
Modes for Non Strict Functional Logic Languages

Matthew Mirman (mmirman@andrew.cmu.edu)
Advisor: Frank Pfenning (fp@cs.cmu.edu)

May 18, 2012

Abstract

Functional logic programming is a paradigm that introduces proof search as a first
class construct into the functional setting. In consolidating logic and functional se-
mantics, a complete logic query primitive is desirable. In the reasonable and efficient
evaluation strategy, it is possible to determine the correctness of a statement with-
out entirely determining the proof. This would allow searches to leave their intended
scope. Given the small step operational semantics for a practical lazy functional logic
language, I approximate them with natural semantics for a lambda calculus with lazy
logic primitives for which I supply a type and mode system. Types are annotated with
modes denoting their intended groundedness attributes. Furthermore, given that the
analysis is to be performed on functional logic code, the type system allows annotation
of higher order function types with modes. Modes are observed as forming a natural or-
dering, and thus type and mode checking supports limited subtyping. I prove in Twelf
the soundness of the annotations produced from type checking, and type preservation.
A proof of progress depending on the existence of the resolving property of positively
moded terms is discussed. It is also noted that positively moded corresponds with the
notion of strict, and that the mode analysis could be considered a specialized strictness
analysis.

1 Introduction
Logic programming is a paradigm for describing queries by constraining output rather than
necessarily transforming input. It often encourages programmers to write less verbose and
more declarative code. Pure logic programming involves listing values satisfying predicates
over simple data types. However, logic programming alone is not always the correct tool of
choice. While logic programming is very good for describing a single static data input and
output, it alone is not adept at describing dynamic interactions. Because logic programming
describes so much computation in so little code by way of automation, the operational
meaning of code is often obfuscated if not entirely unspecified. In cases where the action
of the computer is to be specified, functional code is ideal. While it is simple to write a
language where functional code can call logic code written separately, mixing the two to
allow functional code to be accessed within logic code would logic.

In this thesis, I provide static analysis for a lambda calculus with additional logic prim-
itives, in order to inform practical functional logic languages. The language I analyze here
is an extension of the lambda calculus which includes the logic primitives free, findAll,

1

Example 1. Consider the following haskell code for checking that a lambda term is a reduction of
another.

data Exp = Lam (Exp -> Exp) | App Exp Exp
step (App (Lam f) e2) res =

res == f e2
step (App e1 e2) (App e1’ e2’) =

(e1’ == e1 ‘and‘ step e2 e2’)
‘or‘ (e2’ == e2 ‘and‘ step e1 e1’)

This code defines a predicate that ensures its second lambda term is a single step nondeterministic reduction
of the first. It is simpler than the code that performs a single step nondeterministic reduction. Just given
this predicate, we cannot easily construct a function that lists all possible single step reductions of a term.
A naive attempt might list all possible terms and use this predicate as a filter.

reductions term = filter (step term) listAllTerms

In a functional logic language, a more efficient function to output the same set of items can be defined far
more easily:

reductions term = findAll red in step term red

Figure 1.1: A case where functional logic programming would be convenient.

and caseof. free is a function which initializes a variable as a free parameter in it’s scope.
findAll searches for any or all instances of a variable which satisfy a predicate. caseof
non-deterministically branches when given a logic variable as an argument.

Nondeterministically branching for every free variable at every switch statement could
very easily result in an unnecessarily slow programs; thus a non strict evaluation strategy is
desired. The Needed Narrowing [4] evaluation strategy optimal in this respect. It iterates by
lazily reducing a term, and only initializing logic variables if they are used as the argument to
a caseof statement whose results are required to continue execution. Beyond simply being
more efficient, needed narrowing is complete[4] in the same sense as non strict program
evaluation. A reduction strategy for lambda calculus is complete if every expression for
which there exists a reduction resulting in a value reduces under that strategy to a value.
Similarly, a reduction strategy for lambda calculus is complete if it has the previous property,
and also has the property that for all values such that predicate passed to findAll has a
reduction to success when applied to that value, then that value will appear somewhere in
the result of the findAll.

