
 1

Abstract—This paper proposes a new sequence type, the

Augmented Integer Linear Recurrence. This sequence type finds
patterns in sequences with runs of the same integer present.
AILRs use linear recurrence inference as a base, and uses
invertible sequence transforms to transform sequences into
others and recursively infers the post-transformation sequences.

I. INTRODUCTION
A common technique used in solving
mathematical problems is to solve the problem
for simple cases and then extrapolate the results
to more complex cases using sequence
inference. This technique is frequently used by
students to solve word problems. However,
there are a considerable number of sequences
that have a relatively simple pattern that do not
fit common definitions of sequences, such as
linear recurrences or polynomials. This abstract
proposes a new kind of sequence definition, the
Augmented Integer Linear Recurrence (AILR)
as a solution to this problem. One of the main
features of an AILR is the ability to recognize
runs of the same integer repeated in a sequence
and to see patterns in these runs.

II. DEFINITIONS
Integer linear recurrence: A linear recurrence in
which every term is an integer.
Let S = be a sequence.
The difference sequence of S is the sequence

The mode sequence and the underlying
sequences of S are obtained by first partitioning
S into a set of subsequences such
that for all if and then

 and otherwise .
The mode sequence is the sequence of the
cardinalities of each Ai in order.
The underlying sequence is the sequence of the
unique integer in each Ai in order (the integer
may appear many times in each Ai).
Note that the difference sequence along with the
first term of the original sequence is enough to
reconstruct the original. Also, the mode and the
underlying sequences together contain enough
information to construct the original sequence.
This allows us to formally define an AILR:
A sequence S is an AILR iff:

(1) S is an integer linear recurrence
(2) The difference sequence of S is an AILR
(3) The mode and underlying sequences of S

are both AILRs

III. EXAMPLE
Consider the sequence

1 1 2 1 2 3 1 2 3 4 1 2 3 4 5…
Its difference sequence is

0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1…
The mode sequence of its difference sequence is
 1 1 1 2 1 3 1 4…
The underlying sequence of its difference
sequence is

0 1 -1 1 -2 1 -3…
Both the mode and underlying sequences are
integer linear recurrences; therefore, they both
are AILRs by (1). Therefore by (3) the

Aaron Snook asnook@andrew.cmu.edu
Advisor: Manuel Blum mblum@cs.cmu.edu

Augmented Integer Linear Recurrences
(AILRs)

 2

difference sequence of S is an AILR. Therefore,
by (2) the original sequence is an AILR.

IV. ALGORITHM
This definition allows for an algorithm to find
such sequences. Our algorithm’s goal, given a
finite sequence of integers, is to extend that
sequence by some finite number of terms. This
algorithm can be modified to return a
continuation of the sequence inferred instead.
We say we have “inferred a sequence” if we
accomplish either of these.
Our algorithm first tests a finite set of integers
to see if it is consistent with an integer linear
recurrence; if it is, S is extended as a linear
recurrence and the extension is returned.
Otherwise, we take the difference, mode, and
underlying sequences of the input, and
recursively attempt to extend those sequences.
If we obtain an extension of the difference
sequence, or an extension of the mode and
underlying sequences, we construct an
extension of the original sequence using the
extended sequences.

V. EXAMPLE OF ALGORITHM
Suppose the following sequence were input into
the algorithm above:
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5
The algorithm would attempt to infer this as an
integer linear recurrence and fail.
The algorithm would also attempt to recursively
infer the mode and underlying sequences of this
sequence, but this will be fruitless in this
algorithm, and we will not focus on this.
The algorithm would then obtain the difference
sequence
D: 0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1
The algorithm would attempt to infer this as an
integer linear recurrence and fail.
The algorithm would then determine the mode
and underlying sequences of this:
Mode: 1 1 1 2 1 3 1 4
Underlying: 0 1 -1 1 -2 1 -3

which would be inferred and extended as linear
recurrences – in this case, we extend them by 2:
Mode: 1 1 1 2 1 3 1 4 1 5
Underlying: 0 1 -1 1 -2 1 -3 1 -4
We then combine these to extend the difference
sequence D:
0 1 -1 1 1 -2 1 1 1 -3 1 1 1 1 -4 1 1 1 1 1
We then use this sequence to construct an
extension of the original sequence:
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6
which completes the extension.

VI. RUNTIME
The runtime of the algorithm described is
O(3mm3) where n is the maximum recursive
depth allowed, and m is the number of sequence
terms inputted. To see this, note that the space
of sequences checked is a tree with a root of the
original sequence. Each node has branching
factor 3 (its mode sequence, its underlying
sequence, and its difference sequence).
Furthermore, note that for any given sequence
S, the mode, underlying, and difference
sequences have strictly fewer terms than the
original sequence (unless the original sequence
contains no runs of length greater than one,
which can be detected and discarded easily.) At
each point in the tree, Gaussian elimination is
used to determine the integer linear sequence
and whether or not it is integer valued. This
algorithm is O(m3) where m is the number of
sequence terms. Note that since we cannot gain
terms this bound applies at all points in the tree.
This tree can be pruned using several methods
(an example would be to not attempt to interpret
the mode and underlying sequences of a
sequence with no consecutive terms identical).
Also, a depth parameter n can be set to the tree
to limit its height, trimming the runtime to
O(3nm3).

VII. NUMBER OF TERMS USED
The more important metric in calculating the
efficiency of this algorithm in practice is the
number of sequence terms used. For linear

 3

recurrences, it takes at least 2n terms to
calculate a linear recurrence of degree n[1].
Furthermore, mode and underlying sequences
may be arbitrarily smaller than their originals,
preventing any mathematical guarantees on
number of sequence terms required to infer such
a sequence.

VIII. CONFLICTS, INTEGER CONSTRAINTS
The reason why our definition of AILR includes
the requirement that sequence terms be integers
is that this filters out several interpretations.
Without the integer requirement, any finite
sequence of numbers (of length) is an AILR
since all such sequences can be interpreted as
the start of a linear recurrence[1] The integer
requirement does not filter out all undesired
interpretations, however, and so multiple
differing interpretations can be reached. In
many cases, the conflict can be resolved with
more sequence terms; however, this cannot be
guaranteed to be the case. More constraints or
an ordering on possible interpretations that
favor “better” interpretations are under
development.

IX. FUTURE WORK

There is significant room for improvement in
conflict resolution strategy for this algorithm, as
this is the greatest obstacle from guaranteeing a
particular result from this algorithm.
Furthermore, the framework of AILRs suggests
a more general sequence-inferring technique.
One could propose the following:
A set F of algorithms that either infer a
sequence or report failure (in the case of AILRs,
F contained only the integer linear recurrence
solve).
A set of transformations T (in the case of
AILRs, T contained the difference, mode, and
underlying transformations), partitioned into
sets {T1, T2…Tt} where each Ti is a set of

transforms which together can be used to
deduce the original sequence.
Then, one could construct a inference function
G in the following way:
Let S be a given sequence. Attempt to apply all
functions in F to S to find an extension.
Otherwise recursively apply all transformations
in T to S. If there is any i such that all
transforms in Ti transform S into a inferable
function by G, extend each of the transformed
sequences and use them to construct an
inference for the original sequence.

REFERENCES
[1] G. O. Young, “Synthetic structure of industrial plastics (Book style with

paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New
York: McGraw-Hill, 1964, pp. 15–64.

