also included.

Semantics
The semantics for this language we attempt to analyze are an approximation of
the small step Needed Narrowing semantics explained in [? ]. The semantics of
the language are defined as follows:

Definition 1. E ⇒ E′ is the lazy single step relation defined as follows:



(E-APP1)
E1 ⇒ E′

1

E1 E2 ⇒ E′
1 E2

(E-APP LAM)(λx : t.e1) e2 ⇒ [x 7→ e2]e1provided t is free for e2 in e1

(E-GET LEFT) getLeft (obj e1 e2)⇒ e1

(E-GET RIGHT) getRight (obj e1 e2)⇒ e2

(E-SWITCH-LEFT) (caseof LF RF ) (leftL)⇒ LF L

(E-SWITCH-RIGHT) (caseof LF RF ) (right L)⇒ RF R

(E-FINDALL-SUCC)
` V : T (E V )⇒ success

findAllT E ⇒ (left V )

(E-FINDALL FAIL)
V : T ` (E V )⇒ fail

findAllT E ⇒ (right ())

(E-FREE-SUCC)
` V : T

freeT E ⇒ E V

Type and mode Checking
In order to discuss the type checker, it is necessary to first describe the rela-
tionship between types and modes. The mode ⊕ describes values which do not
need to become ground, and the mode 	 describes values which must become
ground. We can use a value which does not need to become ground anywhere
we know we will ground the value, but we should not us a value which must
become ground anywhere we do not know we will ground it (some programs
which violate this rule will be correct, but this rule makes life easier). Thus,
⊕ ≤ 	. As usual, t will describe the least upper bound.

We also need to define what it means for a type to specify a mode.

Definition 2. t ∼ m shall mean that the type t has mode m.

(TP-MODE/UNIT) ∅ ∼ ⊕

(TP-MODE/SUM) t1 +m t2 ∼ m



(TP-MODE/PROD)
t1 ∼ m1 t2 ∼ m2

t1 × t2 ∼ m1 tm2

(TP-MODE/ARROW) t1 → t2 ∼ ⊕

Not all types are necessarily well moded. In order for a type to be well
moded, sums must have a mode that is an upper bound of the modes of it’s
constituent types.

Definition 3. t ≈ m shall mean that the type t is well moded with mode m.

(TP-MODE-SAFE/UNIT) ∅ ≈ ⊕

(TP-MODE-SAFE/SUM)
t1 ≈ m1 t2 ≈ m2 m1 ≤ m m2 ≤ m

t1 +m t2 ≈ m

(TP-MODE-SAFE/PROD)
t1 ≈ m1 t2 ≈ m2

t1 × t2 ≈ m1 tm2

(TP-MODE-SAFE/ARROW)
t1 ≈ m1 t2 ≈ m2

t1 → t2 ≈ ⊕
Lemma 4. for all t there exists some m such that t ∼ m. Furthermore, m is
unique.

Proof. Formalized in Twelf.

Lemma 5. t ≈ m implies that t ∼ m.

Proof. Formalized in Twelf

Given that modes are an annotation on the type system, mode checking and
type checking are done together. In order to keep type checking minimal, we
provide it as a lemma that the types produced from type checking are mode
safe. The rules for type checking are as follows

Definition 6. E : T means that expression E has type T and is defined as
follows. It depends on the predicate usedCorrectly(T1, T2, e) which measures
given that e is a function, whether it’s argument is used correctly.