1.1 Motivation
While functional logic programming has become more present with the formulation of small
step semantics, it appears as though less attention has been paid to the static analysis
and verification of such languages. There do exist non strict functional logic programming
language implementations[5], but no practical language appears to statically verify runtime
safety entirely. If the language is intended to be efficiently compiled to safe code, statically
ensuring safety is essential. As reasoning about the time complexity of logic code is unde-
sirable and difficult in the intended setting, the non strict and complete evaluation strategy

2

known as needed narrowing is used. I note that in conjunction with a non strict evaluation
strategy, it is possible for findAll to return unground logic variables, despite it being the
only block against nondeterminism. Mode analysis[14] might be used as a means of ensuring
results from findAll are ground. As logic code can be considered a non-deterministic search,
the primitive findAll is highly concurrent. However, the unconstrained use of free variables
throughout code could easily result in space leaks and unintentional non-determinism. I
present a type level system for constraining the scope of non determinism in plausible pro-
grams

In a non strict evaluation strategy, logic variables are never initialized until they are
needed to make progress. It is important that if there are values that when input to a
predicate result in success, that the primitive findAll will output those values rather than
diverging before outputting them. This completeness property of findAll can be ensured by
a breadth first search of possible variable initializations and evaluations. While both depth
first and breadth first searches are possible in Curry and Prolog in the absence of a findAll
primitive, I show that the introduction of findAll as a language primitive make controlling
non-determinism in the I/O monad possible. The introduction of findAll as a complete
primitive in the presence of non strict semantics makes mode checking a necessity.

Example. Consider the following hypothetical code

list = findAll $ \a -> free $ \z -> case z of
A -> left a == A
B -> (right a,left a) == ([A],A)

Given the needed narrowing evaluation strategy, list would contain two values, “(A , ?)”
and “(A,[A])”. We can thus infer that the type of list is [(A+B)× [A+B]] . However, if we
were to ask for “right (head list)”, we would have encountered a logic variable. We say that
this predicate is not grounding. The effects from non resolving code can be non local and
non-intuitive for a novice logic programmer, and thus preventing findAll from accepting non
resolving functions is necessary.

2 Language Definition
It is first necessary to provide a language as a target for the analysis. To simplify recursive
types, and polymorphism are omitted, although it is likely that they will not pose significant
complications in the future if restricted in the usual fashions. For purposes of the proof,
the term unresolved is also included, which is used as a logic variable which can have any
negatively moded type.

2.1 Syntax
The syntax for the language is defined as follows.

Modes m ::= ⊕ | 	

Types t ::= t→ t | t� t | 1 | answer | t× t | t+m t

Terms e ::= x | λx : t.e | λv.e | (e e) |

3

findAllt | freet | success | fail |

(e, e) | π1 | π2 |

inl | inr | case e of (e1, e2)| unit | unresolved

2.2 Semantics
Language semantics are a crucial property to specify before meaningful analysis can take
place. logic languages when given naive semantics can be extraordinarily inefficient. Needed
narrowing is an evaluation strategy where variables are only instantiated when continuing
the lazy evaluation of a predicate requires their instantiation, such as at a branching con-
struct. The small step needed narrowing semantics [2] as shown below have been known in
practice to give good results.

Table 1: Small step operational semantics [2]
Rule Heap Control Stack Notes

ST-VARC Γ[x 7→ t] x S
Γ[x 7→ t] t S

ST-VARE Γ[x 7→ e] x S e is not constructor rooted
Γ[x 7→ t] e x : S e 6= x

ST-VAL Γ v x : S v is constructor rooted or a
Γ[x 7→ v] v S variable with Γ[y] = y

ST-LAM Γ (λx : t.e) e′ : S y is fresh
Γ[y 7→ e′] [x 7→ y]e S

ST-APP Γ e1 e2 S
Γ e1 e2 : S

ST-C Γ case e of LF RF S
Γ e cLF RF : S

ST-C-L Γ inl e cLF RF : S
Γ LF e S

ST-C-R Γ inr e cLF RF : S
Γ RF e S

ST-G-L Γ[x 7→ x] x cLF RF : S y is fresh
Γ[x 7→ inl y, y 7→ y] LF y S

ST-G-R Γ[x 7→ x] x cLF RF : S y is fresh
Γ[x 7→ inr y, y 7→ y] RF y S

ST-FREE Γ free (λx.e) : S y is fresh
Γ[y 7→ y] [x 7→ y]e S

4

The semantics used in our analysis is a reduction semantics which approximates the
small step semantics above. While the big step semantics do not precisely model the small
step semantics, the approximation allows for the simplification of the lambda calculus rules,
while maintaining the possibility of findAll returning logic variables. The findAll in the
big step semantics rather than lazily constructing a list, nondeterministically returns any
value which causes its predicate to succeed.

