
An Authorization Model For
The Web Programming Language Qwel

Lulwa Ahmed El-Matbouly

lulwa@cmu.edu

Advisors:

Thierry Sans tsans@qatar.cmu.edu

Soha Hussein sohah@qatar.cmu.edu

CARNEGIE MELLON UNIVERSITY

SCHOOL OF COMPUTER SCIENCE

May 3, 2013

Abstract

With the fast growth of web technology, it is becoming easier for developers to design and deploy complex
web applications. However, securing such web applications is becoming an increasing complex task as current
technology provides limited support. Developers are required to reason about distributed computation and to write
code using heterogeneous languages, often not originally designed with distributed computing in mind nor built-in
security features.

Qwel is an experimental type-safe functional programming language for the web that has dedicated primitives for
publishing and invoking web services. In this paper, we propose to extend Qwel with a decentralized authorization
model allowing service providers to secure web applications written in Qwel. This extension provides web developers
with built-in primitives to issue credentials to users and to express access control policies. Therefore, when a protected
web service is deployed, the security policy is evaluated dynamically based on the credentials supplied by the user
invoking this web service. As a result, we show how these new language features can be used to implement common
scenarios as well as more sophisticated ones.

1 Introduction
With the fast growth of web technology and cloud computing, it is becoming increasingly popular to move software and
data to the cloud. In this paradigm, the software is no longer a standalone application installed on the user’s computer
but it is offered as a web application. For instance Google Docs is an office suite (word processor, spreadsheet and
presentation) that can be used through a web browser. From the user perspective, Google Docs is not very different
from standalone office suites like Microsoft Office or Open Office. However, from the developer perspective, building
web applications is a significant shift in the way to design, implement and deploy software. Indeed, correctness and
security have always been the main concerns but it takes a new dimension in the context of web applications. For
instance, a bug or a crash that occurs in a standalone application may impact the platform’s owner only. However, a
bug or a crash that occurs on the server side of a web application may impact all users registered to the service. In
the same way, a vulnerability in standalone application may expose data from the platform’s owner only. However, a
vulnerability in a web application may expose data of all users registered to the service.

Securing web applications is a complex task and attacks targeting web applications are on the increase [6]. If we
look at the range of vulnerabilities affecting web applications [5], we can classify them into two families: Injection
vulnerabilities such as SQL injection, cross-site scripting, cross-site request forgery, content spoofing and Response
splitting are resulting from an incorrect handling of unexpected user inputs. Incomplete mediation vulnerabilities such
as information leakage, insufficient authorization and predictable resource location are resulting from bad application
design and/or misconfiguration of the platform in controlling user access to data or resources.

These attacks are hard to mitigate as current technology provides limited support. Developers are required to
reason about distributed computation and to write code using heterogeneous languages, often not originally designed
with distributed computing in mind nor built-in security features. In [4], Sans and Cervesato proposed Qwel, a small
functional programming language extended with primitives for mobile code and remote procedure calls, two distin-
guishing features of web programming. The initial goal was to provide the developer with a programming language to
write both client side and server code ensuring adequate interactions between them. Since Qwel is type safe language,
it is more likely to mitigate injection attacks when user’s inputs do not match the appropriate type. However, in its
original version, Qwel does not have built-in features to mitigate incomplete mediation attacks.

In this paper, we propose to extend Qwel to provide the developer with language-level security features to control
access to web applications. The main contributions of this work are 1) an extension of Qwel syntax and semantics with
distributed access control mechanisms proposed by Abadi and al. [1] 2) a formalization of the policy interpreter based
on the sequent calculus logic and 3) an implementation of the policy interpreter. The rest of the paper is structured
as follows: Section 2 summarizes existing work in distributed access control. Section 3 introduces Qwel and lays the
motivations for extending it with new security primitives for access control. Section 4.4 describes the extended Qwel
syntax. Section 5 shows how this extension can be used to express common access control policies as well as more
sophisticated ones. Section 6 provides a formalization of the language semantics. Section 7 concludes and provides
an outline of future developments.