(OF-ASSUM)
Γ, x : T ` x : T

(OF-SUBSUMP)
Γ ` e : T T ≤ T ′ T ′ ≈ m

Γ ` e : T ′

(OF-LAM)
Γ, x : T1 ` e[x] : T2 usedCorrectly(T1, T2, e) T1 ≈ m1 T2 ≈ m2

Γ ` (λx : T1.e[x]) : T1 → T2



(OF-APP)
Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1e2 : T2

(OF-LOGIC-VAR)
T ≈ 	

Γ ` unresolved : T

(OF-getLeft)
v1 × v2 ≈ m

Γ ` getLeft : v1 × v2 → v1

(OF-getRight)
v1 × v2 ≈ m

Γ ` getRight : v1 × v2 → v2

(OF-LEFT)
v1 +m v2 ≈ m

Γ ` left : v1 → v1 +m v2

(OF-RIGHT)
v1 +m v2 ≈ m

Γ ` right : v2 → v1 +m v2

right : v2 → v1 + v2

(OF-OBJ)
v1 × v2 ≈ m

Γ ` obj : v1 → v2 → v1 × v2

unit : ∅

(OF-CASE-OF)
v1 ≈ m v2 ≈ m

caseof : (v1 → v3)→ (v2 → v3)→ v1 +m v2 → v3

We defined usedCorrectly in the associated Twelf file (TypeChecking.elf).
For the moment, it’s full definition here is omitted for brevity. Essentially,
usedCorrectly ensures that in the current environment, if it is given a suppos-
edly negatively moded argument, it is used somewhere as a negatively moded
argument. That argument would have to be used in either both sided of a switch
statement, have both it’s left and right constituents used negatively if it is an
object, or if we are checking if it is used inside of an application, that it is either
used on the left hand side, or it is used negatively on the right hand side, and
the left hand side is strict.

As the heavy analysis we will make does not involve free, findAll, success
or fail, we will give their types in System F.

free : ∀v1 v2.(v1 → v2)→ v2

findAll : ∀v.(v → answer)→ v + ∅

success : answer

fail : answer



Proposition 7. E : T implies that T ≈ m. Furthermore, m is unique.

Lemma 8. If there is a decidable algorithm to infer these types, and one to
perform the mode checking analysis on the annotated system, then inferring
their modes is decidable.

Proof. For every sum type inferred, annotate it with either a positive or negative
mode. Perform the annotated type checking. Because there are finite sum nodes
in the inferred types, there are finite possible mode assignments.

Preservation
Because of submoding, the proof of preservation is slightly more complex than
in simply typed lambda calculus.

Definition 9. T ≤ T ′ simply means that Tand T ′ have the same structure but
different modes. At each sum, m ≤ m′.

T1 ≤ T ′
1 T2 ≤ T ′

2

T1 × T2 ≤ T ′
1 × T ′

2

T1 ≤ T ′
1 T2 ≤ T ′

2 m ≤ m′

T1 +m T2 ≤ T ′
1 +m′ T ′

2

T ′
1 ≤ T 1 T2 ≤ T ′

2

T1 → T2 ≤ T ′
1 → T ′

2

Lemma 10. T ≤ T is admissible.

Proof. Formalized in Twelf.

Lemma 11. T ≤ T ′ and T ∼ m and T ′ ∼ m′ implies m ≤ m′.

Proof. Formalized in Twelf.

Theorem 12. Preservation
E ⇒ E′ and ` E : T then ` E′ : T ′ and T ′ ≤ T .

Proof. Formalized in Twelf.

Progress
Before we can prove progress for the full language, we need to prove that the
sublanguage not considering findAll has the property that it can not reduce
away logical variables.

Definition 13. logicFree(E) shall mean that the term E contains no logical
variables in cases where it matters, for example when E is a value, or when E
is not an application of a not necessarily grounding function to any argument.
Again, the full definition is omitted here for brevity, but included in the Twelf
file Global.elf.



Conjecture 14. Subterm-Resolving
Γ ` X : Tx and usedAsNeg(X,E) and Γ ` E : TE and TE ≈ ⊕ and

E ⇒k V with Γ ` V : TV and TV ≤ TE by preservation and logicFree(V)
then logicFree(X)

Proof. Note that this has been mostly proved in Twelf with all but a few cases
left to handle. The intuition behind this theorem is that usedAsNeg measures
strict occurrences of X in E, and by definition, an occurrence can only be
strict if it will be used at least once in the computation required to reduce E
completely.

Corollary 15. Term-Resolving
Provided Subterm-Resolving holds in general, Γ ` X : TX and TX ≈ ⊕ and

X ⇒k V with Γ ` V : TV and TV ≤ TX by preservation and logicFree(V) then
logicFree(X)

Proof. Given that subterm resolving holds, we can simply apply subterm re-
solving with X for E and usedAsNeg/e for usedAsNeg(X,X).

