
Automatic Heap Exploit Generation

Brent Lim Tze Hao, Advised by Professor David Brumley
Carnegie Mellon University, Pittsburgh, PA

{brentlim, dbrumley}@cmu.edu

Abstract

The automatic exploit generation (AEG) challenge is, given a program, automatically find vulner-
abilities and generate exploits for them. Avgerinos et al showed that, given the source code of the
program, AEG was possible for certain stack smashing and format string exploits. In Automatic Heap
Exploit Generation (AHEG), we do away with the need for source code and we extend AEG to auto-
matically find heap bugs and generate heap exploits on applications running on Windows XP SP3. Our
contributions are: 1) we develop Simple ASM, a simpler subset of x86 ASM, on which we develop our
algorithms on, 2) we propose memory tagging, a technique used to infer the class of data, as opposed
to the type of data, base on semantic analysis of the program, 3) we introduce ”2-steps exploits”, which
extends Avgerino’s approach to exploit generation to heap exploits 4) we build an end-to-end system that
takes executables on Windows XP SP3 and automatically generates crashing inputs against them.

1 Introduction
Avgerinos et al showed that it is possible to automatically discover vulnerabilities and generate control
flow exploits, given only the source code of the target program [1]. The main idea of his work was to use
preconditioned symbolic execution to quickly search for pathological paths in the program and imposing
additional constraints on the crashing input so that the solution to these constraints is the exploit string.

This work builds heavily on and extends the work by Avgerinos et al. In particular, this work addresses
one weakness of AEG: AEG was limited to stack-based buffer overflows and format string exploits because
it did not have semantic information about user bytes in memory. For example, it could not explicitly assert
the constraint on user input that the user input be of a certain length.

This paper develops techniques and a proof-of-concept for automatic heap exploit generation (AHEG)
on executables compiled to run on Windows XP SP 3 on an x86 architecture and stripped of debugging
information.

Contributions
1. We develop Simple ASM, a subset of the x86 instruction set rich enough to express real-world pro-

grams. We provide the translation from x86 to Simple ASM, and show techniques developed in AEG
extend to programs expressed in Simple ASM.

2. We propose memory tagging, a technique used to infer the class of data, as opposed to the type
of data, based on semantic analysis of the program. For example, consider malloc( strlen(
get user input() ) ) and malloc(get user input()). In both examples, the user
can control the size of memory allocated by malloc and in both cases, the function malloc expects
an argument of type int. However, the actual user input to influence the same outcome differs. In
other words, the predicate imposed on the user input differs. For example, to get the program to

1



allocate 5 bytes of memory, in the first case, we might provide the user input “aaaaa” and in the
second case, we might provide the number “5”. Memory tagging is important because in assembly,
it is not immediately obvious that the input to a function, in this case malloc, comes directly from
user input or as a result of operations that are semantically equivalent to strlen.

3. We introduce ”2-steps exploits”, an explicit construction of the predicates on the input space to gen-
erate exploits against doubly-linked linked list, commonly used in the implementations of heap allo-
cators, including the Windows Heap Manager. Brumley et al showed that exploit generation can be
automated by characterizing exploits as predicates on the program state space [2], hence the limita-
tions of AEG to stack-smashing attacks and format string attacks can be overcome by constructing
predicates for different classes of exploits.

4. We build an end-to-end system that takes executables running on Windows XP SP3 and automatically
generate crashing inputs as proof-of-concept of the techniques introduced in this paper.

2 Background
2.1 Bug Find
In AHEG, we are interested in finding exploitable bugs, which are flaws in programs that allow an attacker to
perform arbitrary code execution. Formally, we are searching for paths in programs which lead to violations
of enforceable security polices [18], in particular, that EIP does not contain user input.

Three popular techniques employed today in software verification to search for such pathological paths
are taint analysis [8] [15], symbolic execution [12] [7] [4] [5] [3] and concolic execution [20].

Taint Analysis The idea of taint analysis is to identify certain sources from which user input, also known
as tainted input, is introduced, such as from sockets, files or command line, and to propagate the taint
according to a taint policy. This technique is a form of data flow analysis and is used to identify the bytes
in memory which user has direct control over. A useful application of this technique is to check that EIP is
never tainted.

Forward Symbolic Execution Instead of supplying the program with real, or concrete, user input, in
forward symbolic execution, we emulate the program with symbolic bytes. Each time we condition branch
on a symbolic byte, we fork a new interpreter and explore both branches simultaneously. We also impose
contraints on the symbolic bytes at each branch, so that a string satisfying these constraints will take the
same path in the program. For more information on taint analysis and forward symbolic execution, we refer
the reader to a survey by Schwartz et al [19].

Concolic execution Concolic execution is a variant of symbolic execution, except that instead of emulat-
ing the program with symbolic user input, we run the program with concrete user input. We then instrument
the program and treat these concrete bytes as symbolic, so that whenever we condition branch on user input,
we impose an additional constraint, which we can negate and solve for to get another input that traverses a
different path in the program. The main advantage concolic execution has over symbolic execution is that
in implementing concolic execution, we do not have to keep track of the program state for every branch.

AHEG employs a combination of all three techniques.

2.2 Exploit Generation
In APEG [2] and AEG [1], exploit generation is reduced to the problem of generating predicates on the input
space so that the exploit is the satisfying input to the predicates. In AHEG, we take this approach further
by explicitly constructing predicates for different classes of exploits. The key insight in constructing such
predicates is in encoding the influence the user has on specific bytes in memory. The most obvious influence

2



is direct influence, in which the byte in memory is exactly what the user entered. Another influence is
transformation influence, in which the byte in memory has been transformed by a series of operations (such
as ADD, SUB, etc) from the original user input, so that to control the byte in memory, we have to apply
an inverse to the series of operations to get the required user input. This inverse is usually performed by
a solver. Both of these influence can be identified via data flow analysis and are used in APEG and AEG.
However, there exists other influence over bytes which user might have indirect control over. To use the
same example in the introduction, in malloc(strlen(user input)), the user can control the argument of malloc
by varying the size of the input buffer. By extending symbolic execution to loops, Saxena et al showed that
we can identify such length influence [17].

3 Overview
In this section, we show how the different components and algorithms in AHEG fit together at a high level.
We elaborate on each component in later sections.

3.1 Motivating example
Consider the program shown in Figure 1. The program first reads a number from an input file. Then it
copies that many bytes of user input into the buffer called buf. The program has only 2 end-states, one
that outputs ”Very good”, and one that outputs ”not very good”. To get to the former state, the number and
the length of user input must match the magic number. In the rest of this section, we will show how AHEG
arrives at this user input. This example mimics the parsing of file formats, which is a common source of
heap vulnerabilities in programs. 1

3.2 Initialization
Machine code to Simple ASM All analysis and algorithms described in this paper are performed on pro-
grams written in Simple ASM (§ 4). AHEG performs the translation from x86 Intel assembly instructions to
Simple ASM dynamically. The example program is first compiled to an x86 binary, which is then instru-
mented and executed natively. For each native instruction the program executes, the instrumentor translates
the instruction into the corresponding instruction(s) in Simple ASM.

Seed input AHEG employs concolic execution to explore the state space of the program. Thus, we need
to provide AHEG with a seed input with which to run the example program against. Figure 2 shows the seed
input that we have provided.

