
A Type Theory for Linking

(rough draft)

Michael Arntzenius
advised by Karl Crary

May 17, 2012

1 Audience

This paper is written assuming a working knowledge of the basics of programming language syntax
and semantics. Backus-Naur Form (BNF) is used to define grammars and natural-deduction style
inference rules are used to define logical judgments. Familiarity with typed λ-calculi, in particular
features such as product, universal, and recursive types, is assumed. The Curry-Howard correspon-
dence is employed without remark throughout. Other concepts, such as modal logic, the adjoint
calculus, and hereditary substitution, are explained before use. Prior knowledge of these is not
necessary.

2 Motivation

Most formal literature on programming languages accounts for three processes: parsing, typecheck-
ing and execution. Even the ubiquitous process of compilation generally takes us outside the formal
realm; the target language is typically untyped, and arguing that compilation preserves the source
language semantics is done informally if at all. Fortunately, there is active research in this area,
in the form of verified compilers, typesafe assembly languages, and proof-carrying code. However,
there are two processes almost as ubiquitous as compilation that have been mostly ignored by
formal efforts: linking and loading.

We define the λlib-calculus, showing how a typed language with explicit support for linking and
loading may be formalized and implemented. Aside from the straightforward goal of filling a gap in
our formal understanding of computation, we are particularly motivated by the need of ConcertOS,
a project to build a typesafe operating system, for a model of linking and loading. The content of
this work is, however, not specific to ConcertOS.

3 Background

3.1 Modal logic and mobility

We initially expected to use some variety of modal logic as our typesystem. Modal logics are a
family of logics which deal with the concept of necessity1. “Necessity” is understood in terms of
“possible worlds”. In general, a proposition may be true in one possible world and false in another.

1And its dual, possibility, which we do not consider here

1

“Necessary” propositions are those true in all possible worlds. In contrast, “contingent” truths
may only be true in “our” world; or at least we only know they are true in our world.2

Modal logic adds a unary propositional connective expressing that a proposition τ is “necessary”,
which we write 2τ . What suggested modal logic to us was that the 2 operator has been shown
to represent mobile types [4]. The notion of mobile code arises in distributed computation. In
general, code in a distributed system may depend on the resources of a particular computational
node to run. “Mobile” code is code that can run at any node. Modal logic models this if we let
our “possible worlds” be nodes: a necessary proposition is true in every world, just as mobile code
can run on any node. 2τ is then the type of a piece of mobile code that returns a value of type τ .

Libraries are akin to mobile code: they are stored on-disk in a format portable to any machine
with the same operating system and instruction set—at least, as long as it can supply the library’s
dependencies. This is the sticking point: modal logic provides no good way to represent libraries
with dependencies. Explaining this problem requires a digression.

3.2 Dependencies

Suppose that 2τ is the type of a library with no dependencies that contains code of type τ .
What then is the type of a library that does have a dependency? First, note that the primary
operation on a library with a dependency is linking it against a library fulfilling that dependency.3

Second, libraries with dependencies are defined in terms of the depended-upon thing, as if it were
a free variable. Together these suggest that libraries with dependencies can be viewed as a kind of
function, taking their dependency as an argument, and returning their own contents as a result.

Consider then a library l that depends on a τ1 and produces a τ2. If libraries are functions
of their dependencies, perhaps we can give l the type 2τ1 → 2τ2? Unfortunately this does not
suffice, because it is not mobile. 2τ1 → 2τ2 is an ordinary function type, and its values are not
necessarily of a form that can be written to disk and shipped between machines the way a library
(even a library with as-yet unfilled dependencies) can.

Can we fix this by adding a surrounding 2, giving l : 2(2τ1 → 2τ2)? Unfortunately, this still
does not suffice. While this type is mobile, it still uses an ordinary function as the mechanism for
linking against a dependency, which is undesirable for two reasons. First, it means that linking,
which involves calling the function contained in l, can have arbitrary side-effects (eg. nontermination
or malicious behavior), which is clearly undesirable.

Second, it makes partial linking, where we link a library against just one of its several depen-
dencies, impossible. Consider that curried functions must receive their arguments in order ; given
f : τ1 → τ2 → τ3 and y : τ2, I cannot apply f to y without also having some x : τ1. I can achieve
this by creating a wrapper function:

λx : τ1. f x y

However, this merely delays the actual call to f until the first argument x is received.4 If f is
the underlying function of a library with two dependencies, this means we cannot do the actual
work of linking the library against its second dependency until we have its first. Real linkers do
not suffer from this problem.

