
Graphical Numerical Inference
a.k.a Brain Surgery for Excel

Author: Jerene Zhe Yang

Carnegie Mellon University

Pittsburgh, PA

U.S.A.

yangzhe@gmail.com

Advisor: Professor Manuel Blum

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA, U.S.A.

mblum@cs.cmu.edu

Abstract—Excel's drag and auto-fill feature works for most

simple numerical cases like addition. However, it fails when

someone gives it a checkerboard pattern with 1s and 0s and tries

to extend the pattern. Excel is unable to expand this obvious

pattern because its entire inference is based on a static snapshot

of the final data. Graphical Inference Program (GIP), on the

other hand, takes a dynamic approach by monitoring how the

sequence is being filled. It will then try to figure out how the user

is filling up the entries. After that, it picks up where the user has

left off and fills in the rest of the entries.

I. INTRODUCTION

The drag and expand feature in Excel is trying to look for a

trend in what the user is doing and fill the empty grids

according to this trend. In essence, if the user has a predictable

pattern, the program is trying to guess it. However, this feature

in Excel has several major limitations making it useless except

for doing the simplest of tasks. This paper tackles most of

these limitations by looking at the data given from a dynamic

point of view rather than a static one. The program that we

have created monitors the way the user inputs the data in order

to more accurately guess what the user’s intention is. Excel’s

drag and expand feature only allows expansion in one

direction (horizontal or vertical) but never both. This is

because Excel assumes that the data is entered in a column-

wise manner or a row-wise manner. However, this assumption

may not hold for some data. Our program, the Graphical

Inference Program (GIP) does not make such assumptions and

is hence able to have more accurate predictions. We hope that

this program can offer a new perspective of how a spreadsheet

program can be. Specifically, it is one that takes on a more

proactive role when it comes to data extrapolation.

Numerical inference is not a solved problem. To properly

describe the problem that we are trying to solve, we need to

first define what it means to for a pattern to be inferable. We

classify a sequence as inferable if and only if there exists a

state machine with finite states such that if I run the state

machine (possibly for infinitely many steps), then the

sequence that we produce is the sequence that the user has in

mind. There are many pre-existing methods for inferring

patterns. However, there is no set of methods that can infer all

possible inferable sequences. Therefore, there are websites

like the Online Encyclopedia of Integer Sequences (OEIS)

which is a huge database of integer sequences.

II. EXAMPLES

A. Checkerboard Pattern

Let’s start off with a simple example: The user wants to

enter a checkerboard pattern into excel that consists of 1s and

0s, in the following manner:

Figure 1

If you fill up a checkerboard pattern in Excel as above (Figure

1), and you try to drag the borders of this selection in attempts

to expand the checkerboard, this is what you will get:

Figure 2

Instead of continuing the checkerboard pattern that the user

wants, Excel merely duplicates the last line 5 times.

Furthermore, the data was entered in a row-wise fashion.

B. Diagonal Inputs

Besides predicting the pattern a user has in mind, GIP can

also help users solve mathematical problems like the following:

What is the closed form for Grid(m,n) in the table on the

next page?

We can input the integer sequence into a program like

Wolfram|Alpha to get the closed form for each row or column.

However, for row 3 and below, we do not have enough data to

feed into Wolfram|Alpha to get anything useful. This is where

GIP comes in.

 n=1 n=2 n=3 n=4 n=5

m=1 1 2 4 7 11

m=2 3 5 8 12

m=3 6 9 13

m=4 10 14

m=5 15

Figure 3

This table will gradually be filled in a certain order and the

program will observe and try to continue the trend by filling

up the rest of the table. Once the entire table is filled up / we

have enough data, we can now search for the closed forms for

each of the rows individually try to find a formulae for

Grid(m, n).

III. METHODOLOGY

There are two main stages in GIP: Deciphering the input

and generating the output.

A. Deciphering the Input

Input can be grouped into two categories depending on

whether the input makes sense if we split up the rows and

columns to consider them individually. For example, in the

example of the n by 8 checkerboard, let us represent each 1

with a click and each 0 without a click. And we will fill in the

grid in a row by row order. So the first row will be filled left to

right with each alternating grid clicked, and then the second,

and then the third, and so on. If we consider the row-

coordinates of the grids that are clicked, we will see: 1, 1, 1, 1,

2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,… Now if we consider the

column-coordinates, we will see: 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, 5, 7,

2, 4, 6, 8, … Notice how the two sequences have predictable

patterns independent of the other. This case falls into the first

category – Analyze row and column independent of each

other.

However, consider a spiral that looks like the following:

Figure 4

If we look at the row coordinates, we get this: 9, 9, 9, 10,

11, 11, 11, 11, 11, 10, 9, 8, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12,

13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 11, 10, 9, 8, 7, 6, 5. This

pattern, compared to the previous, is not as clear. However, if

we look at how the coordinates are moving as a 2-tuple, the

motion is a lot more obvious. R, R, D, D, L, L, L, L, U, U, U,

U, R, R, R, R, R, R, D, D, D, D, D, D, … This falls into the

second category – Analyze displacements as 2-tuples.