3.3 Starting the concolic execution
We initialize the global Path Constraints (PC) to true. Each time we encounter a CondJump instruction,
and we take the true branch, we update PC := PC∧ c, where c is the condition of the conditional jump.
Otherwise, we take the false branch and we update PC := PC∧¬c. In addition, we perform the following
analysis:

Syntactic analysis As the name suggests, in syntactic analysis, we look at instructions individually, and
do not maintain context information of instructions executed. For example, in Maximum Buffer Heuristic
(§ 6.1), we identify instructions that subtracts a constant from the stack pointer, and take the maximum
of all these constants. In the example program, the maximum was 1308, from the instruction SUB esp,
$0x51c, which came from the function setSBUpLow, which is part of the Windows C-Runtime (CRT)
start up code that was added to the example program when we compiled it.

1For example, ClamAV had a heap bug in the code to parse PE (Portable Executable) files [10]. Another example is the multiple
vulnerabilities in Adobe Acrobat and Adobe Reader due to improper parsing of JBIG2-encoded data in PDF files (CVE-2009-0509
to CVE-2009-0512 and CVE-2009-0888, CVE-2009-0889)

3



# i n c l u d e <s t d i o . h>
# i n c l u d e < s t d l i b . h>

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
i n t magic number = 4 2 ;

char buf [ 2 5 5 ] ;
char l i n e 1 [ 2 5 5 ] ;
char l i n e 2 [ 2 5 5 ] ;

i n t l e n = 0 ;
i n t i = 0 ;

FILE ∗ fp ;

fp = fopen ( ” i n p u t ” , ” r ” ) ;

i f ( fp == NULL) {
re turn 3 ;

}

i f ( f g e t s ( l i n e 1 , 255 , fp ) == NULL) {
re turn 1 ;

}

i f ( f g e t s ( l i n e 2 , 255 , fp ) == NULL) {
re turn 2 ;

}

l e n = a t o i ( l i n e 1 ) ;

i f ( l e n < 12) {
re turn ;

}

s t r n c p y ( buf , l i n e 2 , l e n ) ;

i f ( s t r l e n ( buf ) == magic number ) {
p r i n t f ( ” Very good ” ) ;

}
e l s e {

p r i n t f ( ” n o t ve ry good ” ) ;
}

f c l o s e ( fp ) ;

re turn 0 ;
}

Figure 1: Example 1 - This program has only 2 end-states. ”Very good” and ”Not very good”. To get
to the first state, length of buf and len must match the magic number.

4



13
a a a a a a a a a a a a a

Figure 2: Seed input to start off concolic execution on example program

Figure 3: Output when AHEG was run with program in Figure 1

Semantic analysis We look at instructions in the context of other instructions executed, which as a group,
perform operations that are semantically equivalent to operations we define. In particular, we are looking for
blocks of code that perform the equivalent of one of the following operations: (1) Unbounded Copying, (2)
Bounded copying (3) strlen (§ 5.3). Semantic analysis reveals that although strncpy was used, since
the bound depended on user input, namely len, the function was really an Unbounded Copy and that the size
of buf depended on the size of line2 and len. In particular, length(buf) = min(length(line2),
len).

Memory tagging Memory tagging (§ 5.1) occurs at the instruction level and at the semantic block level.
At the instruction level, line1 and line2 are marked as containing user input, because they originate
from user input. atoi(line1) is a series of operations performed on line1, and due to tag propagation,
len is marked as containing user input. More importantly, len is tagged in such a way that we can imagine
len = f (line1), so that to set len to any value, say 42, we need only apply the inverse of f , denoted f−1,
to get the required input, i.e. line1 = f−1(42). At the semantic block level, we tag buf as a buffer that
comes from the buffer at line2. We also tag strlen(buf) as the value that is equal to length(buf).

3.4 Generating the next input
After the first iteration of concolic execution with the seed input provided (Figure 2), the final path con-
straints are PC = (len≥ 13)∧ (length(buf)= min(length(line2),len))∧ (length(buf) 6=
42)). To get the next input, we negate the last clause in the path constraint, to get PC′ = (len ≥ 13)∧
(length(buf)=min(length(line2),len))∧(length(buf)= 42)) Solving for this constraints,
we get len= 42 and length(buf)= 42. From f−1, we know we have to set line1 to the ascii values
0x340x32, for “4” and “2” respectively. From Unbounded Copy, we know that buf was the destination
of an unbounded copy from line2, and hence length(line2) has to be 42. To achieve that, AHEG
generates 42 random characters, for the final output shown in Figure 3.

5



<sasm−i n s> : : = <DOP−i n s> | <JMP−i n s> | <U s e r I n p u t−i n s>
<cond> : : = EQ | NE | GE | GT | LE | LT
<reg> : : = EAX | EBX | ECX | EDX | ESI | EDI | EBP | ESP
<mem> : : = 0 | 1 | 2 | 3 | . . . | 255
<operand> : : = <reg> | (< reg >) | [(< reg >) ] | [<mem>] | $<mem>
<BOP> : : = ADD | SUB | MULT | DIV | OR | AND | XOR
<DOP> : : = MOV | <BOP>
<DOP−i n s> : : = <DOP> <operand> <operand>
<JMP−i n s> : : = UncondJump <operand> | CondJump <operand> <operand> <cond

> <operand>
<U s e r I n p u t−i n s> : : = R e a d F i l e (<operand > , <operand > , <operand >) |

ReadArgv(<operand > , <operand > , <operand >)

Figure 4: Definition of Simple ASM instruction

4 Simple ASM
We simplify the usual 32-bit x86 architecture: in Simple ASM, we have byte-addressable memory model
with 28 entries and a processor with 8 8-bit general purpose registers (EAX, EBX, ECX, EDX, ESI, EDI,
EBP, ESP), and an instruction register EIP. Instructions are stored on memory together with data. Note that
although Simple ASM appears to be assembly language for an 8-bit architecture, our implementation of
AHEG simulates a 32-bit architecture by providing 32 8-bit registers, EAX1, EAX2, EAX3, EAX4, EBX1,
etc and grouping registers into their corresponding registers, e.g. EAX = (EAX1, EAX2, EAX3, EAX4).
Simple ASM is defined so that a register holds 1 byte of data to simplify analysis.

Figure 4 shows the definition of Simple ASM instructions 〈sasm-ins〉. At the high level, instructions
in Simple ASM are divided into 3 categories:

Data flow instructions These are the binary operations, MOV, ADD, SUB, MULT, DIV, OR, XOR and AND,
which take destination and source operands (in that order), perform the corresponding operation and save
the results in the destination operand. An operand is a general purpose register or an immediate value. If
the destination operand is an immediate value, the results are not saved. This is to emulate instructions like
CMP and TEST, which are essentially SUB and AND instructions respectively, except that the results of the
operations are not saved. Data flow instructions propagate user input, or taint, as commonly known in taint
analysis.

Control flow instructions These are UncondJump, which takes one operand and sets EIP to the value of
the operand, and CondJump, which takes four operands, namely 2 operands to compare, the cond operand
and the location operand. CondJump checks the cond operand against the 2 operands we are comparing,
and if the conditions are met, sets EIP to the value of the location operand. Otherwise, it sets EIP to the
address of the next instruction. Control flow instructions propagate control flow information, or implicit
flow.