2This is an extremely rough characterization, and ignores many important varieties of modal logic.
3There is also the issue of mutually dependent libraries. For simplicity, and because we believe that it is in practice

quite feasible to avoid such circular dependencies, we ignore this problem entirely.
4Uncurried functions f : τ1 × τ2 → τ3 exhibit a stronger version of this problem: they cannot be called until all

arguments are received.

2

3.3 The adjoint calculus

To deal with dependencies, we turn to Benton and Wadler’s adjoint calculus [1]. Adjoint calculi
are a family of λ-calculi that can be used to “encode” both modal logic and other logics such as
intuitionistic linear logic. Here we concern ourselves only with its relation to modal logic.

The adjoint calculus “splits” modal logic into two layers, an “upper” and a “lower”. The upper
layer corresponds to necessary or mobile things—for us, libraries. The lower layer corresponds to
ordinary, contingent things—for us, an ordinary programming language to which we wish to add
explicit support for libraries. Thus we split our types into upper-layer library interfaces I and
lower-layer types τ ; and our terms into libraries L and ordinary terms e. In Figure 1 we give the
syntax and relevant rules of our version of the adjoint calculus, which we proceed to develop into
the λlib-calculus.

Syntax:

library contexts ∆ ::= · | ∆, u : I term contexts Γ ::= · | Γ, x : τ
interfaces I ::= dτe | ... types τ ::= bIc | ...

libraries L ::= u | code e | ... terms e ::= x | lib L | use L
| load u = e1 in e2 | ...

Judgments: ∆ ` L : I and ∆; Γ ` e : τ

Rules:
∆; · ` e : τ

∆ ` code e : dτe dIe
∆ ` L : dτe

∆; Γ ` use L : τ
dEe

∆ ` L : I
∆; Γ ` lib L : bIc bIc

∆; Γ ` e1 : bIc ∆, u : I; Γ ` e2 : τ

∆; Γ ` load u = e1 in e2 : τ
bEc

Figure 1: Syntax and typing rules of an adjoint calculus for libraries

In place of the singular modal operator 2, we have two operators. The first, dτe ∈ I, injects
terms into the library layer; it is the interface of a library containing code of type τ . The second,
bIc, injects libraries into the term layer; it is the type of a run-time reference to a library with
interface I. Thus the modal 2τ becomes bdτec: the type of a run-time reference to a library
containing code of type τ .

As we have two layers, we also have two contexts: ∆ for library variables and Γ for term
variables. Terms may depend on libraries, so the typing judgment ∆; Γ ` e : τ for terms involves
both contexts. However, the typing judgment ∆ ` L : I for libraries lacks a term context, preventing
libraries from depending on arbitrary run-time values. Thus, to embed code into a library via the
code operator (the dIe rule), it must typecheck with an empty term context; and when embedding
a library in a program via the lib operator (the bIc rule), we throw away our Γ context. The dEe
rule is straightforward: if we have a library L : dτe containing code of type τ , we can use it within
a program to retrieve the embedded τ . bEc is only slightly more subtle: given e1 : bIc, which
evaluates to a reference to a library with interface I, we can bind a library variable u : I to the
library it refers to to.

3

3.3.1 Extending the library layer

The only library-layer type operator needed to encode modal 2 is dτe. But having separated the
two layers, we are free to add other operators to I. It is this expressiveness that suits the adjoint
calculus to our purposes: library-layer operators let us express the the “super-structure” of a library,
beyond merely the type of the code it contains, in a way that modal logic cannot. In particular, we
can express dependencies as library-layer functions, distinct from ordinary term-layer functions:

I ::= ... | I → I

L ::= ... | λu : I. L | L L

This cleanly separates the library-level (link-time) computation of linking a library against its
dependencies from ordinary (run-time) function application. We can thus avoid arbitrary link-time
side-effects by simply not introducing any side-effectful operations to the library layer. Partial
linking, as we shall see, is more complicated, but still feasible.

In general, by adding library layer operators, we express that these correspond to the structure
of the library itself, not the code it contains. For a concrete example of this distinction, let us first
add library products:

I ::= ... | I × I
L ::= ... | 〈L,L〉 | πi L

Now, consider the following C-language header files:

File: A.h File: B.h

int x;

int y;

struct { int x; int y; } p;

A library implementing the interface expressed by A.h will contain two labels, each of type
int. A library implementing B.h will contain one label of type struct {int x; int y;} (in other
words, a pair of ints). The interface of A.h is thus best represented by dinte × dinte (involving a
library-layer product), while B.h’s interface is dint× inte (involving a term-layer product).