1

2 Related Work
Access control is a restriction of operations on resources such as files and services to specific users. In calculus for
access control, Abadi et al. [1] present a calculus that combines authentication which is the problem of determining the
identity of the requester (principal), and authorization which is the problem of determining if the principal is allowed
to access certain service. Basically, access control models consist in a set of logical that grants permission to principals
access resources. In [1], the concept of principal can be:

• Users and machines.

• Channels, such as input devices and cryptographic channels.

• Conjunction of principals, of the form [A ∧B].

• Groups, define groups of principals. The use of the group is to decide whether a principal is a member of a
group.

• Principals in roles, of the form [A as R]. Where principal A may adopt the role R and act under the name
[A as R].

• Principals on behalf of principal, of the form [B for A]. Where principal A may delegate authority to B, and B
can then act on behalf of A, using the identity [B for A].

Each object have an access control list (ACL), where a request to an object will be granted if the principal is
authorized according to this list. Determining whether a request from a principal granted or denied is based on the
logical model that extends the algebra of principals.

3 Motivating Example
Consider an example where Alice, a student at Univ needs to submit an assignment for her course through a web
portal called Submission. To avoid plagiarism, her professor ask to check her own assignment using an online service
called NoPlagiarism. As a proof, her professor requires her to submit her assignment along with the similarity report
obtained previously.

Qwel is an experimental programming language for the web proposed by Sans and Cervesato in [4]. At its core,
Qwel is a basic functional language extended with primitives for publishing and calling web services. Using Qwel,
the example can be implemented as follows:

• NoPlagiarism.com publishes a web service that takes a document as argument and returns the corresponding
similarity report (figure 1).

• Submission.org publishes a service that stores a document and its similarity report both given as argument (figure
2).

• Assuming that these two services are deployed beforehand, Alice calls the service similarityReport@NoPlagiarism.com
with her homework, obtains the similarity report in return and then forwards it to the submit@submission.org
service (figure 3).

publish doc : string
let
report = calculateSimilarity(doc)

in
report

end

Figure 1: similarityReport@NoPlagiarism.com

2

publish s as 〈doc, report〉 = store(s)

Figure 2: submit@Submission.org

let
doc = “Once upon a time ...”
simReport = call similarityReport@NoPlagiarism.com with doc

in
call submit@Submission.org with 〈simReport, doc〉

end

Figure 3: Alice combining web services to submit her assignment

Beyond the functional aspects of this example, we would like to express security policies. For example, NoPla-
giarism could express that “only students from Univ can get a similarity report”. In the same way, Submission could
express that “only students from Univ can submit their assignments” and that “similarity reports must have been issued
by NoPlagiarism”.

However, Qwel has no language features allowing service providers to express such policies. Hence, we will
extend Qwel with the built-in primitives that enables developers to 1) express a local security policy protecting a
published service and 2) issue credentials to users. The language interpreter will grant access to a service if and only
if the local security policy is satisfied according to the credentials carried by the principal calling the service.

4 Extending Qwel With a Distributed Access Control Model
In the example above, NoPlagiarism wants to ensure that “only students from Univ can get a similarity report”. In
this scenario, NoPlagiarism does not know who is a student at Univ. Instead, it will expect Univ to issue a proof a.k.a
a credential saying that Alice is a student. This is a typical example of distributed access control where parties can
express security policies locally based on credentials issued by others. In this section, we extend the Qwel syntax with
the distributed access control model proposed by Abadi and al. in [1].