User input source These are the functions which introduces user input into the system. In SimpleASM,
there are only 2 sources of user input, SymFile and SymArgv. Both ReadFile and ReadArgv take 3
arguments, buf, NumBytesToRead, and &NumBytesRead, where buf is the memory address of the start of
the buffer where user input is copied into, NumBytesToRead is the maximum number of user input to copy,
and & NumBytesRead is the memory address to store the actual number of bytes copied.

6



Macros Given an operand x, (x) refers to the value of x. If x is a register, then (x) is the value stored in
the register, which is always an immediate value. Otherwise, x is an immediate value and (x) = x. Given an
integer y, [y] refers to the value stored in memory at the address y and $y refers to the immediate value y.

4.1 Translating from x86 Assembly to SimpleASM
The instruction set in SimpleASM is a strict subset of x86 assembly, i.e., there are certain instructions in
x86 assembly that are not expressible in SimpleASM. For example, there is no notion of a system call (the
INT instruction) in SimpleASM (apart from the 3 that are built into SimpleASM). However, for all other
instructions that depend only on the general purpose registers and memory (as opposed to the CR registers,
or floating point registers, for example), they are expressible in SimpleASM. The idea is that in SimpleASM,
each instruction either read/write from/to register/memory, so we can express instructions that depends on
register and memory as one or more instructions in SimpleASM.

5 Memory Tagging
Definition Let A be a set of user input. Let f be a function from a set of user input A to the set N∪{⊥}.
Then the influence the user has over a byte i, is a function fi, such that if fi(x) = n,x ∈ A,n ∈N, the value of
byte i when the program terminates is n. The value of the byte is undetermined if fi(x) = ⊥. The user has
no influence over byte i if fi(x) =⊥,∀x ∈ A.

Suppose we are given a program P, and we have found a path in the program which performs Uncond-
Jump (i), where i is some address in memory. Given fi, we can then ask the question, does there exist x ∈ A,
such that fi(x) = n, for some n we choose? If the answer is yes, we have essentially found an input that
controls EIP, i.e. a control-flow hijack exploit. We call x the satisfying input such that fi(x) = n, and given
fi, we can recover x with the help of constraint solvers. Hence, the goal is to find fi.

This section describes memory tagging, a technique used to approximate fi. The technique itself involves
a number of algorithms, namely Buffer Inference (§ 5.4) and loop-extended symbolic execution (§ 5.2).
Loop-extended symbolic execution was first introduced by Saxena et al [17]. Both algorithms rely on the
accurate detection of loops, which is described in § 5.2. In addition, Buffer Inference also require, as input,
blocks of code which are semantically equivalent to Unbounded Copy, Bounded Copy and strlen. We
identify such blocks of code in Semantic Analysis, described in § 5.3.

The key idea of memory tagging is it encodes the influence the user has over a byte and approximates
fi. For each byte in memory, we are interested in the amount of control we have of that byte as a function of
user input. § 5.1 introduces the 4 tags, DAT, SYM, VAR and PTR, used in Memory Tagging

5.1 Tag descriptions
Definition A tag is a piece of data attached to each byte which provides semantic information about the
byte. We write tagi to mean the tag attached to the byte at address i. We also tag bytes in registers. We
write tagreg,reg ∈ {EAX ,EBX ,ECX ,EDX ,ESI,EDI,EBP,ESP} for the tag attached to the byte in register
regname.

In AHEG, we introduce 5 tags, DAT, SYM, VAR, BUF and PTR. We provide a high level overview of
each tag in this subsection. There are two ways tags can be introduced and propagated: 1) at the instruction-
level and 2) at the block level. A block is a group of instructions, that as a whole, perform the semantic
equivalent of a pre-defined function. For example, Figure 9 shows a block that performs a strlen of a
buffer. Table 1 and 2 summarizes the tag introduction and propagation rules at the instruction level and
block level respectively. Block-level tagging is done at the last instruction in the block.

7



Instruction Rule

ReadFile(buf, n,
&m)

Suppose ReadFile(buf, n, &m) reads k bytes of user input from the
symbolic file. Then (1) tagbu f+i := DAT(i,SymFile), ∀0 ≤ i < k. (2) Let
var be the variable id of a fresh symbolic variable. tagm := VAR(var). (3)
PC := PC∧ (var = length(0,SymFile))∧ (var < n)

ReadArgv(buf, n,
&m)

Suppose ReadArgv(buf, n, &m) reads k bytes of user input from the
symbolic file. Then (1) tagbu f+i := DAT(i,SymArgv), ∀0 ≤ i < k. (2) Let
var be the variable id of a fresh symbolic variable. tagm := VAR(var). (3)
PC := PC∧ (var = length(0,SymArgv))∧ (var < n)

MOV [mem], $c tagmem := /0

MOV reg, $c tagreg := /0

MOV [mem1], [mem2] tagmem1 := tagmem2

MOV [mem], reg tagmem := tagreg

MOV reg, [mem] tagreg := tagmem

MOV reg1, reg2 tagreg1 := tagreg2

BOP [mem], $c If tagmem = /0, then tagmem := /0. Otherwise, tagmem := SY M(BOP(tagmem,$c))

BOP reg, $c If tagreg = /0 then tagreg := /0. Otherwise tagreg := SY M(BOP(tagreg,$c))

BOP [mem1], [mem2] If tagmem2 = /0 then use the rule BOP [mem], $c, where mem =
mem1 and c = [mem2]. Otherwise, tagmem2 6= /0. If tagmem1 =
/0, tagmem1 := SY M(BOP($[mem1], tagmem2)). Otherwise, tagmem1 :=
SY M(BOP(tagmem1, tagmem2))

BOP [mem], reg If tagreg = /0 then use the rule BOP [mem], $c, where c = (reg). Otherwise,
tagreg 6= /0. If tagmem = /0, tagmem := SY M(BOP($[mem], tagreg)) Otherwise,
tagmem := SY M(BOP(tagmem, tagreg))

BOP reg, [mem] If tagmem = /0 then use the rule BOP reg, $c, where c = [mem]. Otherwise,
tagmem 6= /0. If tagreg = /0, tagreg := SY M(BOP($(reg), tagmem)). Otherwise
tagreg := SY M(BOP(tagreg, tagmem))

BOP reg1, reg2 If tagreg2 = /0 then use the rule BOP reg, $c, where c = (reg2). Otherwise
tagreg2 6= /0. If tagreg1 = /0, tagreg1 := SY M(BOP($(reg1), tagreg2)) Otherwise,
tagreg1 := SY M(BOP(tagreg1, tagreg2)).