3.3.2 Polymorphism

Before presenting the full λlib-calculus, one complication remains. The adjoint calculus we have
presented so far lacks parametric polymorphism, the ability to universally quantify over types.
Adding polymorphism introduces a new context Ψ for type variables (see Figure 2), which raises
the question of how this context should behave in our two-layer system: Is Ψ discarded like Γ when
we move into the library layer, or preserved like ∆? That is, is the typing judgment for libraries of
the form Ψ; ∆ ` L : I or does it remain ∆ ` L : I?

For the sake of expressivity, we’d like to choose the former and preserve Ψ in the library layer,
otherwise it becomes impossible to implement a function with a type such as ∀α. bdαec → α. Since
types τ are conceptually lower-layer things, however, it’s not immediately obvious that this is safe.
Luckily it turns out that it is.

4 The λlib-calculus

The λlib calculus is a polymorphic adjoint calculus with functions and products at the library layer,
and functions, universals, and recursive types at the term layer. The library operators we have

4

type contexts Φ ::= · | Φ, α
types τ ::= ... | α
terms e ::= ... | Λα. e | e [τ]

Figure 2: Adding polymorphism to the adjoint calculus

discussed already; the term operators were chosen to make the term layer Turing-complete with a
minimum of bother, the better to model a real programming language and so serve as a proof of
concept. The syntax and typing rules are given in Figure 3.

4.1 Suspensions versus values

Careful inspection of Figure 3 reveals the use of e value as a premise of the dIe rule:

e value Ψ; ∆; · ` e : τ

Ψ; ∆ ` code e : dτe

In contrast with the adjoint calculus presented so far, the λlib-calculus requires that in the library
code e, the enclosed term e be a value. Without this constraint, we are forced to make an ugly
choice: either evaluating a library term L may involve evaluating embedded terms e, bringing back
the danger of unrestricted side-effects during linking; or, we must take code e to be a suspension
that delays evaluating e until it is extracted via use. The former is clearly unacceptable. The latter
is a principled solution, but fails to capture the semantics of real-world libraries. We therefore add
the e value restriction, on the grounds that it better models real-world semantics at a neglible cost
to expressivity.

4.2 Dynamic semantics, partial linking, and hereditary substitution

As yet we have not presented dynamic semantics for the λlib-calculus. The primary difficulty in
constructing such a semantics is accounting for partial linking: the ability to link a library with
multiple dependencies against any one of them independently. Since we are representing libraries
as functions of their dependencies, this reduces to the problem of partial evaluation: reducing a
function applied to some known and some unknown arguments to a function of only the unknown
arguments.

Partial evaluation is usually considered in the context of compiler optimization, but unfortu-
nately we do not have the luxury of treating it as a mere optimization. Luckily, there is a standard
technique for achieving this, known as hereditary substitution. Hereditary substitution can intu-
itively be thought of as keeping all terms “as normalized as possible given their free variables” at
all times. As such, all the actual work of reduction in a system of hereditary substitution occurs
during substitution—when we eliminate free variables.

Hereditary substitution separates terms into “canonical” and “atomic” forms. In our case,
we separate libraries L into canonical M and atomic R. We present the resulting λlibhs -calculus.
Canonical libraries M are either introduction forms (λu : I.M , 〈M,M〉, codee) or embedded atomic
forms (at R). Atomic forms R consist of a series of elimination forms (R M , πiM) applied to a
“head” variable (u). Directly replacing this head variable with a canonical term, as in näıve
substitution, would be syntactically invalid. Thus, only irreducible uses of elimination forms are
expressible.

5

Syntax:
interfaces I ::= dτe | I → I | I × I

types τ ::= bIc | τ → τ | α | ∀α. τ | µα. τ
libraries L ::= u | λu : I. L | L L | 〈L,L〉 | πi L | code e

terms e ::= x | λx : τ. e | e e | Λα. e | e [τ] | rollµα. τ e | unroll e
| lib L | use L | load u = e in e

Judgments:
Ψ ` I iface Ψ; ∆ ` L : I L value
Ψ ` τ type Ψ; ∆; Γ ` e : τ e value

Rules:

Ψ, α,Ψ′ ` α type
Ψ ` I iface

Ψ ` bIc type
Ψ ` τ1 type Ψ ` τ2 type

Ψ ` τ1 → τ2 type

Ψ, α ` τ type

Ψ ` ∀α. τ type

Ψ, α ` τ type

Ψ ` µα. τ type

Ψ ` τ type

Ψ ` dτe iface
Ψ ` I1 iface Ψ ` I2 iface

Ψ ` I1 → I2 iface
Ψ ` I1 iface Ψ ` I2 iface

Ψ ` I1 × I2 iface

Ψ; ∆, u : I,∆′ ` u : I

Ψ; ∆, u : I1 ` L : I2
Ψ; ∆ ` λu : I1. L : I1 → I2

Ψ; ∆ ` L1 : I1 → I2 Ψ; ∆ ` L2 : I1
Ψ; ∆ ` L1 L2 : I2

Ψ; ∆ ` L1 : I1 Ψ; ∆ ` L2 : I2
Ψ; ∆ ` 〈L1, L2〉 : I1 × I2

Ψ; ∆ ` L : I1 × I2
Ψ; ∆ ` πi L : Ii

e value Ψ; ∆; · ` e : τ

Ψ; ∆ ` code e : dτe
Ψ; ∆ ` L : dτe

Ψ; ∆; Γ ` use L : τ

Ψ; ∆; Γ, x : τ,Γ′ ` x : τ

Ψ; ∆; Γ, x : τ1 ` e : τ2
Ψ; ∆; Γ ` λx : τ1. e : τ1 → τ2

Ψ; ∆; Γ ` e1 : τ1 → τ2 Ψ; ∆; Γ ` e2 : τ1
Ψ; ∆; Γ ` e1 e2 : τ2

Ψ, α; ∆; Γ ` e : τ

Ψ; ∆; Γ ` Λα. e : ∀α. τ
Ψ ` τ ′ type Ψ; ∆; Γ ` e : ∀α. τ

Ψ; ∆; Γ ` e [τ ′] : [τ ′/α] τ

Ψ; ∆; Γ ` e : [µα. τ/α] τ

Ψ; ∆; Γ ` rollµα. τ e : µα. τ

Ψ; ∆; Γ ` e : µα. τ

Ψ; ∆; Γ ` unroll e : [µα. τ/α] τ

Ψ; ∆ ` L : I

Ψ; ∆; Γ ` lib L : bIc
Ψ; ∆ ` L : dτe

Ψ; ∆; Γ ` use L : τ

Ψ; ∆; Γ ` e1 : bIc Ψ; ∆, u : I; Γ ` e2 : τ

Ψ; ∆; Γ ` load u = e1 in e2 : τ

λx : τ. e value Λα. e value
e value

rollµα. τ e value
L value

lib L value

u value λu : I. L value

L1 value L2 value

〈L1, L2〉 value
e value

code e value

Figure 3: Syntax and typing rules of the λlib-calculus
6

Hereditary substitution is the algorithm by which we replace variables without violating this
syntactic constraint, and its rules are given along with the dynamic semantics for the λlibhs -calculus
in Figure 5. Since the function of hereditary substitution is to keep libraries in canonical form, there
is no need for a separate “evaluation” judgment in the dynamic semantics for libraries. Instead of
typical progress and preservation lemmas, therefore, we have substitution lemmas (at least for the
library layer):

Lemma 1 (Substitution of Types).

1. (a) If Ψ ` τ type and Ψ, α,Ψ′ ` τ ′ type then Ψ,Ψ′ ` [τ/α] τ ′ type.

(b) If Ψ ` τ type and Ψ, α,Ψ′ ` I iface then Ψ, |psi′ ` [τ/α] I iface.

2. (a) If Ψ ` τ type and Ψ, α,Ψ′; ∆ `M : I then Ψ,Ψ′; ∆ ` [τ/α]M : [τ/α] I.

(b) If Ψ ` τ type and Ψ, α,Ψ′; ∆ ` R : I then Ψ,Ψ′; ∆ ` [τ/α]R : [τ/α] I.

(c) If Ψ ` τ type and Ψ, α,Ψ′; ∆; Γ ` e : τ ′ then Ψ,Ψ′; ∆; Γ ` [τ/α] e : [τ/α] τ ′.

Lemma 2 (Substitution of Terms).
If Ψ; ∆; Γ ` e : τ and Ψ; ∆; Γ, x : τ,Γ′ ` e′ : τ ′ then Ψ; ∆; Γ,Γ′ ` [e/x] e′ : τ ′.

Theorem 1 (Progress). If ·; ·; · ` e : τ then either e value or e 7→ e′.

Theorem 2 (Preservation). If ·; ·; · ` e : τ and e 7→ e′ then ·; ·; · ` e′ : τ .