Definition 2. E ⇒ E′ is the non strict big step reduction defined as follows.

(E-ID-LAM)(λx : t.F)⇒ (λx : t.F)

(E-ID-OBJ)(A,B)⇒ (A,B)

(E-ID-UNIT)unit⇒ unit

(E-ID-SUCCESS)success⇒ success

(E-ID-FAIL)fail⇒ fail

(E-ID-INL)inl A⇒ inl A

(E-ID-INR)inr A⇒ inr A

(E-APP-LAM)
E1 ⇒ (λx : t.F) [x 7→ E2]F ⇒ V

E1 E2 ⇒ V
provided x is free for E2 in E1

(E-GET)
E ⇒ (E1, E2) Ei ⇒ V

πiE ⇒ V

(E-SWITCH-LEFT) E⇒inl L LF L⇒V
case E of (LF,RF)⇒V

(E-SWITCH-RIGHT)
E ⇒ inr R RF R⇒ V

case E of (LF,RF)⇒ V

(E-FINDALL-SUCC)
` V : T (E V)⇒ success
findAllT E ⇒ (inl V)

(E-FINDALL FAIL)
E logicVar⇒ fail

findAllT E ⇒ (inr unit)

(E-FREE-SUCC)
` V : T E V ⇒ success

freeT E ⇒ success

5

(E-FREE-FAIL)
E logicVar⇒ fail

freeT E ⇒ fail

Note that in these rules we need no context, since V should not contain free variables.
Importantly, the big step semantics also have the useful property that the result of a reduc-
tion is always in weak head normal form.

Definition 3. Let E ⇒S Rbe the non strict single step reduction

(ES-APP-LAM1)
E1 ⇒S E

′
1

E1 E2 ⇒S E′1 E2

(ES-APP-LAM2)(λx : t.F) E2 ⇒S [x 7→ E2]F provided x is free for E2 in E1

(ES-GET1)
E ⇒S E

′

πiE ⇒S πiE′

(ES-GET2) πi(E1, E2)⇒S Ei

(ES-SWITCH1) E⇒SE
′

case E of (LF,RF)⇒Scase E′ of (LF,RF)

(ES-SWITCH-LEFT) case inl L of (LF,RF)⇒SLF L

(ES-SWITCH-RIGHT) case inr R of (LF,RF)⇒SRF R

(ES-FINDALL-SUCC)
` V : T (E V)⇒S ∗success

findAllT E ⇒S (inl V)

(ES-FINDALL FAIL)
E logicVar⇒S ∗fail

findAllT E ⇒S ∗(inr unit)

(ES-FREE-SUCC)
` V : T E V ⇒S ∗success

freeT E ⇒S success

(ES-FREE-SUCC)
` V : T E logicVar⇒S ∗fail

freeT E ⇒S fail

Note, for sake of brevity, the full single step reduction shall not be defined here. Instead it
will be assumed that it is defined as it usually is and has the following operational properties.

6

2.3 Type and Mode Checking
Modes are a system for characterizing what arguments are input and outputs for a predicate.
We say that a value is ground or resolved if all of its constituents are known. We can say that
an argument is intended to be an output to a predicate if, upon satisfying that predicate,
it must be ground. An argument is an input to a predicate if it will be ground on every
instantiation of the rule.

In order to discuss the type checker, it is necessary to first describe the relationship
between types and modes. The mode ⊕ describes values which do not need to become
ground, and the mode 	 describes values which must become ground. We can use a value
which does not need to become ground anywhere we know we will ground the value, but we
should not use a value which must become ground anywhere we do not know we will ground
it (some programs which violate this rule will be correct, but this rule makes life easier).
Thus, ⊕ ≤ 	. As usual, t will describe the least upper bound.