CondJump op1, op2, rela-
tion, branch

If branch is taken, PC := PC∧ (tagop1 relation tagop2). Otherwise PC := PC∧
¬(tagop1 relation tagop2) If branch is taken and DAT ∈ tagbranch, then output
PC as potential exploit

UncondJump branch If DAT ∈ tagbranch, output PC as potential exploit

Table 1: List of tag introduction/propagation rules associated with each Simple ASM instruction.
Recall that BOP ∈ {ADD, MULT, SUB, DIV, OR, AND, XOR} and relation ∈ {EQ, NE, GE, GT, LE,
LT}

8



Semantic block Rules

Unbounded Copy
(I,dest,src, tc)

If tagsrc = BUF(id,n), then (1) new Buffer(buffer id := dest, actu-
alLength := getBuffer(id).actualLength - n, potentialLength := get-
Buffer(id).potentialLength - n, srcBuffer := id, srcBufferOffset := n) (2)
tagdest+i := BUF(dest, i),∀0≤ i < getBu f f er(dest).actualLength

Bounded Copy
(I,dest,src,bound, tc)

If tagsrc = BUF(id,n), then (1) new Buffer(buffer id := dest, actual-
Length := getBuffer(id).actualLength - n, potentialLength := min(bound,
getBuffer(id).potentialLength - n), srcBuffer := id, srcBufferOffset := n)
(2) tagdest+i := BUF(dest, i),∀0≤ i < getBu f f er(dest).actualLength

strlen (tc,bu f ) PC := PC∧ (tc = length(bu f ))

Table 2: List of tag introduction/propagation rules associated with each semantic block

DAT tag If a byte has been tagged DAT(x, y), where x is a number and y ∈ {SymArgv, SymFile}, then that
byte is under direct influence from the xth byte of user input from the command line or from a file. This
means that to set that byte to a particular value, say 42, we need only set the xth byte of user input to 42.

Recall that in Simple ASM, there are only two functions that retrieve user input, namely ReadArgv and
ReadFile. In both cases, we have a buffer containing user input and we tag each byte in the buffer with DAT
since these buffers came directly from user input.

SYM tag If a byte has been tagged SYM(y), where y is an expression involving a set A of user input bytes,
then the byte is under transformation influence from the user input bytes x1, ...,xn ∈ A. This means that to
set the byte to a particular value, say z, we need to set x1, ...,xn, so that they evaluate to z in y.

Whenever either operands of a data flow instruction, except MOV, is tagged, we might introduce a SYM
tag to the destination operand. The exact rules governing the introduction of SYM tags are listed Table 1,
but intuitively, the SYM tag “remembers” all the operations performed on user input. For example, given the
instruction ADD EAX, EBX, where [eax] = 5, and EBX is tagged with DAT(7, SymArgv), then we will tag
EAX with SYM(ADD(5, DAT(7, SymArgv)). If later, we encounter yet another instruction, say SUB ECX,
EAX, where ECX is tagged with DAT(5, SymArgv), then we retag ECX with the tag SYM(SUB(DAT(5,
SymArgv), SYM(ADD(5, DAT(7, SymArgv)))), which means that ECX really is the difference between the
7th and 5th byte of user input and the sum of the constant 5.

PTR tag The tag PTR(n, p), where n is a unique buffer id (§ 5.4), and p, an address in memory, tells us
that the value of this byte has been used as a pointer to access address p, i.e. this byte has been dereferenced.
Since in AHEG, buffer ids are exactly the address of the buffers, we shorten pointers tags to one argument,
namely PTR(n).

VAR tag The tag VAR(var) represents a symbolic variable, with variable id var.

BUF tag If a byte has been tagged BUF(id, n), then the byte is the nth byte of buffer with buffer id id.

Multiple tags It is possible that a byte can be tagged in more than one way. For example, if a byte that
user controls is used to dereference memory, then it will be tagged with DAT and PTR. In these cases, we
concatenate the tags DAT . PTR.

5.2 Loop detection
Definition In AHEG, we define a loop to be a block of code such that, each piece of instruction in the
block, not necessarily contiguous, is executed at least once, and whenever the block is done executing, a

9



1 . MOV EAX, 4 ;
2 . ADD EAX, $1 ;
3 . CondJump EAX, $3 , GE, 8 ;
4 . UncondJump (EAX ) ;
5 . UncondJump 1 ;
6 . UncondJump 1 ;
7 . UncondJump 1 ;

Figure 5: The blocks are {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6} and {1, 2, 3, 4, 7}. The fundamental reason why
we are unable to detect this form of loop lies in instruction 4 - the address of the instruction that we
execute next depends on a value computed within the loop, which we are trying to detect in the first
place.

certain condition is tested to determine if the same block should be re-executed. The test is part of the block.
Hence, the only way to exit from a loop is via a CondJump. This is not the most general definition of a
loop (Figure 5 shows a block of code that is intuitively a loop, but not defined to be a loop), but accurate
detection of the most general loops is beyond the scope of this project.

AHEG adopts the loop detection algorithm presented in LoopProf [14], which is capable of detecting
loops dynamically in the absence of static information like the control flow graph of the program. AHEG
slightly modifies the algorithm to account for exit conditions of loops.

Detecting exit conditions Intuitively exit conditions is a set of conditions, such that if any of the condition
in the set is true, then we exit the loop. Algorithm 1 outputs a set P that is a subset of P′ of exit conditions. It
is a subset because there might be certain exit conditions we do not detect as we are doing dynamic analysis
and there might be paths we do not explore that could potentially be exit paths out of the loop.

At a high level, the algorithm maintains 2 sets, C and P, where C is the constraints governing the current
path and P is the set of exit conditions. Whenever we encounter a CondJump, we first check the invariant
that at least one of the branches lies in the loop. This is because in our definition of a loop, we require every
instruction to have been executed at least once. Hence for us to encounter a CondJump, the subsequent
instruction must belong to either the true or false branch and must also be encountered. Hence at least one
of the branches must lie in the loop. Then, every time we find a path that exits the loop, we update P with
the constraints of the path. Otherwise, if we remain in the loop after a CondJump, we update C with the
additional constraint imposed by that jump.

Loop-extended Symbolic Execution Loop extended symbolic execution was introduced by Saxena et
al [17] to capture the relationship between data that would otherwise be marked concrete in traditional
symbolic execution and user data. An example is shown in Figure 7. The variable i does not depend on user
data directly, but instead depends on the number of iterations of the while loop, which the user can control.
We adopt the same idea of introducing symbolic trip counts (tc) per loop, but we modify their algorithm that
detects for loop-dependent variables, to better integrate with the existing framework that we have built.

Instead of performing symbolic program analysis to link loops to input, we use a REP tag to symbolically
represent that a specific operation on a byte should be repeated n many times, where n is a symbolic argument
to REP. Given a set I of instructions in a loop, we generate a set C of bytes that are affected by at least one
instruction in the loop. Now, for each i ∈C, let xi be the memory tag of byte i before we enter the loop and
let hi(xi) be the memory tag of i after the first iteration of the loop. Recall that Memory Tagging allows us
to “remember” all the operations performed on a byte. Hence, subsequent iterations of the loop will result

10



in the memory tag hi(hi(...hi(x)...)). To symbolically reason about iterations, we introduce the tag REP, and
tag xi with REP(xi,hi, tc) to mean perform hI on xi tc many times, where tc is the symbolic trip-count of the
loop.