Theorem 16. Progress Holds
Provided Term-Resolving holds in general, E : T and T ≈ ⊕ implies either

E is a value or E ⇒ E′ for some E′. Furthermore, if E does not contain logical
variables, then E′ will also contain no logical variables.

Proof. Without the findAll or free primitives or logical variables, the language
given is just the simply typed lambda calculus, and the progress theorem follows
nearly trivially. The introduction of logical variables, findAllmakes the analysis
a bit more complex. In the case of a findAll, we show that it must only accept
grounding arguments. This implies that if we apply a value to the argument
and it evaluates to success, it could not originally have had any logical variables
by the Term-Resolving corollary. Thus, no results from findAll will contain
logical variables. Free is not defined as containing no logical variables, and no
other primitives introduce logical variables.

Strictness Analysis
Definition 17. A function E is strict if E ◦hnf ≡ E, where hnf is the function
that evaluates it’s arguments to head normal form.

Proposition 18. E is strict iff E is grounding.

Proof. Suppose E is grounding, then upon completion of E, every aspect of it’s
argument must be used, thus evaluating that argument to head normal form
will not expose any divergent computations not already exposed.

Suppose E is strict. then suppose we were to pass an argument to E with
logical variables. Substitute every logical variable for a divergent computation.
Then because E is strict, evaluating this argument to head normal form first will
not change the result of E when passed this argument. However, evaluating the



argument to head normal form first causes the computation to diverge. Thus,
passing the argument to E will cause the computation to diverge. Thus the
original argument with logical variables passed to Ewill either diverge converge
to a value with logical variables. Thus Eis grounding.

Corollary 19. ClosedE is strict if ` E : I → O and I ∼ 	 and O ∼ ⊕.

Ramifications

Because mode checking and strictness checking are equivalent, mode checking
algorithms can be used for strictness analysis. It is unlikely however, that
strictness analysis would be as applicable to mode checking, as they need not
be decidable nor sound. Mode checking is performed when well modedness is a
requirement and not simply a benefit, and thus deciding when code is improperly
moded is as important as deciding when it is properly moded.

The Scope of Non-determinism
To show that the findAll primitive can be used to control the scope of free
variables, it is easiest to use notions from subtyping systems, and to construct
a syntactic transformation. I also present a method for ensuring the unifiability
of the free variables. In order to unify, free variables must be unifiable, and
constructed from products and sums only.

We can refine the types stated earlier for as follows, given the presence of
type classes:

free :: ∀a b.(Unifiable a) =⇒ (a→ b)→ b

findAll :: Unifiable a =⇒ (a→ Success)→ [a]

Note here that findAll returns a list. The typeclass Unifiable can be
automatically derived for types which do not contain arrows.

In a pure lazy functional setting, IO has traditionally been accomplished
using the IO monad. In order to not deviate from this pattern, it is necessary
to ensure that computations still make sense from within the IO monad, and
that the scope of the free variables does cause unexpected nondeterminism of
effects. Ensuring that the nondeterminism of free does leek into the IO monad
statically can be made into a type level problem by the following system.

Suppose we have two parameterized types Many a and Single a, with the
following subtyping rules:

(S-ReturnQuantity) Single a <: Many a

Single and Many are instances of the built in ReturnQuantity typeclass, and
the following application function’s type is given as a primitive.



$$ :: ReturnQuantity m =⇒ (a→ m b)→ (m a→ m b)

The “main” action for the program will has type Single (IO ()), and return ::
a→ Single (m a)

free :: (Unifiable a) =⇒ (a→ Many b)→ Many b

findall :: (Unifiable a) =⇒ (a→ Many Success)→ Single [a]

This way, any function which is deterministic can be used anywhere a non-
deterministic function can be used, but not vise versa. To make this feature not
cumbersome to the user, we apply the inductively defined transformation φ to
the abstract syntax tree.

φ(e1 e2) = φ(e1) $$ φ(e2)

φ(λx.e) = λx.φ(e)
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