Theorem 3 (Substitution of libraries). If Ψ; ∆ `M : I, then:

1. If Ψ; ∆, u : I,∆′; Γ ` e : τ , then [M/u] e → e′ and Ψ; ∆,∆′; Γ ` e′ : τ . Moreover, if e value
then e′ value.

2. If Ψ; ∆, u : I,∆′ ` N : I ′ then [M/u]N → N ′ and Ψ; ∆,∆′ ` N ′ : I ′.

3. If Ψ; ∆, u : I,∆′ ` R : I then [M/u]R → N and Ψ; ∆,∆′ ` N : I ′ and either N = at R′ for
some R′ or I ′ v I (where v is structural subsumption).

Proofs will be available online at https://github.com/rntz/ttol.

5 CAMlib

The “Categorical Abstract Machine”, or CAM, is a simple abstract machine used as a compilation
target for λ-calculi and other functional languages [2]. We extend a simplified version of the
CAM with instructions that implement our hereditary-substitution library operations. Efficient
implementation requires careful use of explicit substitutions to avoid deep-copying.

5.1 Instruction set

We begin with a simplified presentation of (a variant of) the CAM due to Xavier Leroy [3]. Our
initial CAM is an abstract machine whose state is a three-tuple 〈c, e, s〉 of an instruction sequence
c, an environment e, and a stack s, defined by:

code c ::= i; c | Return
environment e ::= v. e | ·

stack s ::= v. s | 〈c, e〉. s | ·
instructions i ::= Access(n) | Closure(c) | Apply

values v ::= [c, e]
natural numbers n

7

https://github.com/rntz/ttol

Syntax:
canonical libraries M ::= atR | λu : I. M | 〈M,M〉 | code e

atomic libraries R ::= u | R M | πiR
terms e ::= ... | libM | useR

Judgments:
Ψ; ∆ ` L : I splits into Ψ; ∆ `M : I and Ψ; ∆ ` R : I.
L value disappears.

Rules:
Ψ; ∆ `M : I

Ψ; ∆; Γ ` libM : bIc
Ψ; ∆ ` R : dτe

Ψ; ∆; Γ ` useR : τ

Ψ; ∆ ` R : I

Ψ; ∆ ` atR : I Ψ; ∆, u : I,∆′ ` u : I

e value Ψ; ∆; · ` e : τ

Ψ; ∆ ` code e : dτe
Ψ; ∆, u : I1 `M : I2

Ψ; ∆ ` λu : I1. M : I1 → I2

Ψ; ∆ ` R : I1 → I2 Ψ; ∆ `M : I1
Ψ; ∆ ` R M : I2

Ψ; ∆ `M1 : I1 Ψ; ∆ `M2 : I2
Ψ; ∆ ` 〈M1,M2〉 : I1 × I2

Ψ; ∆ ` R : I1 × I2
Ψ; ∆ ` πiR : Ii

λx : τ. e value Λα. e value rollµα. τ value libM value

Translation from λlib: We define an operation pq that takes libraries L to canonical libraries M .
We use library substitution, defined in Figure 5.

puq = at u

pλu : I. Lq = λu : I. pLq

p〈L1, L2〉q = 〈pL1q, pL2q〉

pL1 L2q =

{
M ′ if pL1q = λu : I. M and [pL2q/u]M →M ′

at (R pL2q) if pL1q = atR

pπi Lq =

{
Mi if pLq = 〈M1,M2〉
at (πiR) if pLq = atR

Figure 4: Syntax & typing rules of λlibhs (where they differ from λlib) and translation from λlib

8

Judgments:

Library-layer: [M/u]M →M , [M/u]R→M , [M/u] e→ e
Term-layer: e 7→ e

Substitution rules:
[M/u]R→ N

[M/u] atR→ N

[M/u] e→ e′

[M/u] code e→ code e′

[M/u]N → N ′ (u 6= v)

[M/u]λv : I. N → λv : I. N ′
[M/u]M1 →M ′1 [M/u]M1 →M ′2

[M/u] 〈M1,M2〉 → 〈M ′1,M ′2〉

[M/u]u→M

(u 6= v)

[M/u] v → at v

[M/u]R→ atR′ [M/u]N → N ′

[M/u]R N → atR′ N ′
[M/u]R→ atR′

[M/u]πiR→ πiR
′

[M/u]R→ λv : I. O [M/u]N → N ′ [N/v]O → O′

[M/u]R N → O′
[M/u]R→ 〈M1,M2〉

[M/u]πiR→Mi

[M/u]N → N ′

[M/u] libN → libN ′
[M/u]R→ atR′

[M/u] useR→ useR′
[M/u]R→ code e

[M/u] useR→ e

(All other [M/u] e→ e rules just distribute the substitution across subexpressions.)