Algorithm 1: Algorithm to identify set P, subset of set of exit conditions of a loop
input : I, the set of instructions in a loop
output: P, the set of exit conditions

1 C← true;
2 P← /0 ;
3 ins← GetCurrentIns() ;
4 while ins ∈ I do
5 if ins = CondJump then
6 c← GetCondition(ins) ;
7 nextIns← GetNextIns() ;
8 tb← GetTrueBranch(ins) ;
9 tf← GetFalseBranch(ins) ;

10 if tb /∈ I and tf /∈ I then
/* This can never happen, because in our definition of

loop, we require each instruction to have been executed
at least once. If tb /∈ I and tf /∈ I, then it must be that
ins /∈ I, violating the condition of this while loop */

11 Error() ;
12 if tb /∈ I then
13 P← P∪{C∧ c} ;
14 if tf /∈ I then
15 P← P∪{C∧¬c} ;
16 if nextIns = tb then
17 C←C∧ c ;
18 if nextIns = tf then
19 C←C∧¬c ;
20 ins← nextIns ;
21 return P ;

5.3 Semantic analysis
We identify blocks of code that performs the semantic equivalent of (1) Unbounded copying, (2) Bounded
copying and (3) strlen. Table 3 summarizes the output of each analysis.

Unbounded copying First, we define the template Tcopy=(〈A :=mem[src],src++,mem[dest] :=A,dest+
+〉,{A,src,dest}, /0) and employ the semantics-aware matching algorithm described by Christodorescu et al
[6] to identify the block of code within the program that does the semantic equivalent of a buffer copy. If the
block of code sits inside a loop, as detected by a loop-detection analysis, and if the exit condition of the loop
is the predicate mem[src] = c for some constant c (example c =′ \ 0′ the delimiting NULL byte in strings in
C) and the user has influence over mem[src], then the loop is semantically equivalent to an unbounded copy.
Intuitively, if the loop only checks the source buffer for a byte that the user controls to determine if the loop

11



Semantic block Output Description

Unbounded Copy (I,dest,src, tc) I - a set of instructions that together, perform the Unbounded
Copy operation. dest - address of the first byte of the destina-
tion buffer. src - address of the first byte of the source buffer.
tc - is a symbolic variable representing the number of times the
instructions in I are executed

Bounded Copy (I,dest,src,bound, tc) I - a set of instructions that together, perform the Bounded Copy
operation. dest - address of the first byte of the destination buffer.
src - address of the first byte of the source buffer. bound - an in-
teger that restricts the maximum number of bytes we may copy.
tc - a symbolic variable representing the number of times the in-
structions in I are executed

strlen (I, tc,bu f ) I - a set of instructions that together, perform the strlen oper-
ation. tc is a symbolic variable representing the number of times
the instructions in I are executed. bu f is the address of the frst
byte of the buffer whose length we are calculating

Table 3: Summary of output of each semantic block analysis

should be re-executed, then the user can control the number of bytes copied into the destination buffer, up
to the size of the source buffer. Alternatively, if we detect a block of code that would otherwise be Bounded
Copy, if not for the influence that the user has over the bounds, then the block of code is also classified as
Unbounded Copy. This corresponds to the example shown in Figure 6, which is really an unbounded copy,
despite using strncpy, a bounded-copy function, since the user has control over the bounds.

Bounded copy Detecting a block of code that performs Bounded Copy is identical to detecting a block
of code that performs Unbounded Copy, with the exception that the exit conditions of the loop includes
an additional exit condition that controls the number of iterations that the loop makes, and which the user
does not have control over. Let us make this notion more precise. Recall loop-extended symbolic execution
(§ 5.2) extends symbolic execution to account for loops by introducing a symbolic trip-count (tc), which
represents the number of times the loop is executed. Then the additional exit condition for a bounded copy
is the predicate tc >= c for some constant c, for which the user has no influence over, i.e., if c is from byte
i, then fi(x) = ⊥. Otherwise, if fi(x) 6= ⊥, the user has influence over the byte c then this block of code is
classified as an Unbounded Copy.

strlen We define the template Tstrlen = (〈A := mem[src],src++〉,{A,src,dest}, /0). If the block of
code matching this template lies in a loop, and the exit condition of the loop matches the exit condition
of an Unbounded Copy, then this block of code is semantically equivalent to strlen. Then, we add
the constraint tc = length(i), where i is the buffer id of the source buffer into the global Path Constraints.
length(i) corresponds to the auxiliary attributes introduced by Saxena et al [17].

5.4 Buffer inference
Buffers are data structures commonly used in programs to store strings of user input. Common operations
associated with buffers are unbounded/bounded copying of buffers from place to place and strlen, which
calculate length of buffers. Buffer overflow occurs when the copying of buffers causes sensitive memory
regions to be overwritten with user data. If the destination and source buffers are of fixed size, then static

12



# i n c l u d e < s t r i n g . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
char buf [ 2 5 5 ] ;
i n t l e n ;

i f ( a r g c < 3) {
re turn 0 ;

}

l e n = a t o i ( a rgv [ 1 ] ) ;
s t r n c p y ( buf , a rgv [ 2 ] , l e n ) ;
re turn 0 ;

}

Figure 6: Even though strncpy is a bounded-copy function, if the user controls the bounds, then
this piece of code is semantically equivalent to an Unbounded Copy

analysis will quickly reveal the bug. Hence, in AHEG, we turn our attention to variable-sized buffers. Many
buffer overflow occurs because the source buffers are variable-sized and the destination buffers, fixed-size,
and so it is possible for the source buffer to be greater in size than the destination buffer. The key insight in
detecting variable-sized buffers is to observe that by nature of the buffer being variable in size, the program
does not know the size of the buffer beforehand, and hence operations on the buffer must involve a loop.
In AHEG, we use this insight to identify 2 possible ways buffers propagate through the program: either via
Bounded Copy or Unbounded Copy. Another operation performed on variable-sized buffers involving a
loop is strlen.

A buffer object is a data structure with 5 fields, namely buffer id, actualLength, emphpotentialLength,
srcBuffer, srcBufferOffset. The buffer id is also the address of the first byte of the buffer. actualLength refers
to the number of concrete bytes in this buffer. potentialLength refers to the number of bytes that could be in
this buffer, i.e. there exists a path P through this program such that this buffer will contain potenialLength
many bytes. Since buffers propagate via copying, every buffer must come from some where; the first buffer
in the program must come from either SymFile or SymArgv. Hence, srcBuffer refers to the buffer id of
the source buffer. It is not necessary that we start copying from the first byte of the source buffer to the
destination buffer. If we had started from the nth byte, then srcBufferOffset will be set to n.

Buffer introduction The only way for user input to enter the system is via the user input instructions,
namely ReadFile and ReadArgv. When either instruction is encountered, we create a new buffer object.
Recall the arguments to ReadFile and ReadArgv are buf, NumBytesToRead and &NumBytesRead. We
set actualLength to the value contained in the address of &NumBytesRead and potential length to NumByte-
sToRead, if the user does not have any influence over it, and min(NumBytesToRead, range( fi(x))), where i
is the address of NumBytesToRead, otherwise. Notice that in this case, since potentialLength depends on fi,
potentialLength becomes symbolic. The buffer id of this buffer object is the address at which this buffer is
residing, namely buf. srcBuffer is set to either SymFile or SymArgv and srcBufferOffset is set to 0.

13



Buffer propagation Buffers propagate via Unbounded Copy or Bounded Copy. When we detect an Un-
bounded Copy, we clone the source buffer object and update the buffer id of the clone with the destination
address of the Unbounded Copy. When we detect a Bounded Copy, we create a new buffer object, set its
buffer id to the destination address of the Bounded Copy, set the actualLength to the length of bytes actually
copied into the buffer, and set its potentialLength to be the minimum of the bounds in the Bounded Copy
and the potential length of the source buffer.