4.1 Credentials
A credential is a collection of claims. For instance, Alice is a student according to Univ and NoPlagiarism is the issuer
of the similarity report. Previous work [1] introduces the the modality says to represent such a claim. A claim is a rela-
tion between a fact, defined as a predicate, and the principal emitting such a predicate (e.g Univ says student(Alice)).
In our model, predicates can take as attributes other principals student(Alice) and/or values issuer(report). Claims
are told to be true if and only if they are part of a credential (e.g cred(Univ says student(Alice))). A credential
cred(e0, . . . , en) can have one or many claims. However, principals cannot create arbitrary credentials on behalf of
others. The programmer does not use the constructor cred directly. Instead, we define say e that takes a fact and
returns a credential that contains a claim emitted locally. For instance, say student(Alice) creates a new credential
cred(Univ says student(Alice)) when evaluated at Univ.

Since a credential cred(e0, . . . , en) can have one or many claims, we define e0 ⊕ e1 that combines different
credentials. For example, once Alice has obtained a credential from Univ saying that she is a student and another
from NoPlagiarism saying that NoPlagiarism is the issuer of the report returned to her. Alice can combined these two
credentials into one and submit it to submit@Submission.org

cred(Univ says student(Alice)) ⊕ cred(NoPlagiarism says issuer(report))

3

4.2 Access Control Policies
An access control policy restricts who can access a published service. In our model, an access control policy is
an expression defining a constraint on the credentials carried by the service caller. For instance, NoPlagiarism can
express that Alice must be a student to call its service similarityReport. To define this elementary policy, we define
pol(Univ says student(Alice)) that specify that Alice must carry a credential in which Univ claims that she is a
student.

To express more complex policies, we add logical operators such as e0 ∧ e1, e0 ∨ e1, ∃ x.e(x) that allow the
developer to combine constraints and express more complex policies. For instance, Submission can express that Alice
must be a student from Univ and NoPlagiarism must be the issuer of the similarity report:

pol(university says student(Alice)) ∧ pol(plagiarism says issuer(report))

4.3 Issuing Credentials and Evaluating Policies
As introduced above, pol(Univ says student(Alice)) is the access control policy that says that Alice must be a student
to call similarityReport@NoPlagiarism.com. However, it is unlikely that NoPlagiarism has to explicitly mention
Alice (and any other potential other principal) in its policy. Instead, NoPlagiarism should write that anybody calling
its service must be a student. Therefore, we need to be able to write an access control policy based on a variable
representing the principal calling the service. To do so, we redefine the construct publish w.x : τ ⇒ e in such a way
that w will be instantiated with the principal calling the service during the evaluation.

Finally, to check if an access control policy is satisfied based on the credential submitted as argument. We introduce
the construct check(e0, e1) that will verify that the credentials e0 satisfies the policy e1.

4.4 Full Extended Syntax
To summarize, Qwel is extended with the following constructs:

Type τ := world | τ τ ′

| fact | claim | credential | policy

Expression e ::= url(w) | here
| url(w, u) | publish w.x : τ ⇒ e | call e1 with e2 | expect e from w
| p(e1, . . . , en) | e1 ⇒ e2 | e0 says e1

| say e | cred(e0, . . . , en) | e0 ⊕ e1

| pol(e) | ∃ x : τ.e1 | e0 ∧ e1 | e0 ∨ e1

| check(e0, e1)

We have not introduced the construct e1 ⇒ e2 yet. This construct was suggested by [1] and will be illustrated in
an example shown in 5.2

4.5 Syntactic Sugar
For convenience, we extend the syntax with syntactic sugar allowing the developer to define a protected service:

publish w.x : τ × credential⇒ e0 , publish w.x : τ × credential⇒ if check(snd x, e1) then e0

protect e1 else raise AccessDeniedException

4

5 Examples

5.1 Example 1: University Submission System
Based on the extension suggested above, we are now able to write in Qwel the example presented in section 3:

1. To get the Univ credential, Alice calls getStudentCred@Univ.edu. The server checks if Alice is a student and
returns a credential saying that the caller of the service is a student (figure 4).

2. To get the similarity report, Alice sends her university credential and her assignment to the similarityRe-
port@NoPlagiarism.com. In return, she gets the similarity report and a credential specifying that NoPlagia-
rism.com is the issuer of the similarity report.

