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Abstract—This paper proposes a new sequence type, the 

Augmented Integer Linear Recurrence. This sequence type finds 
patterns in sequences with runs of the same integer present. 
AILRs use linear recurrence inference as a base, and uses 
invertible sequence transforms to transform sequences into 
others and recursively infers the post-transformation sequences.  
 

I.  INTRODUCTION 
A common technique used in solving 
mathematical problems is to solve the problem 
for simple cases and then extrapolate the results 
to more complex cases using sequence 
inference. This technique is frequently used by 
students to solve word problems. However, 
there are a considerable number of sequences 
that have a relatively simple pattern that do not 
fit common definitions of sequences, such as 
linear recurrences or polynomials.  This abstract 
proposes a new kind of sequence definition, the 
Augmented Integer Linear Recurrence (AILR) 
as a solution to this problem. One of the main 
features of an AILR is the ability to recognize 
runs of the same integer repeated in a sequence 
and to see patterns in these runs. 
 

II. DEFINITIONS 
Integer linear recurrence: A linear recurrence in 
which every term is an integer.   
Let S =  be a sequence.  
The difference sequence of S is the sequence 

 

 
 

The mode sequence and the underlying 
sequences of S are obtained by first partitioning 
S into a set of subsequences   such 
that for all  if  and then 

 and otherwise .  
The mode sequence is the sequence of the 
cardinalities of each Ai in order. 
The underlying sequence is the sequence of the 
unique integer in each Ai in order (the integer 
may appear many times in each Ai). 
Note that the difference sequence along with the 
first term of the original sequence is enough to 
reconstruct the original. Also, the mode and the 
underlying sequences together contain enough 
information to construct the original sequence.  
This allows us to formally define an AILR: 
A sequence S is an AILR iff: 

(1) S is an integer linear recurrence 
(2) The difference sequence of S is an AILR 
(3) The mode and underlying sequences of S 

are both AILRs 

III. EXAMPLE 
Consider the sequence  

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5… 
Its difference sequence is 

0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1… 
The mode sequence of its difference sequence is 
      1 1 1 2 1 3 1 4… 
The underlying sequence of its difference 
sequence is 

0 1 -1 1 -2 1 -3… 
Both the mode and underlying sequences are 
integer linear recurrences; therefore, they both 
are AILRs by (1). Therefore by (3) the 
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difference sequence of S is an AILR. Therefore, 
by (2) the original sequence is an AILR. 
 

IV. ALGORITHM 
This definition allows for an algorithm to find 
such sequences.  Our algorithm’s goal, given a 
finite sequence of integers, is to extend that 
sequence by some finite number of terms. This 
algorithm can be modified to return a 
continuation of the sequence inferred instead. 
We say we have “inferred a sequence” if we 
accomplish either of these. 
Our algorithm first tests a finite set of integers 
to see if it is consistent with an integer linear 
recurrence; if it is, S is extended as a linear 
recurrence and the extension is returned.  
Otherwise, we take the difference, mode, and 
underlying sequences of the input, and 
recursively attempt to extend those sequences. 
If we obtain an extension of the difference 
sequence, or an extension of the mode and 
underlying sequences, we construct an 
extension of the original sequence using the 
extended sequences. 
 

V. EXAMPLE OF ALGORITHM 
Suppose the following sequence were input into 
the algorithm above: 
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 
The algorithm would attempt to infer this as an 
integer linear recurrence and fail. 
The algorithm would also attempt to recursively 
infer the mode and underlying sequences of this 
sequence, but this will be fruitless in this 
algorithm, and we will not focus on this.  
The algorithm would then obtain the difference 
sequence  
D: 0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1 
The algorithm would attempt to infer this as an 
integer linear recurrence and fail. 
The algorithm would then determine the mode 
and underlying sequences of this: 
Mode: 1 1 1 2 1 3 1 4  
Underlying: 0 1 -1 1 -2 1 -3 

which would be inferred and extended as linear 
recurrences – in this case, we extend them by 2: 
Mode: 1 1 1 2 1 3 1 4 1 5 
Underlying: 0 1 -1 1 -2 1 -3 1 -4 
We then combine these to extend the difference 
sequence D: 
0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1 -4 1 1 1 1 1 
We then use this sequence to construct an 
extension of the original sequence: 
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 
which completes the extension. 
 

VI. RUNTIME 
The runtime of the algorithm described is 
O(3mm3) where n is the maximum recursive 
depth allowed, and m is the number of sequence 
terms inputted. To see this, note that the space 
of sequences checked is a tree with a root of the 
original sequence. Each node has branching 
factor 3 (its mode sequence, its underlying 
sequence, and its difference sequence). 
Furthermore, note that for any given sequence 
S, the mode, underlying, and difference 
sequences have strictly fewer terms than the 
original sequence (unless the original sequence 
contains no runs of length greater than one, 
which can be detected and discarded easily.) At 
each point in the tree, Gaussian elimination is 
used to determine the integer linear sequence 
and whether or not it is integer valued. This 
algorithm is O(m3) where m is the number of 
sequence terms.  Note that since we cannot gain 
terms this bound applies at all points in the tree. 
This tree can be pruned using several methods 
(an example would be to not attempt to interpret 
the mode and underlying sequences of a 
sequence with no consecutive terms identical). 
Also, a depth parameter n can be set to the tree 
to limit its height, trimming the runtime to 
O(3nm3).  

VII. NUMBER OF TERMS USED 
The more important metric in calculating the 
efficiency of this algorithm in practice is the 
number of sequence terms used. For linear 
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recurrences, it takes at least 2n terms to 
calculate a linear recurrence of degree n[1]. 
Furthermore, mode and underlying sequences 
may be arbitrarily smaller than their originals, 
preventing any mathematical guarantees on 
number of sequence terms required to infer such 
a sequence.  
 

VIII. CONFLICTS, INTEGER CONSTRAINTS 
The reason why our definition of AILR includes 
the requirement that sequence terms be integers 
is that this filters out several interpretations. 
Without the integer requirement, any finite 
sequence of numbers (of length ) is an AILR 
since all such sequences can be interpreted as 
the start of a linear recurrence[1] The integer 
requirement does not filter out all undesired 
interpretations, however, and so multiple 
differing interpretations can be reached. In 
many cases, the conflict can be resolved with 
more sequence terms; however, this cannot be 
guaranteed to be the case. More constraints or 
an ordering on possible interpretations that 
favor “better” interpretations are under 
development. 
 

IX. FUTURE WORK 
 
There is significant room for improvement in 
conflict resolution strategy for this algorithm, as 
this is the greatest obstacle from guaranteeing a 
particular result from this algorithm. 
Furthermore, the framework of AILRs suggests 
a more general sequence-inferring technique. 
One could propose the following:  
A set F of algorithms that either infer a 
sequence or report failure (in the case of AILRs, 
F contained only the integer linear recurrence 
solve). 
A set of transformations T (in the case of 
AILRs, T contained the difference, mode, and 
underlying transformations), partitioned into 
sets {T1, T2…Tt} where each Ti is a set of 

transforms which together can be used to 
deduce the original sequence. 
Then, one could construct a inference function 
G in the following way: 
Let S be a given sequence. Attempt to apply all 
functions in F to S to find an extension. 
Otherwise recursively apply all transformations 
in T to S. If there is any i such that all 
transforms in Ti transform S into a inferable 
function by G, extend each of the transformed 
sequences and use them to construct an 
inference for the original sequence.  
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