We also need to define what it means for a type to specify a mode.

Definition 4. The immediate mode of a type t ∼ m is defined as follows.

(TP-MODE/UNIT) ∅ ∼ ⊕

(TP-MODE/SUM) t1 +m t2 ∼ m

(TP-MODE/PROD)
t1 ∼ m1 t2 ∼ m2

t1 × t2 ∼ m1 tm2

(TP-MODE/ARROW) t1 → t2 ∼ ⊕

Not all types are necessarily well-moded. In order for a type to be well-moded, sums
must have a mode that is an upper bound of the modes of it’s constituent types.

Definition 5. The safe mode of a type t ≈ m is inductively defined as follows

(TP-MODE-SAFE/UNIT) ∅ ≈ ⊕

(TP-MODE-SAFE/SUM)
t1 ≈ m1 t2 ≈ m2 m1 ≤ m m2 ≤ m

t1 +m t2 ≈ m

(TP-MODE-SAFE/PROD)
t1 ≈ m1 t2 ≈ m2

t1 × t2 ≈ m1 tm2

(TP-MODE-SAFE/ARROW)
t1 ≈ m1 t2 ≈ m2

t1 → t2 ≈ ⊕
Lemma 6. All types have a unique immediate mode.

Proof. The proof is trivial by induction on the structure of a type.

Lemma 7. If a type has a safe mode, it has the same immediate mode.

7

Proof. The proof is by induction on the structure of the predicate t ≈ m. The intuition
here is that t ∼ m produces m in the same way that t ≈ m produces m, but t ≈ m performs
extra checks.

Before we can discuss type checking, we need to explain the subtype relation.

Definition 8. T ≤ T ′ simply means that Tand T ′ have the same structure but different
modes. At each sum, m ≤ m′.

1 ≤ 1

T1 ≤ T ′1 T2 ≤ T ′2
T1 × T2 ≤ T ′1 × T ′2

T1 ≤ T ′1 T2 ≤ T ′2 m ≤ m′

T1 +m T2 ≤ T ′1 +m′ T ′2

T ′1 ≤ T 1 T2 ≤ T ′2
T1 → T2 ≤ T ′1 → T ′2

The following lemmas are relied on heavily thought the proof of preservation and progress,
and have been entirely formalized in Twelf in the TypeTheorems file.

Lemma 9. T ≤ T is admissible.

Proof. This is a straightforward proof by induction.

Lemma 10. A≤B B≤C
A≤C is admissible.

Proof. By lexicographic induction on the structure of the first and second subtyping rela-
tions.

Lemma 11. T ≤ T ′ and T ∼ m and T ′ ∼ m′ implies m ≤ m′.

Proof. By lexicographic induction on the structure of the subtyping relation and mode
derivations.

2.4 First Pass
Given that modes are an annotation on the type system, mode checking and type checking
are done in two passes. The first pass ensures that the types with mode annotations are
used reasonably, while the second pass ensures that functions marked as resolving use their
arguments at least once somewhere that resolves inputs, and will be subsequently called. In
order to keep type checking simple, we provide it as a lemma that the types produced from
type checking are mode safe.

Definition 12. E : T means that expression E has type T and is defined as follows.

8

(OF-ASSUM)
Γ, x : T ` x : T

(OF-SUBSUMP)
Γ ` e : T T ≤ T ′ T ′ ≈ m

Γ ` e : T ′

(OF-LAM)
Γ, x : T1 ` e : T2 T1 ≈ m1 T2 ≈ m2 x /∈ V [Γ]

Γ ` (λx : T1.e) : T1 → T2

(OF-APP)
Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1e2 : T2

(OF-LOGIC-VAR)
T ≈ 	

Γ ` unresolved : T

(OF-PROJ)
Γ ` a : v1 × v2 v1 × v2 ≈ m

Γ ` πia : v2

(OF-Left)
Γ ` a : v1 v1 +m v2 ≈ m

Γ ` inl a : v1 +m v2

(OF-RIGHT)
Γ ` a : v2 v1 +m v2 ≈ m

Γ ` inr a : v1 +m v2

(OF-OBJ)
Γ ` e1 : v1 v1 ∼ m Γ ` e2 : v2 v2 ∼ m

Γ ` (e1, e2) : v1 × v2

(OF-UNIT)
Γ ` unit : 1

(OF-CASE-OF)
Γ ` l : v1 → v3 Γ ` r : v2 → v3 Γ ` e : v1 +m v2 v1 ≈ m v2 ≈ m

Γ ` case e of l r : v3

Proposition 13. Γ ` E : T implies that there is a unique m such that T ≈ m.