3. Finally, to submit her assignment, she combines the credentials obtained from Univ and from NoPlagiarism.
Thus, she forwards the similarity report and the aggregated credential to the submission service.

let
doc = “Once uppon a time ...”
univCred = call getStudentCred@Univ.edu with ()
〈simReport, plagCred〉 = call similarityReport@NoPlagiarism.com with 〈doc, univCred〉
univP lagCred = univCred ⊕ plagCred

in
call submit@Submission.org with 〈simReport, univP lagCred〉

end

Figure 4: Alice calls for the services

publish w.x as x : unit⇒
if checkStudent(w)

then say student(w)
else raise AccessDeniedException

Figure 5: getStudentCred@Univ.edu

publish w.x as 〈doc, cred〉 : string × credential⇒
let

report = 〈doc, calculateSimilarity(doc)〉
plagCred = say issuer(report)

in
〈report, plagCred〉

end
protect
pol(Univ.edu says student(w))

Figure 6: similarityReport@NoPlagiarism.com

5.2 Example 2: Managing Medical Reports at the Hospital
Consider an example of an hospital in which medical reports are managed electronically. In figure 8, the hospital
system publishes a service that returns the medical report corresponding to the id given as argument. This service is
ruled by the following policy:

5

publish w.x as 〈report, cred〉 : (string × string)× credential⇒ store(s)
protect
pol(Univ.edu says student(w)) ∧ pol(NoPlagiarism.com says issuer(report))

Figure 7: submit@Submission.org

• Rule 1: the patient can access his own medical report

• Rule 2: any doctor working for the hospital can access any medical report

• Rule 3: anybody that is explicitly allowed by the patient can access to the patient medical report

Rule 1 and rule 2 can be implemented using the constructs introduced previously. However, rule 3 can be seen as
a delegation rule: “anybody speaking on behalf of the owner can access the medical report”. For instance, Alice can
delegate authority to her Grandma in order for her to access Alice’s medical report. For that purpose, we introduce the
construct w1 ⇒ w2 (also defined by [1]) that allows a principal to delegate authority to another principal.

To satisfy rule 1, Alice must obtain a credential from the hospital saying that she is the owner of a certain medical
report with a specific id (figures 9 and 12).

To satisfy rule 2, Bob must obtain a credential from the hospital saying that he is a doctor (figures 11 and 10).

To satisfy rule 3, Alice’s Grandma must obtain a credential from Alice saying that she can speaks on her behalf
(figures 13 and 14).

publish w.s as 〈id, cred〉 : int× credential⇒ retrieve(id)
protect
pol(hospital says owner(id, w))
∨ pol(hospital says doctor(w))
∨ ∃ w′ : world.w ⇒ w′ ∧ hospital says owner(id, w′)

Figure 8: Get medical report service at the hospital

publish w.x : unit⇒
let
id = getPatientId(w)

in
say owner(id, w)

end

Figure 9: getMedicalReportCred@hospital

let
doctorCred = call getDoctorCred@hospital with ()

in
call getMedicalReport@hospital with 〈2136, doctorCred〉

end

Figure 10: Call get medical report service by doctor (Bob)

6

publish w.x : unit⇒
if isDoctor(w)
then say doctor(w)
else raise AccessDeniedException

Figure 11: getDoctorCred@hospital

let
reportCred = call getMedicalReportCred@hospital with ()

in
call getMedicalReport@hospital with 〈2136, reportCred〉

end

Figure 12: Call get medical report service by the patient (Alice)

publish w.x : unit⇒
if isMyGrandma(w)
then say w ⇒ here
else raise AccessDeniedException

Figure 13: getAliceDelegationCred@Alice

let
delegationCred = call getAliceDelegationCred@Alice with ()

in
call getMedicalReport@hospital with 〈2136, delegationCred〉

end

Figure 14: Call get medical report service by grandma who speaks for Alice

6 Semantics
The static semantics of the proposed Qwel extension is defined in figures 15 and 16. The dynamic semantics is defined
in figures 17, 18, 19 and 20. We formalized the policy evaluation based on an extended sequent calculus logic (figure
21). The sequent calculus [3] is a simple set of rules that can be used to show the truth of statements in first order logic.
As a proof of concept, we have developed a policy evaluator implementing the sequent calculus rules (see appendix).