5.5 Example
A small example now might help us to see how all the algorithms presented in this section integrate together.
Consider the line strlen(buf), which semantically, computes the length of buf. We shall show how
AHEG detects that strlen(buf) actually computes the length of buf.

Figure 7 and 8 shows 2 common techniques of calculating the length of a string. Figure 9 shows a
snippet of the translation of Figure 7 into Simple ASM. Our loop detection analysis gives us the set I =
{2,3,4,5,6,7,8,9,10,11} of instructions in the loop. From instruction 3, since edx is dereferenced, we
guess edx might be a pointer. The address that edx is pointing to matches the buffer id of a buffer object,
so we tag the byte at (ebp) - $8 with PTR(buffer id). Let’s call this buffer buf, so eax is set to
buf[0]. Instruction 4 check that buf[0] is not NULL. Otherwise, it jumps to line 12, which isn’t in I.
Hence, buf[0] = NULL is a exit condition for this loop. Also, ∀i < length(buf), user has influence over
buf[i]. Hence, this satisfy the exit condition requirement for an Unbounded Copy. It isn’t classified as an
Unbounded Copy, because the block of code doesn’t match the template for Unbounded Copy. In particular,
the code does not match mem[dest] := A;dest ++. Nonetheless, we impose an additional constraint into
PC that tc =length(buffer id). Finally, the value of [(ebp) - $4] is 0, before the start of the loop, and
since ADD is the only non-idempotent instruction, at the end of the loop, the byte at (ebp) - $4 will be
tagged with REP(0, ADD $1, tc). Hence, the variable i, which resides in memory address (ebp) -
$4 is encoded as having the value of 0+(tc×1), where tc =length(buffer id), and we see immediately that
length of strings are really just a special case of symbolic trip counts.

The case where strlen is computed with the second technique (Figure 8) is very similar to the case
above. Instead of i, we encode ptr2 with REP(argv[1], ADD $1, tc), where argv[1] is the value of
ptr2 before the start of the while loop. Hence, len will be encoded as having the value REP(argv[1],
ADD $1, tc) - argv[1]. Experiments show that strlen as implemented in the Microsoft C Run-
time Library uses a variant of the second technique.

6 Heuristics
In this section, we propose 2 heuristics to search paths in the programs that are more likely to be exploitable.

6.1 Maximum buffer heuristic
We assume that the program adopts the standard C calling convention, where in the function prolog, we
subtract a certain offset from the stack pointer to allocate memory on the stack. We keep track of all
instructions SUB ESP, $c and ADD ESP, $-c, where c is a constant and find the maximum of all such
c. We output this c.

6.2 Potential Exploit heuristic
Whenever we encounter a jump that dereferences memory directly, i.e. UncondJump [mem] or CondJump
cond, [mem], we look for the buffer closest to mem. Note that if mem contains user input, then this is a
considered a bug. We then check if the distance between that buffer and mem is most its potential length.
If it is, then we have found a potential buffer overflow. The heuristic will then impose an additional con-

14



# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
char ∗ buf ;
i n t i = 0 ;

i f ( a r g c < 2) {
re turn 0 ;

}

buf = a rgv [ 1 ] ;
whi le ( ( ∗ buf ) != ’ \0 ’ ) {

buf ++;
i ++;

}

p r i n t f ( ” Length o f s t r i n g i s %d\n ” , i ) ;
re turn 0 ;

}

Figure 7: We calculate strlen of a string, by introducing a new variable i, and increment the variable
in a loop that steps through a string until we encounter a NULL byte. i contains the length of the
string

15



# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
char ∗ p t r 1 ;
char ∗ p t r 2 ;
i n t l e n ;

i f ( a r g c < 2) {
re turn 0 ;

}

p t r 1 = p t r 2 = a rgv [ 1 ] ;

whi le ( ( ∗ p t r 2 ) != ’ \0 ’ ) {
p t r 2 ++;

}

l e n = ( i n t ) ( p t r 2 − p t r 1 ) ;

p r i n t f ( ” Length o f s t r i n g i s %d\n ” , l e n ) ;

re turn 0 ;
}

Figure 8: We initialize 2 pointers, ptr1 and ptr2 to point to the start of a string. We then increment
ptr2 until we encounter a NULL byte. We then subtract ptr2 from ptr1 to get the length of the
string

1 . MOV [ ( ebp ) − $4 ] , $0 ;
2 . MOV edx , [ ( ebp ) − $8 ] ;
3 . MOV eax , [ edx ] ;
4 . CondJump EAX, $0 , EQ, 1 2 ;
5 . MOV ecx , [ ( ebp ) − $8 ] ;
6 . ADD ecx , $1 ;
7 . MOV [ ( ebp ) − $8 ] , ecx ;
8 . MOV edx , [ ( ebp ) − $4 ] ;
9 . ADD edx , $1 ;
1 0 . MOV [ ( ebp ) − $4 ] , edx ;
1 1 . UncondJump 2 ;

Figure 9: Snippet of the Simple ASM translation of the code in Figure 7. i is stored in [(ebp) - $4] and
bu f is stored in [(ebp) - $8].

16



straint that the length of this buffer is at least the distance to mem, call this constraint c, to get PC′, i.e.
PC′ := PC∧ c, and output PC′. This heuristic was first proposed by Xu et al [21] who argued that we can
detect buffer overflows by treating the length of buffers as symbolic and storing only prefixes of buffers, as
opposed to full buffers. The prefix corresponds to the concrete data we have in the buffer and the length of
this prefix corresponds to the field actual length in our buffer object. The length of the full buffer corresponds
to potential length. However, unlike Xu et al’s technique, our heuristic does not require annotations from
the programmer.

7 Exploit Generation
Brumley et al [2] showed that exploits are a subset of the input accepted by a program and that we can
automatically generate such exploits by finding the right constraints and solving for them. Avgerinos et al [1]
explicitly constructed such constraints for stack-based buffer overflow exploits and format-string exploits.
With Memory Tagging and SimpleASM, we will now generalize Avgerinos et al approach to explicitly
construct constraints that describe heap exploits. Note that AEG actually generated shellcode, so that the
output of AEG was a string that if run against the program will produce a shell. In AHEG, we do not produce
shellcode, since we stop as soon as we can set EIP to arbitrary values. Thus the output of AHEG are really
crashing input. We leave the generation and placement of shellcode to future work.

7.1 1-step exploits
Suppose that during the Bug-find phase, we found a path P such that EIP contain user input, say x. Via
memory tagging, we get that x = f (y), where y ∈ A, is an input that the program accepts. Recall that A is the
input space of the program. The goal now would be to set x to arbitrary values, say 0xdeadbeef, and solve
for y′ ∈ A such that f (y′) = 0xdeadbee f and running the program with y′ will go down the same path P. To
do that, we assert that x = 0xdeadbee f with the rest of the path constraints of path P. This is similar to the
approach taken by Avgerinos et al.

7.2 2-step exploits
The utility of the machinery we have developed becomes more apparent when we consider 2-step exploits.
Consider the program shown in Figure 10. This program was given as an example on by-passing stack ca-
naries. By overflowing buf, we can overwrite ptr to point to arbitrary memory, so that in the next strcpy,
we achieve arbitrary write to arbitrary memory. AHEG provides the language express such exploits.