Proof. The proof is by induction on the structure of a proof of type. There are only three
interesting cases however. In the case of subsumption, we already ensure the type is well
moded. In the case of application, the resulting safe mode proof for the left hand side after
an application of induction must end in

(TP-MODE-SAFE/ARROW)
t1 ≈ m1 t2 ≈ m2

t1 → t2 ≈ ⊕

since it is the only case for an arrow type. Since the type of E1 E2 is t2 we have a proof of
t2 ≈ m2.

The rest of the proof is formalized in the associated Twelf file, TypeCheckingTheo-
rems.elf.

9

As our analysis does does not involve free, findAll, success or fail, we will give their
types in polymorphic terms for ease of understanding their actions.

free : ∀v1 v2.(v1 → answer)→ answer

findAll : ∀v.(v → answer)→ v + ∅

success : answer

fail : answer

We can now introduce some short hand for the remainder of the paper. Given that E
has already been type checked, we can write that it has a unique type T as E :: T . This
can be ensured in an implementation by annotating each term in the abstract syntax tree
with its associated type during type checking. Also, the shorthand E/m is used for E :: T
and T ∼ m.

2.5 Second Pass
In the second pass, we ensure that functions annotated as resolving use their arguments as in-
put to another resolving function in a place that will get used. The predicate usedCorrectlym(x,E)
ensures that x is used as a negative argument to some function in E. We can generalize even
further to allow object arguments by creating another predicate objectUsedCorrectly(x,E).
That argument would have to be used in either both sided of a switch statement, have both
it’s left and right constituents used negatively if it is an object, or if we are checking if it
is used inside of an application, that it is either used on the left hand side, or it is used
negatively on the right hand side, and the left hand side is strict.

Definition 14. usedCorrectlym(X,E) is defined according to the following rules, on type
annotated terms E and X and mode m.

(USED-CORRECTLY/VAR)
usedCorrectly	(X,X)

(USED-CORRECTLY/LAM)
usedCorrectlym(X, [y/x]E) x is new

usedCorrectm(X,λy : t.E)

(USED-CORRECTLY/APP-L)
usedCorrectlym(X,E1)

usedCorrectlym(X,E1E2)

(USED-CORRECTLY/APP-R)
usedCorrectly	(X,E2) E1 :: t1 → t2 t1 ∼ 	

usedCorrectm(X,E1E2)

(USED-CORRECTLY/OBJ)
usedCorrectlym(X,E1) usedCorrectlym(X,E2)

usedCorrectm(X, (E1, E2))

10

(USED-CORRECTLY/OBJ-L)
usedCorrectlym(X,E1) (E1, E2)/	

usedCorrectm(X, (E1, E2))

(USED-CORRECTLY/SUM-ARG)
usedCorrectlym(X,E)

usedCorrectm(X, case E of E1 E2)

(USED-CORRECTLY/SUM-C)
usedCorrectlym(X,E1) usedCorrectlym(X,E2)

usedCorrectm(X, case E of E1 E2)

We also can show the expansion of an object.

Definition 15. objUsedCorrectlym(X,E) is defined according to the following rules.

(OBJ-USED/EXP)
usedCorrectlym(X,E)

objUsedCorrectm(X,E)

(OBJ-USED/PROD)
objUsedCorrectlym(getLeft X,E) objUsedCorrectlym(getRight X,E)

objUsedCorrectm(X,E)

Definition 16. The predicate wellModed(E) traverses the syntax of a term and only has
two rules that are of interest:

(WM-LAM/POS)
t ∼ ⊕ Γ, wellModed(x) ` wellModed(E)

Γ ` wellModed(λx : t.E)

(WM-LAM/NEG)
t ∼ 	 Γ, wellModed(x) ` wellModed(E) objUsedCorrectly(x,E)

Γ ` wellModed(λx : t.E)

Lemma 17. A decidable algorithm to infer types and check well modedness implies mode
inference is also decidable.