Σ; Γ `w url(w′) : world
of url

Σ; Γ `w here : world
of here

Σ, u : τ τ ′ @ w′; Γ `w url(w′, u) : τ τ ′
of url

Σ; Γ, w : world, x : τ `w e : τ ′

Σ; Γ `w publish w.x : τ ⇒ e : τ τ ′
of publish

Σ; Γ `w e1 : τ τ ′ Σ; Γ `w e2 : τ

Σ; Γ `w call e1 with e2 : τ ′
of call

Σ; Γ `w′ e : τ

Σ; Γ `w expect e from w′ : τ
of expect

Figure 15: Typing rules for modified Qwel constructs

7

Σ; Γ `w e1 : τ1 . . . Σ; Γ `w en : τn

Σ; Γ `w p(e1, . . . , en) : fact
of p

Σ; Γ `w e1 : world Σ; Γ `w e2 : world

Σ; Γ `w e1 ⇒ e2 : fact
of speaksfor

Σ; Γ `w e0 : world Σ; Γ `w e1 : fact

Σ; Γ `w e0 says e1 : claim
of says

Σ; Γ `w e : fact

Σ; Γ `w say e : credential
of say

Σ; Γ `w e0 : claim . . . Σ; Γ `w en : claim

Σ; Γ `w cred(e0, . . . , en) : credential
of cred

Σ; Γ `w e0 : credential Σ; Γ `w e1 : credential

Σ; Γ `w e0 ⊕ e1 : credential
of join

Σ; Γ `w e : claim

Σ; Γ `w pol(e) : policy
of pol

Σ; Γ, x : τ `w e : policy

Σ; Γ `w ∃ x : τ.e : policy
of exists

Σ; Γ `w e0 : policy Σ; Γ `w e1 : policy

Σ; Γ `w e0 ∧ e1 : policy
of and

Σ; Γ `w e0 : policy Σ; Γ `w e1 : policy

Σ; Γ `w e0 ∨ e1 : policy
of or

Σ; Γ `w e0 : credential Σ; Γ `w e1 : policy

Σ; Γ `w check(e0, e1) : boolean
of check

Figure 16: Typing Rules for new Qwel constructs

url(w′) val
val url

m

j
val url

nurl(w′, u) val

∆ ; here 7→w ∆ ; url(w)
ev here

∆ ; publish w.x : τ ⇒ e 7→w (∆, u @ w ↪→ w.x : τ.e) ; url(w, u)
ev publish

∆ ; e1 7→w ∆′ ; e′1

∆ ; call e1 with e2 7→w ∆′ ; call e′1 with e2

ev call1

v1 val ∆ ; e2 7→w ∆′ ; e′2

∆ ; call v1 with e2 7→w ∆′ ; call v1 with e′2

ev call2

v2 val

(∆∗, u @ w′ ↪→ w.x : τ.e)︸ ︷︷ ︸
∆

; call url(w′, u) with v2 7→w ∆′ ; expect [url(w), v2/w, x]e from w′
ev call3

∆ ; e 7→w′ ∆′ ; e′

∆ ; expect e from w′ 7→w ∆′ ; expect e′ from w′
exp1

v val

∆ ; expect v from w′ 7→w ∆ ; v
exp2

Figure 17: Evaluation Rules for modified Qwel constructs

8

v0 val . . . vn val

p(v0, . . . , vn) val
val pred

url(w0)⇒ url(w1) val
val speaksfor

v val

url(w) says v val
val says

∆ ; e0 7→w ∆′ ; e′0

∆ ; p(e0, . . . , en) 7→w ∆′ ; p(e′0, . . . , en)
pred1

vi val ∆ ; ei+1 7→w ∆′ ; e′i+1

∆ ; p(. . . , vi, ei+1, . . .) 7→w ∆′ ; p(. . . , vi, e
′
i+1, . . .)