For every instruction that writes to memory, i.e. the destination operand of a data flow instruction uses
the macro [y] for some address y, we check for user’s influence over y. If the user has influence over y and
the source operand, say x, then that’s almost an exploit. The next step would be to set y to an address that
would be dereferenced by a control flow instruction. So, upon discovery that user has influence over y, we
set a flag, and for all subsequent control flow instruction that dereferences memory at address z, we check if
the formula PC∧ z = y∧ x = 0xdeadbee f is satisfiable, where PC is the current path constraints. If it is, we
output PC∧ z = y∧ x = 0xdeadbee f , and check that the input satisfying that constraint actually does write
0xdeadbee f to the address z, and hence cause EIP to be overwritten with 0xdeadbee f .

To see how this relates to the example, suppose we have found a path P, such that we overflow buf. Then
in the second strcpy, we are copying the buffer at inp2, which we control, to the buffer that ptr is point-
ing to. At a high level, strcpy has to dereference ptr in order to perform the copy. When that happens,
we realise user has influence over ptr, because of the overflow. Later, when the function returns, it pops
the return address off the stack and jumps to that address. AHEG detects that and immediately tries the con-
straint PC ∧ (ptr = return address of foo)∧ (inp2[0] = 0xef)∧ (inp2[1] = 0xbe)∧
(inp2[2] = 0xad)∧ (inp2[3] = 0xde), which is satisfiable and generates the input that sets EIP to

17



Program Maximum Buffer Heuristic Potential Exploit Heuristic EIP Overwritten

Toy 1 1308 20 Yes

Toy 2 1308 93 Yes

Table 4: List of toy programs and the length of input to crash the program, as generated by the
MaximumBuffer heuristic and Potential Exploit Heuristic. Note that the length generated by the
Potential Exploit Heuristic is minimum; the program cannot be exploited with fewer bytes

0xdeadbee f .

void foo ( char ∗ inp , char ∗ i np2 ) {
char ∗ p t r ;
char buf [ 1 6 ] ;
s t r c p y ( buf , i n p ) ;
s t r c p y ( p t r , i np2 ) ;

}

Figure 10: Write-through-pointer exploit. Code taken from
http://www.ece.cmu.edu/ dbrumley/courses/18732-f11/slides/0919 c-memory-safety.pdf slide 12

8 Implementation
We implemented the ideas presented in this paper in an end-to-end system, AHEG, which when given the
compiled binary of a buggy program running in Windows XP SP3, will generate a crashing input against the
program. AHEG consists of 2 components, the main instrumentation component, and the solver, both written
in C. We used Pintools [13] in the main instrumentation component to instrument the x86 instructions in
order to dynamically translate x86 machine code into SimpleASM. We used Z3 Theorem Prover [9] for
constraint solving.

9 Evaluation
9.1 Testing the main instrumentation tool
Appendix A shows a list of programs to test different aspects of the instrumentation tool. Figure 11 shows
a number guessing game, and AHEG successfully generates 3 different inputs to explore all 3 states of the
program. Figure 12 depicts a program which requires AHEG to reason about the length of user input in
addition to the content of user input. AHEG generated an input of length 1, and an input of length 28.
Figure 13 and 14 shows 2 programs with buffer overflow vulnerabilities. Both Maximum Buffer Heuristic
and Potential Exploit heuristic successfully produced crashing input against both samples. Finally, the
program in Figure 15 uses bounded copying to avoid the buffer overflow vulnerability. AHEG recognized
that the copying was bounded and hence does not generate a false positive.

9.2 Comparing heuristics
We compared Maximum Buffer Heuristic with Potential Exploit Heuristic to determine the effectiveness of
each heuristic. In all the experiments below, except RMMp3, the seed input given was ”hello”. For RMMp3,
the seed input given was ”http://hello”.

18



Program Size of program (in KB) Length of crashing input (in bytes) Time taken EIP Overwritten

FatPlayer 800 4124 46.3 s Yes

Mp3ToWave 1092 5420 176.7 s No

CCMPlayer 714 4092 64.2 s No

RMMp3 896 65860 58.3 s No

Table 5: List of programs tested on AHEG and their size, the length of input to crash the program, as
generated by the MaximumBuffer heuristic, and the time taken to generate the crashing input

Table 4 shows how the 2 heuristic compares on 2 toy programs - toy 1 (source code shown in Figure
13) and toy 2 (Figure 14). Both heuristics generated a string that caused EIP to be overwritten with user
input. However, notice that Potential Exploit Heuristic generated a string that was much shorter than the
string generated by Maximum Buffer Heuristic. In fact, Potential Exploit Heuristic generated a string that
was minimum; inspection of the source code shows that we cannot get full control of EIP with fewer bytes.

Unfortunately, as Potential Exploit Heuristic assumes accurate Buffer Inference, which in turn assumes
accurate loop detection and detection of exit conditions, Potential Exploit Heuristic failed to find an exploit
in the real world programs, because 1) our definition of loop was not general enough and missed certain
loops 2) we failed to detect several exit conditions which together caused AHEG to miss blocks of code
which were performing Unbounded Copy. As a result, we were only able to use the Maximum Buffer
Heuristic on real world programs.

Table 5 shows a list of programs known to have buffer overflow vulnerabilities. We tested these programs
on AHEG, for which we successfully generated the crashing input. The length of the crashing input, as
generated by the Maximum Buffer heuristic, is shown next to each program in the table. We generated these
strings in less than 5 minutes, despite the large size of the programs, and the length of the crashing input.

10 Discussion
10.1 Undecidability
Claim: Solving AEG in general is undecidable

Proof: Suppose we had an oracle O that given any program, answers yes if the program is exploitable and
no otherwise. Consider the program P= if (O(P) is yes) then loop forever else (buffer overflow vulnerability
here). A program that does not depend on user input is defined to be not exploitable because an exploit is
defined to be a subset of user input. In this example, P is self-referential in the sense that it was able to
consult the oracle if it was exploitable. This is implementable, as evidenced by existence of quines.

10.2 Circumventing undecidability
Programs in finite state machines are decidable. We take advantage of the fact that processors are inherently
finite state machines, since we have finite memory, albeit a very large one. This is the motivation for memory
tagging. We use a finite state machine with more states to analyze programs written for finite state machines
with smaller states, since we tag each byte with our own data. For example, we can imagine AHEG analyzing
32-bit programs on a 64-bit machine, and for each 64-bit word in memory, 32-bits belong to the program,
and 32-bits are tag information.

19



11 Conclusion
In this paper, we developed Simple ASM, a simpler subset of x86 ASM, on which we develop algorithms
such as Buffer Inference, semantic analysis, etc, which form the basis for Memory Tagging. We then showed
how Memory Tagging can be used together with Potential Exploit Heuristic to generate minimum-length
crashing input. We also showed how the tags in Memory Tagging can be used to construct the constraints
describing a ”2-step exploit”, a common exploit technique against doubly-linked link list and often used
in heap exploits. Finally, these ideas were implemented in an end-to-end system, AHEG, which analyzed
4 different programs compiled for Windows XP SP3 and generated crashing input against them in under 5
minutes.