Evaluation rules:

e1 7→ e′1
e1 e2 7→ e′1 e2

e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2 (λx : τ. e1) e2 7→ [e2/x] e1

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

e1 value e2 7→ e′2
〈e1, e2〉 7→ 〈e1, e′2〉

e 7→ e′

πi e 7→ πi e
′

e1 value e2 value

πi 〈e1, e2〉 7→ ei

e 7→ e′

e [τ] 7→ e′ [τ] (Λα. e)[τ] 7→ [τ/α] e

e 7→ e′

rollµα. τ e 7→ rollµα. τ e
′

e 7→ e′

unroll e 7→ unroll e′
e value

unroll (rollµα. τ e) 7→ e

e1 7→ e′1
load u = e1 in e2 7→ load u = e′1 in e2

[M/u] e2 → e′2
load u = libM in e2 7→ e′2

Figure 5: Dynamic semantics of λlibhs

9

The transitions of our simplified CAM are as follows:

State before State after
Code Env Stack Code Env Stack

Access(n); c v0. ...vn. e s c v0. ...vn. e vn. s
Closure(c′); c e s c e [c′, e]. s
Apply; c e v. [c′, e′]. s c′ v. e′ 〈c, e〉. s
Return e v. 〈c′, e′〉. s c′ e′ v. s

Informally, the environment e is a list of values, used to store local variables. The stack s
stores temporary result values v and return frames 〈c, e〉. Code c is some sequence of instructions
terminated by a Return, which (naturally) returns the value on the top of the stack to the return
frame below it. Our only values are closures [c, e] of code and a captured environment. The
Access(n) instruction accesses the nth value in the environment (ie. some local variable); Closure(c)
creates a closure of c with the current environment; and Apply applies a function.

10

A simple translation T () from an untyped lambda calculus using DeBruijn-indexed variables
into CAM code c may be defined as follows:

e ::= n | λ. e | e e

T (e) = C(e, Return)
C(n, c) = Access(n); c
C(λ. e, c) = Closure(T (e)); c
C(e1 e2, c) = C(e1, C(e2, Apply; c))

Intuitively speaking, all that is necessary to extend this CAM to handle the λlibhs -calculus is to ex-
tend values v with libraries M , extend the state with a “library environment” σ representing bound
library variables (in the same sense as e represents bound term variables), and add instructions to
handle our lib, load, and use constructs. We do this in Figure 6.

However, to implement hereditary substitution efficiently we need a variant of explicit sub-
stitution, as will be explained in 5.2. From this concern comes much added complexity, so the
significance of the definitions in Figure 6 may not be immediately apparent.

5.2 Explicit substitutions and copying concerns

The CAMlib, somewhat unusually for an abstract machine, manipulates entities at runtime that
are essentially abstract syntax trees—namely, libraries. This seems unavoidable, as no efficient
compilation strategy is known for hereditary substitution, unlike ordinary substitution (for which
the CAM’s environment-and-closure approach implements one such strategy). This should not be
too surprising: the operational semantics for our library layer are designed to provide the same
functionality as an ordinary linker and loader. In real systems, the information needed to load a
library or link it against something else is not compiled into executable instructions residing within
the library itself, but is given as metadata to linkers and loaders which manipulate it. On our
view, then, linkers and loaders are nothing more than interpreters for the instructions contained in
libraries’ metadata—which is exactly what we have produced in the CAMlib.

Having resigned ourselves to performing capture-avoiding substitution at run-time, then, we are
faced with the problem of how to minimize the expense of this operation. The usual solution is to
represent variables by their DeBruijn indices: a variable is simply a natural number indicating how
many enclosing binders to “skip over” before we find the binder for that variable. For example,
λx. λy. x y becomes λ. λ. 1 0 in DeBruijn notation. When we substitute under a binder, we must
lift (increase by 1) free variables inside the term being substituted, so that they still refer to the
correct binder. Assuming an operation ↑ e which performs this lift, the equation for substitution
under a binder then becomes:

[e′/n]λ. e = λ. [↑ e′/n+ 1] e

The problem is that the operation ↑ e requires traversing the entirety of e to find and increment
free variables. This is expensive both in time and, less obviously, in space: unless we are careful, the
entire term e will be copied once for each binder we substitute under. This is especially worrying
when the terms we are substituting are in fact libraries: libraries are potentially very large objects.
Moreover, traversing and copying them is not only expensive in itself, but unnecessary duplication
of the code contained in libraries can unnecessarily enlarge programs linked against them, resulting
in reduced spatial locality and worse cache performance.