pred2

∆ ; e0 7→w ∆′ ; e′0

∆ ; e0 ⇒ e1 7→w ∆′ ; e′0 ⇒ e1

speaksfor

∆ ; e1 7→w ∆′ ; e′1

∆ ; url(w0)⇒ e1 7→w ∆′ ; url(w0)⇒ e′1

speaksfor2

∆ ; e0 7→w ∆′ ; e′0

∆ ; e0 says e1 7→w ∆′ ; e′0 says e1

says

∆ ; e1 7→w ∆′ ; e′1

∆ ; url(w0) says e1 7→w ∆′ ; url(w0) says e′1

says2

Figure 18: Evaluation Rules for Qwel claim constructs

v0 val . . . vn val

cred(url(w0) says v0, . . . , url(wn) says vn) val
val cred

∆ ; e0 7→w ∆′ ; e′0

∆ ; cred(e0, . . . , en) 7→w ∆′ ; cred(e′0, . . . , en)
cred

∆ ; ei+1 7→w ∆′ ; e′i+1

∆ ; cred(. . . , url(wi) says vn, ei+1, . . .) 7→w ∆′ ; cred(. . . , url(wi) says vn, e
′
i+1, . . .)

cred2

∆ ; e 7→w ∆′ ; e

∆ ; say e 7→w ∆′ ; say e′
say1

v val

∆ ; say v 7→w ∆′ ; cred(url(w0) says v)
say2

∆ ; e0 7→w ∆′ ; e′0

∆ ; e0 ⊕ e1 7→w ∆′ ; e′0 ⊕ e1

join1

∆ ; e1 7→w ∆′ ; e′1

∆ ; cred(v00
, . . . , v0n

) ⊕ e1 7→w ∆′ ; cred(v00
, . . . , v0n

) ⊕ e′1

join2

∆ ; cred(v00
, . . . , v0n

) ⊕ cred(v10
, . . . , v1n

) 7→w ∆ ; cred(v00
, . . . , v0n

, v10
, . . . , v1n

)
join3

Figure 19: Evaluation Rules for Qwel credential constructs

7 Conclusion and Future Work
In conclusion, the main goal of the thesis is to extend Qwel language syntax and semantics providing developers with
a mean to issue credentials and protect web services with access control policies. This extension defines an expressive
language, yet simple and easy to use for the purpose of building web services with embedded security constraints.

There are several avenues for future work, in our model the caller is responsible for getting the credentials and
sends them to the server that will try to prove that they satisfy the policy. This can be overwhelming for the server

9

v val

pol(url(w) says v) val
val pol

∃ x : τ.e val
val exists

v0 val v1 val

v0 ∧ v1 val
val andp

v0 val v1 val

v0 ∨ v1 val
val orp

∆ ; e 7→w ∆′ ; e

∆ ; pol(e) 7→w ∆′ ; pol(e′)
pol

∆ ; e0 7→w ∆′ ; e′0

∆ ; e0 ∧ e1 7→w ∆′ ; e′0 ∧ e1

and1

v0 val ∆ ; e1 7→w ∆′ ; e′1

∆ ; v0 ∧ e1 7→w ∆′ ; v0 ∧ e′1
and2

∆ ; e0 7→w ∆′ ; e′0

∆ ; e0 ∨ e1 7→w ∆′ ; e′0 ∨ e1

or1

v0 val ∆ ; e1 7→w ∆′ ; e′1

∆ ; v0 ∨ e1 7→w ∆′ ; v0 ∨ e′1
or2

∆ ; e0 7→w ∆′ ; e′0

∆ ; check(e0, e1) 7→w ∆′ ; check(e′0, e1)
check+1

v0 val ∆ ; e1 7→w ∆′ ; e′1

∆ ; check(v0, e1) 7→w ∆′ ; check(v0, e
′
1)