Proof. For every sum type inferred, annotate it with either a positive or negative mode.
Perform the annotated type checking. Because there are finite sum nodes in the inferred
types, there are finite possible mode assignments.

2.6 Preservation
Because of submoding, the proof of preservation is slightly more complex than in simply
typed lambda calculus.

Theorem 18. Preservation
E ⇒ E′ and ` E : T then ` E′ : T ′ and T ′ ≤ T .

Proof. The proof is by lexicographic induction on the reduction and proof of type, and it
has been formalized in Twelf. The intuition behind the subsumption is that as reductions
occur, we might find out more about the resulting value, but nothing we already know about
the resulting value will become invalidated. In the case of subsumption of a right hand side,
the argument for termination is more subtle. The invariant is made that in an inductive
step, no new the size of the proof of of never increases, and of/subsump instances always
move to the right hand side in the inductive call or disappears entirely.

11

2.7 Runtime Properties
The first important theorem about these semantics is that they always result in precisely
weak head normal form of a value, and thus capture an entire computation and not just a
computational step.

Definition 19. whnf(E) is defined as follows:

(WHNF-OBJ)whnf((A,B))

(WHNF-UNIT)whnf(unit)

(WHNF-INL)whnf(inl A)

(WHNF-INR)whnf(inr A)

(WHNF-SUCC)whnf(success)

(WHNF-FAIL)whnf(fail)

Theorem 20. If E ⇒ V then whnf(V)

Proof. Simply by lexicographic induction on the structure of a reduction. In cases where we
reduce twice, the induction argument is invoked on the second, output term. The E-ID-VTP
cases form the base cases of the proof, where the output proof of whnf is WHNF-VTP.

Lemma 21. if E ⇒ R then E ⇒S ∗R

Lemma 22. if E ⇒S ∗Rand whnf(R) then E ⇒ R

These two lemmas show an equivalence between the big step and single step semantics
that will be useful to state the progress theorem.

2.8 Progress
Before we can prove progress for the full language, we need to prove that the sublanguage
not considering findAll has the property that it can not reduce away logic variables.

Definition 23. logicFree(E) shall mean that the term E contains no logic variables in cases
where it matters, for example when E is a value, or when E is not an application of a not
necessarily grounding function to any argument.

(LFREE/APP)
logicFree(V) logicFree(F)

logicFree(F V)

(LFREE/LAM)
logicFree(E)

logicFree(λx.E)

12

(LFREE/VAR)
logicFree(x)

(LFREE/UNIT)
logicFree(unit)

(LFREE/OBJ-L)
logicFree(E1) E2/⊕
logicFree((E1, E2))

(LFREE/OBJ-R)
logicFree(E2) E1/⊕
logicFree((E1, E2))

(LFREE/OBJ)
logicFree(E1) logicFree(E2)

logicFree((E1, E2))

(LFREE/INL)
logicFree(E)

logicFree(inl E)

(LFREE/INR)
logicFree(E)

logicFree(inr E)

(LFREE/PROJ)
logicFree(E)

logicFree(πi E)

(LFREE/SWITCH)
logicFree(E) logicFree(L) logicFree(R)

logicFree(case E of L R)

Lemma 24. If E =⇒ αE
′ and logicFree(E) then logicFree(E′)

Theorem 25. usedCorrectlym(X,E) and logicFree(E) implies logicFree(X).

Proof. By induction on the structure of E.
The only case of interest here is USED-CORRECTLY/LAM along with LFREE/LAM.

In this case, where we receive usedCorrectlym(X,λx.E) and logicLess(λx.E). We then
know usedCorrectly(X, [x/y]E) for some new y. Thus, E =⇒ α[x/y]E and logicLess(E)
so logicLess([x/y]E) by the above lemma. By the induction hypothesis, we know logicLess(X).

Corollary 26. objUsedCorrectlym(X,E) and logicFree(E) implies logicFree(X).