References
[1] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. Aeg: Automatic exploit generation. In Proceedings of the Network

and Distributed System Security Symposium, Feb. 2011.
[2] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-based exploit generation is possible: Techniques and

implications. In Proceedings of the IEEE Symposium on Security and Privacy, May 2008.
[3] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of high-coverage tests for complex systems

programs. In Proceedings of the USENIX Symposium on Operating System Design and Implementation, 2008.
[4] C. Cadar and D. Engler. Execution generated test cases: How to make systems code crash itself. In Proceedings of the

International SPIN Workshop on Model Checking of Software, 2005.
[5] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: A system for automatically generating inputs of death using

symbolic execution. In Proceedings of the ACM Conference on Computer and Communications Security, Oct. 2006.
[6] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. Semantics-aware malware detection. In Proceedings of the

IEEE Symposium on Security and Privacy, 2005.
[7] L. Clarke and D. Richardson. Symbolic evaluation methods for program analysis. In S. S. Muchnick and N. D. Jones, editors,

Program Flow Analysis: Theory and Applications. Prentice Hall, 1981.
[8] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis framework. In International Symposium on Software

Testing and Analysis, pages 196–206, New York, NY, USA, 2007. ACM.
[9] L. de Moura and N. Bjrner. Z3: An efficient smt solver. In Proceedings of the International Conference on Tools and

Algorithms for Construction and Analysis of Systems, 2008.
[10] huku. Yet another free() exploitation technique. Phrack, 13(66), 2009.
[11] R. Jones and P. Kelly. Backwards-compatible bounds checking for arrays and pointers in C programs. In Proceedings of the

Third International Workshop on Automated Debugging, 1995.
[12] J. King. Symbolic execution and program testing. Communications of the ACM, 19:386–394, 1976.
[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In Proceedings of the ACM Conference on Programming
Language Design and Implementation, June 2005.

[14] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam, V. Tovinkere, and R. Peri. Loopprof: Dynamic techniques for loop
detection and profiling. In Proceedings of the 2006 Workshop on Binary Instrumentation and Applications (WBIA) held in
conjunction with ASPLOS-12, October 2006.

[15] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on
commodity software. In Proceedings of the Network and Distributed System Security Symposium, Feb. 2005.

[16] O. Ruwase and M. Lam. A practical dynamic buffer overflow detector. In Proceedings of the Network and Distributed System
Security Symposium, Feb. 2004.

[17] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended symbolic execution of binary programs. In International
Symposium on Software Testing and Analysis, 2009.

[18] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System Security, 3(1):30–50, Feb.
2000.

[19] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In Proceedings of the IEEE Symposium on Security and Privacy,
May 2010.

[20] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proceedings of the joint meeting of the
European Software Engineering Conference and the ACM Symposium on the Foundations of Software Engineering, 2005.

20



[21] R.-G. Xu, P. Godefroid, and R. Majumdar. Testing for buffer overflows with length abstraction. In Proceedings of the 2008
international symposium on Software testing and analysis, ISSTA ’08, pages 27–38, New York, NY, USA, 2008. ACM.

21



# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
i n t x ;
i n t magic number = 6 ;

i f ( a r g c < 2) {
p r i n t f ( ” Usage : %s number\n ” , a rgv [ 0 ] ) ;
re turn 1 ;

}

x = a t o i ( a rgv [ 1 ] ) ;

i f ( x > magic number ) {
p r i n t f ( ”Too b i g \n ” ) ;

}
e l s e i f ( x < magic number ) {

p r i n t f ( ”Too s m a l l \n ” ) ;
}
e l s e {

p r i n t f ( ”You g o t i t \n ” ) ;
}

re turn 0 ;
}

Figure 11: A number guessing game with 3 possible states - too high, too low, and correct

A Appendix

22



# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
i f ( a r g c < 2) {

p r i n t f ( ”%s s t r i n g ” , a rgv [ 0 ] ) ;
re turn 0 ;

}

i f ( s t r l e n ( a rgv [ 1 ] ) == 28) {
p r i n t f ( ” Very good\n ” ) ;

}
e l s e {

p r i n t f ( ” Not ve ry good\n ” ) ;
}

re turn 0 ;
}

Figure 12: 2 possible states - one where length of user input is 28 bytes and one where it isn’t

23



# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>

void t o a d ( ) {
p r i n t f ( ”You g o t i n t o t o a d !\ n ” ) ;

}

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
void (∗ f u n P t r ) ( ) = t o a d ;

char s m a l l b u f [ 2 0 ] ;
i f ( a r g c < 2) {

p r i n t f ( ”%s s t r i n g ” , a rgv [ 0 ] ) ;
re turn 0 ;

}

/ / s t r c p y ( s m a l l b u f , argv [ 1 ] ) ;
s t r c p y ( s m a l l b u f , ” b l a h b l a h ” ) ;
s t r c a t ( s m a l l b u f , a rgv [ 1 ] ) ;

f u n P t r ( ) ;

e x i t ( 1 ) ;

p r i n t f ( ” dead code \n ” ) ;

re turn 0 ;
}

Figure 13: A program with a buffer overflow vulnerability. Program gets input from command line.

24



# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>

void t o a d ( ) {
p r i n t f ( ”You g o t i n t o t o a d !\ n ” ) ;

}

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
FILE ∗ fp ;
fp = fopen ( ” i n p u t ” , ” r ” ) ;

void (∗ f u n P t r ) ( ) = t o a d ;

char s m a l l b u f [ 1 0 0 ] ;
char b i g b u f [ 2 5 5 ] = {0} ;

s t r c p y ( s m a l l b u f , ” Blah Blah Blah b l a h ” ) ;

f g e t s ( b igbu f , 125 , fp ) ;
s t r c a t ( s m a l l b u f , b i g b u f ) ;

/ / s t r c p y ( s m a l l b u f , b i g b u f ) ;

p r i n t f ( ” User i n p u t : %s \n ” , s m a l l b u f ) ;
f u n P t r ( ) ;

e x i t ( 1 ) ;

p r i n t f ( ” dead code \n ” ) ;

re turn 0 ;
}

Figure 14: A program with a buffer overflow vulnerability. Program gets input from file.

25



# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>

i n t main ( i n t argc , char ∗ a rgv [ ] ) {
char buf [ 2 5 5 ] ;

i f ( a r g c < 2) {
p r i n t f ( ”%s s t r i n g ” , a rgv [ 0 ] ) ;
re turn 0 ;

}

s t r n c p y ( buf , a rgv [ 1 ] , 2 5 5 ) ;

p r i n t f ( ” User i n p u t : %s \n ” , buf ) ;

re turn 1 ;
}

Figure 15: Bounded copying is used to avoid buffer overflow vulnerability

26


	Introduction
	Background
	Bug Find
	Exploit Generation

	Overview
	Motivating example
	Initialization
	Starting the concolic execution
	Generating the next input

	Simple ASM
	Translating from x86 Assembly to SimpleASM

	Memory Tagging
	Tag descriptions
	Loop detection
	Semantic analysis
	Buffer inference
	Example

	Heuristics
	Maximum buffer heuristic
	Potential Exploit heuristic

	Exploit Generation
	1-step exploits
	2-step exploits

	Implementation
	Evaluation
	Testing the main instrumentation tool
	Comparing heuristics

	Discussion
	Undecidability
	Circumventing undecidability

	Conclusion
	Appendix