B. Generating the Output

a) Analyze row and column independent of each other

For the first category of sequences, we can only look at the

row coordinates and column coordinates separately. We will

then pass the row (or column) coordinates through a database

of patterns which will then determine if the input is an instance

of any of the classes of patterns in the database. Since each

class of pattern in the database is essentially a state machine

waiting for the input to fill in the constants. If the pattern does

not match the state machine, then that particular state machine

will return false for the given input. Each of the state machines

in the database will individually assess whether the pattern

matches its template. For example, the following is an example

of a state machine that accepts input which accepts sequences i

– p = d, where i is the input that is currently being red, p is the

previous input, and c is some natural number. The starting

state, a0, must be a natural number too.

The example on the next page is a template for the state

machine that is described above. There is one variable stored

in every state except the fail state, which is denoted by “F”.

The program is initiallized with the variables set to null. When

the first input is read, a0 will be updated and d will be updated

once. From then on, only p will be updated. If we have to ever

update d, we will end up in the “F” state and the machine will

terminate. If we read until the end of the input and never get to

the “F” state, then the input given matches the given machine.

This machine is then run forever to produce the continuation

for the given input.

Figure 5

(0) Upon reading the first input, we update a0 with the first

number. For the example given, a0 will be set to 3. Set i, the

variable that keeps track of the last input, to a0.

(1) We will move to the “p” state which stands for print. We

will set the value at p to a0.

(p) At state p, we will set p:= i. Then we will print out the

value of p.

(2) We will then read the next input, i, and move to d.

(d) If the variable at d is unset, it will be set to i – a0. Else, we

will check whether d == i – p. If i is null (we have reached

the end of the input), set i := p+d, keeping the value of d

intact.

(3) If d == i-p, then we will move back to state p.

(4) If d != i-p, then we will move to the “F” state.

(F) Do nothing.

 To generate the continuation, all we have to do is continue

running the state machine with null input.

There are 11 state machines in total in GIP. The following are

the sequences that they can identify.

State Machine 1:

 Recognizes sequences where consecutive terms differ by

a fixed amount.

 Examples

o 1, 2, 3, 4, 5, 6, ...

o 3, 6, 9, 12, 15, 18, …

o 19, 17, 15, 13, 11, …

State Machine 2:

 Recognizes sequences of repeated intervals.

 Examples

o 2, 6, 3, 1, 4, 2, 6, 3, 1, 4, …

State Machine 3:

 Recognizes blocks of numbers of fixed lengths.

 Examples

o 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, …

o 4, 4, 4, 4, 7, 7, 7, 7, 10, 10, 10, 10, 13, 13, 13,

13, …

State Machine 4:

 Recognizes patterns of increasing / decreasing intervals

 Examples

o 3, 3, 5, 3, 5, 7, 3, 5, 7, 9, …

o 3, 5, 3, 7, 5, 3, 9, 7, 5, 3, …

o 12, 10, 8, 6, 4, 2, 10, 8, 6, 4, 2, …

o 2, 4, 6, 8, 10, 12, 2, 4, 6, 8, 10, 2, 4, 6, 8, …

State Machine 5:

 Recognizes blocks of same numbers repeated for

increasing / decreasing intervals

 Examples

o 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, …

o 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, …

State Machine 6:

a0

F

d p

(1)

(2)

(3)

(4)

(0)

 Recognizes increasing / decreasing snake-like patterns

 Examples

o 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, …

o 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3,

2, 1, …

State Machine 7:

 Checks for interleaved sequences where if we extract the

individual sequences, these individual sequences will fit

into one of the state machines 1 to 6.

 Examples

o 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, … [odds interleaved

with ones]

State Machine 8

 Recognizes pattern that appear in “squares”

 Examples

o 1, 2, 3, 2, 3, 4, 5, 6, 4, 5, 6, 4, 5, 6, 7, 8, 9, 10, 7,

8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, …

State Machine 9

 Recognizes the pattern where the first number is being

repeated once, the next two numbers repeated twice, the

next three numbers repeated thrice, etc.

 Examples

o 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8,

8, 8, 9, 9, 9, 9, 10, 10, 10, 10, …

State Machine 10

 This is technically not a state machine. It searches for this

sequence in the online encyclopedia of integer sequences

for a hit and a continuation.

 Examples

o 1, 1, 2, 3, 5, 8, 13, 21, …

o 2, 3, 5, 7, 11, 13, 17, 19, …

State Machine 11

 This state machine caters to noise at the start of a

sequence and then runs state machines 1-10 on the de-

noised version.

 Examples

o 120, 284, 1, 2, 3, 4, 5, 6, …

b) Analyze displacement from previous entry

1. We will first transform the sequence of inputs from

coordinates to displacements from the previous point. In

the example of the spiral that is shown above, we will get

. R, R, D, D, L, L, L, L, U, U, U, U, R, R, R, R, R, R, D,

D, D, D, D, D, … where R = (1, 0), L = (-1, 0), U = (0, 1)

and D = (0, -1).

2. We will then map each of these displacements to a natural

number. Hence, the sequence will now become 1, 1, 2, 2,

3, 3, 3, 3, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, …

3. This sequence will then be passed through state machines

1-11 to find a continuation.

4. The continuation will be in the form of natural numbers of

we will then maps these back to the displacement form.

5. Lastly, we will find out the last input point that we have

and calculate the next points based on the current point and

the displacement from the current point.

IV. REFERENCES