The following theorem is vital to progress, as it ensures that when we search by applying
values with logical variables in them to the search predicate, a successful result can only
occur when the argument in fact has no logic variables.

Theorem 27. Subterm-Resolving
Γ ` X : Tx and usedCorrectly⊕(X,E) and Γ ` E : TE and TE ≈ ⊕ and E ⇒∗ V where

Γ ` V : TV , and logicFree(V) then logicFree(X)

13

Proof. This has been mostly proved in Twelf without subtyping for all but a few cases. The
intuition behind this theorem is that usedCorrectly accounts for strict occurrences of X
in E, and by definition, an occurrence can only be strict if it will be used at least once
in the computation required to reduce E completely. The remaining cases not currently
handled in the Twelf proof are those involving expressions used negatively on the left hand
side. In these cases, subterm resolving follows from preservation of usedCorrectly under
substitution.

Corollary 28. Γ ` X : Tx and objUsedCorrectly⊕(X,E) and Γ ` E : TE and TE ≈
⊕ and E ⇒k V with Γ ` V : TV and TV ≤ TE by preservation and logicFree(V) then
logicFree(X)and logicFree(E) implies logicFree(X).

Corollary 29. Term-Resolving
Provided Subterm-Resolving holds in general, Γ ` X : TX and TX ≈ ⊕ and X ⇒k V

with Γ ` V : TV and TV ≤ TX by preservation and logicFree(V) then logicFree(X)

Proof. Given that subterm resolving holds, we can simply apply subterm resolving with X
for E and usedAsNeg/e for usedAsNeg(X,X).

Corollary 30. WellModed-Resolving
wellModed(E) and Γ ` E : TE and TE ≈ ⊕ and E ⇒S ∗V with Γ ` V : TV and TV ≤ TE

by preservation and logicFree(V) then logicFree(E)

Theorem 31. If wellModed(E) , logicFree(E) and E =⇒ E′ then logicFree(E′).

Proof. This theorem is by lexicographic induction. The only non-trivial cases are those
where a logical variable could potentially be introduced. This restricts us to the cases of
findAll and free.

In the case of findAll, there are two applicable reductions. In the case of E-FINDALL-SUCC,
corollary 27 can be applied to the reduction E V ⇒ success to show logicFree(V). The
output logicFree(left V) is an application of LFREE-INL. The case of E-FINDALL-FAIL
is trivial.

In the case of free , both reductions involving it must return values which are certainly
resolved.

Theorem 32. Progress Holds
E : T and T ≈ ⊕ implies either E is a value or E ⇒S E

′ for some E′. Furthermore, if
E does not contain logic variables, then E′ will also contain no logic variables.

Proof. This proof is by lexicographic induction, application of theorem 28, the relationship
between the small step and big step semantics, and theorem 18. Appart from the cases
of findAll and free, the proof is similar to traditional proofs of progress. We proceed as
normal, until the cases of findAll and free. It makes more sense to say here that findAll
of any expression is a value. A more meaningful proof of progress can be given if a queue of
attempting expressions and a set of unattempted expressions is included in the semantics
for findAll.

14

2.9 Strictness Analysis
Definition 33. hnf is the function that evaluates its argument to head normal form.

Definition 34. A function E is grounding if when E V =⇒ C and C is a value, then
hnf(V) converges and has no logic variables.

Definition 35. A termE is strict if E (hnf x) ≡ E x for all terms x such that E x
converges to a value or diverges.

Proposition 36. E is strict implies E is grounding.

Proof. Suppose E is strict. Then suppose we were to pass an argument to E with logic
variables. Then because E is strict, evaluating this argument to head normal form first will
not change the result of E when passed this argument. However, evaluating the argument
to head normal form first causes the computation to diverge. Thus, passing the argument
to E will cause the computation to diverge. Thus the original argument with logic variables
passed to E will either diverge or converge to a value with logic variables. Thus E is
grounding.

Corollary 37. A combinator E is strict implies ` E : I → O and I ∼ 	 and O ∼ ⊕.

2.9.1 Ramifications

Because mode checking and strictness checking are equivalent, mode checking algorithms can
be used for strictness analysis. Natural deduction formulations of strictness and relevance
logic have been given relevant proof terms and could very well be used as an alternate
type system, with the addition of new syntax. In particular, our use of the predicate
usedCorrectly coresponds the notion of a strict use of it’s argument. In this formulation
product types can be treated a bit more flexibly.