Luckily there is a well-known solution to this problem, namely explicit substitutions. Much like
our use of hereditary substitution as a method of partial evaluation, explicit substitution is not

11

Syntax:

natural numbers n
code c ::= i; c | Return

term environment e ::= v. e | ·
library substitution σ ::= M. σ | ↑n

stack s ::= v. s | 〈c, e, σ〉. s | ·
instructions i ::= Access(n) | Closure(c) | Apply

| Func(n, c) | Lib(M) | Use(R) | Load
values v ::= [c, e, σ] | libM

canonical libraries M ::= M↑n | atR | λ.M | 〈M,M〉 | code (c) | code (libM)
atomic libraries R ::= R↑n | 0 | R M | πiR

Operations:

code−1 (M) → v code extraction
code−1 (code (c)) = [c, ·, ↑0]

code−1 (code (libM)) = libM

σ ◦ σ → σ substitution composition

↑n ◦ ↑m = ↑(n+m)

↑0 ◦ σ = σ
↑n+1 ◦ (M. σ) = ↑n ◦ σ

(M. σ) ◦ σ′ = [σ′]M. (σ ◦ σ′)

See Figure 7 for the definitions of substitution on libraries [σ]M→M, atoms [σ]R → M,
and code [σ] c→ c.

Transitions:

State before State after
Code Env/Subst Stack Code Env/Subst Stack

Access(n); c 〈v0. ...vn. e, σ〉 s c 〈v0. ...vn. e, σ〉 vn. s
Closure(c′); c 〈e, σ〉 s c 〈e, σ〉 [c′, e, σ]. s

Apply; c 〈e, σ〉 v. [c′, e′, σ′]. s c′ 〈v. e′, σ′〉 〈c, e, σ〉 . s
Return 〈e, σ〉 v. 〈c′, e′, σ′〉 . s c′ 〈e′, σ′〉 v. s

Func(n, c′); c 〈e, σ〉 s c 〈e, σ〉 [c′, ·, ↑0]. s
Lib(M); c 〈e, σ〉 s c 〈e, σ〉 lib ([σ]M). s
Use(R); c 〈e, σ〉 s c 〈e, σ〉 code−1 ([σ]R). s
Load; c 〈e, σ〉 libM. s c 〈e,M. σ′〉 s

where σ′ = at 0. (σ ◦ ↑1)

Figure 6: The CAMlib

12

Substitution on canonical libraries, [σ]M→M:

[↑0]M = M
[σ]M↑n = [↑n ◦ σ]M

[↑n]M = M↑n
[σ] 〈M1,M2〉 = 〈[σ]M1, [σ]M2〉

[σ]λ.M = λ. [at 0. (σ ◦ ↑1)]M
[σ] code (c) = code ([σ] c)

[σ] code (libM) = code ([σ]M)
[σ] atR = [σ]R

Substitution on atomic libraries, [σ]R →M:

[↑0]R = R
[σ]R↑n = [↑n ◦ σ]R

[↑n]R = R↑n
[M. σ] 0 = M

[σ] (RM) =

{
at ((R′ ⇑n) ([σ]M)) if [σ]R ≈ (atR′) ↑n

[([σ]M). ↑n]M′ if [σ]R ≈ (λ.M′) ↑n

[σ] (πiR) =

{
(at (πiR′))⇑n if [σ]R ≈ (atR′) ↑n

Mi ⇑n if [σ]R ≈ 〈M1,M2〉 ↑n

Where M1 ≈ M2 iff either M1 = M2 or M1 ↑0 = M2, and defining M⇑n and R⇑n as
follows:

M⇑ 0 = M
(M↑n)⇑m = M↑n+m

M⇑n = M↑n

R⇑ 0 = R
(R↑n)⇑m = R↑n+m

R⇑n = R↑n

Substitution on instructions sequences, [σ] c→ c:

[↑0] c = c
[σ]Return = Return
[σ] Load; c = Load; [at 0. (σ ◦ ↑1)] c

[σ] Lib(M); c = Lib([σ]M); [σ] c

[σ]Use(R); c =


Func(n, c′); [σ] c if [σ]R ≈ (code (c′)) ↑n

Lib(M⇑n); [σ] c if [σ]R ≈ (code (libM)) ↑n

Use(R′ ⇑n); [σ] c if [σ]R ≈ (atR) ↑n

[σ]Closure(c′); c = Closure([σ] c′); [σ] c

[σ]Func(n, c′); c =

{
Func(n, c′); [σ] c if ↑n ◦ σ = ↑n

Func(0, [↑n ◦ σ] c′); [σ] c otherwise

[σ] i; c = i; [σ] c

Figure 7: Explicit hereditary substitution in the CAMlib

13

usually thought of as a method for avoiding unnecessary copying. Rather, explicit substitutions
express the properties of substitution, usually thought of as a transformation, in an algebraic
manner, by adding substitutions as first-class objects to the syntax of a language. For example, a
simple lambda calculus with explicit substitution could look something like the following:

e ::= n | λ. e | e e | e[σ]
σ ::= e. σ | ↑n

n[↑m] = n+m
(e1 e2)[σ] = e1[σ] e2[σ]
(λ. e)[σ] = λ. e[0. (σ ◦ ↑1)]

↑n ◦ ↑m = ↑n+m
↑0 ◦ σ = σ

↑n+1 ◦ (e. σ) = ↑n ◦ σ
(e. σ) ◦ σ′ = e[σ′]. (σ ◦ σ′)

These definitions seem abstruse, but produce useful algebraic properties. For example, it is
easily shown that e[σ][σ′] = e[σ ◦ σ′], and that ↑0 forms a left- and right-identity of the composition
operator ◦.

The usefulness of explicit substitutions for avoiding copying lies in the fact that they delay
work. For example, in the λ-calculus given above, the rule for substituting under a binder is:

(λ. e)[σ] = λ. e[0. (σ ◦ ↑1)]

The whole work of performing this translation consists in evaluating the composition σ ◦ ↑1, which
in essence shifts every term in the substitution σ up by 1. This performs the “lift” which we needed
when using DeBruijn notation. However, the only thing that needs to be traversed to evaluate
σ ◦ ↑1 is the substitution σ; we do not need to traverse the terms in it, because to lift a term e by
one we can simply return the term e[↑1].

There are many different formulations of explicit substitution, some of which are even lazier
than the one presented here (for example, one can let composition of substitutions σ ◦ σ be itself a
form of substitution, rather than a function on substitutions, as given above). However, we cannot
simply choose our favorite flavor for use in the CAMlib. For the function of explicit substitutions
is to delay work, whereas the purpose of hereditary substitution—the whole reason we need to
be doing substitutions at runtime—is to be able to partially evaluate, to not delay work that can
already be done.

However, even in hereditary substitution there is some work it is safe to delay. In particular, the
operation of “lifting” an expression when substituting under a binder cannot cause a reduction to
occur in the expression being lifted, so it is safe to allow explicit lifts. This we do, adding the forms
M↑n and R↑n to the syntax of canonical and atomic libraries in the CAMlib. The definitions in
Figures 6 and 7 are what result after working through the requirements of hereditary substitution
in our new setting of explicit lifts.

6 Implementation

We have implemented, in Standard ML, a typechecker and compiler for the λlib-calculus, translating
through the λlibhs -calculus, targetting the CAMlib. We have also implemented, in C, a bytecode
interpreter for the CAMlib. The code may be found at https://github.com/rntz/ttol.

14

https://github.com/rntz/ttol

References

[1] N. Benton and P. Wadler. Linear logic, monads, and the lambda calculus. In 11th Annual IEEE
Symposium on Logic in Computer Science, 1996.

[2] Cousineau G., Curien P.-L., and Mauny M. The categorical abstract machine. Science of
Computer Programming, 8:173–202, 1987.

[3] Xavier Leroy. From Krivine’s machine to the Caml implementations. Invited talk given at the
KAZAM workshop, 2005. URL http://gallium.inria.fr/~xleroy/talks/zam-kazam05.

pdf.

[4] Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon, January 2008.
URL http://tom7.org/papers/. Available as technical report CMU-CS-08-126.

15

http://gallium.inria.fr/~xleroy/talks/zam-kazam05.pdf
http://gallium.inria.fr/~xleroy/talks/zam-kazam05.pdf
http://tom7.org/papers/

	Audience
	Motivation
	Background
	Modal logic and mobility
	Dependencies
	The adjoint calculus
	Extending the library layer
	Polymorphism

	The lib-calculus
	Suspensions versus values
	Dynamic semantics, partial linking, and hereditary substitution

	CAMlib
	Instruction set
	Explicit substitutions and copying concerns

	Implementation