The polymorphic linear lambda calculus Lily has been shown to have equivalent termi-
nation properties under call-by-value and call-by-need semantics.[7] In principle, terms like
findAll might be added to Lily and be have groundedness properties ensured.

3 Conclusions & Future Work
In this thesis, we discussed a lazy functional logic language similar to Curry and proved its
runtime safety. We supplied a mode system and a way to separate nondeterminism from
input and output. However, the mode system is not always entirely expressive enough. It
is also still necessary to show the safety of extensions of polymorphism and recursion to
the current mode algorithm. Finally, a full implementation of the language has yet to be
completed.

Strictness type systems based on natural deduction formulations of resource logic have
been defined, but type systems based on them including fixed points and polymorphism do
not yet seem to have been examined. It would also be interesting to explore the sorts of
safe concurrency primitives that could be created using the same principles as findAll.

15

References
[1] Samson Abramsky and Thomas P. Jensen, A relational approach to strictness analysis

for higher-order polymorphic functions, In Proc. ACM Symposium on Principles of
Programming Languages, ACM Press, 1991, pp. 49–54.

[2] Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver, and German Vidal, A deter-
ministic operational semantics for functional logic programs, Joint Conf. on Declarative
Programming (2002), 207–222.

[3] Penny Anderson and Frank Pfenning, Verifying uniqueness in a logical framework,
Proceedings of the 17th International Conference on Theorem Proving in Higher Order
Logics (2004), 18–33.

[4] S. Antoy, R. Echahed, and M. Hanus, A needed narrowing strategy, ACM Symposium
on Principles of Programming Languages (1994), 268–279.

[5] S. Antoy and M. Hanus, Functional logic programming, Communications of the ACM
53 (2010), no. April, 74–85.

[6] Erik Barendsen and Sjaak Smetsers, Strictness analysis via resource typing, Reflections
on Type Theory, Lambda Calculus and the Mind, December 2007, pp. 29–40.

[7] G.M. Bierman, A. M. Pitts, and C. V. Russo, Operational properties of lily, a polymor-
phic linear lambda calculus with recursion.

[8] B. Braßel and M. Hanus, Nondeterminism analysis of functional logic programs, Pro-
ceedings of the International Conference on Logic Programming (ICLP’05), Springer
LNCS 3668, 2005, pp. 265–279.

[9] Tim Freeman and Frank Pfenning, Refinement types for ml, SIGPLAN Symposium
on Language Design and Implementation (Toronto, Ontario), ACM Press, June 1991,
pp. 268–277.

[10] M. Hanus, Curry: An integrated functional logic language.

[11] Michael Hanus and Frank Steiner, Type-based nondeterminism checking in functional
logic programs, In Proc. of the 2nd International ACM SIGPLAN Conference on Princi-
ples and Practice of Declarative Programming (PPDP 2000, ACM Press, 2000, pp. 202–
213.

[12] Frank Pfenning, Refinement types for logical frameworks, Informal Proceedings of the
Workshop on Types for Proofs and Programs (Nijmegen, The Netherlands) (Herman
Geuvers, ed.), May 1993, pp. 285–299.

[13] Benjamin C. Pierce, Types and programming languages, The MIT Press, 2002.

[14] Ekkehard Rohwedder and Frank Pfenning, Mode and termination checking for higher-
order logic programs, Proceedings of the European Symposium on Programming (1996),
296–310.

16

[15] Kirsten Solberg, Hanne Riis Nielson, and Flemming Nielson, Strictness and totality
analysis, International Static Analysis Symposium, LNCS 983, 1994, pp. 408–422.

Remark. The Twelf proofs will be available at http://github.com/mmirman/korma in the
branches simple and explicit.

17

http://github.com/mmirman/korma

	Introduction
	Motivation

	Language Definition
	Syntax
	Semantics
	Type and Mode Checking
	First Pass
	Second Pass
	Preservation
	Runtime Properties
	Progress
	Strictness Analysis
	Ramifications

	Conclusions & Future Work
	References