check2

v0 val . . . vn val v val v0, . . . , vn |= v

∆ ; check(cred(v0, . . . , vn), v) 7→w ∆ ; true
check3

v0 val . . . vn val v val v0, . . . , vn 6|= v

∆ ; check(cred(v0, . . . , vn), v) 7→w ∆ ; false
check4

Figure 20: Evaluation Rules for Qwel policy constructs

Γ, p(x1, . . . , xn) ` p(x1, . . . , xn),∆
pred

Γ,w1 ⇒ w2 ` w1 ⇒ w2,∆
⇒

ρ ` ρ′

Γ,w says ρ ` w says ρ′,∆
says

Γ, ρ1, ρ2 ` ∆

Γ, ρ1 ∧ ρ2 ` ∆
∧L

Γ ` ρ1,∆ Γ ` ρ2,∆

Γ ` ρ1 ∧ ρ2,∆
∧R

Γ, ρ1 ` ∆ Γ, ρ2 ` ∆

Γ, ρ1 ∨ ρ2 ` ∆
∨L

Γ ` ρ1, ρ2,∆

Γ ` ρ1 ∨ ρ2,∆
∨R

Γ ` ρ1,∆ Γ, ρ2 ` ∆

Γ, ρ1 → ρ2 ` ∆
→L

Γ, ρ1 ` ρ2,∆

Γ ` ρ1 → ρ2,∆
→R

Γ, ρ(x) ` ∆

Γ,∃ x.ρ(x) ` ∆
∨L

Γ ` ρ(z),∆

Γ ` ∃ x.ρ(x),∆
∨R

Figure 21: Policy evaluation

when dealing with multiple parallel service calls. In Proof carrying authorization (PCA) [2], the service provider sends
its policy to the caller. The latter must build a proof that his/her credentials satisfy the policy. If such a proof can be
derived, this proof is sent sent back to the server. Hence, the server simply need to verify the soundness of the proof

10

rather than trying to find one. In the future, we want to adapt the PCA model in Qwel.

References
[1] M. Abadi, M. Burrows, B. Lampson, G. Plotkin, J. Kohl, C. Neuman, and J. Steiner. A calculus for access control

in distributed systems, 1991.

[2] Ljudevit Bauer. Access control for the web via proof-carrying authorization. PhD thesis, Princeton, NJ, USA,
2003. AAI3107865.

[3] Gerhard Gentzen. Investigations into logical deduction. American philosophical quarterly, 1(4):288–306, 1964.

[4] Thierry Sans and Iliano Cervesato. QWeSST for Type-Safe Web Programming. In Berndt Farwer, editor, Third
International Workshop on Logics, Agents, and Mobility — LAM’10, volume 7 of EPiC, pages 96–111, Edinburgh,
Scotland, UK, 15 July 2010. EasyChair Publications.

[5] WhiteHat Security. Website Statistics Report, 2012.

[6] Symantec. Internet Security Threat Report, 2013.

11

A SML implementation of the policy evaluator

type world = string

type value = string

type pr = string

datatype expression = v of value
| w of world

datatype proposition = Pred of world * pr * expression list
| speaksfor of world * world * world

datatype formula = prep of proposition
| andf of formula * formula
| orf of formula * formula
| Exists of expression * formula

(* listequal: list * list -> boolean*)
fun listequal [] [] = true

| listequal (x::l1) (y::l2) = (x=y) andalso listequal l1 l2
| listequal _ _ = false

(* getValueDomain: proposition list -> proposition list *)
fun getValueDomain(Pred(w’,q,l)::pl) =

(List.filter (fn v(e) => true | w(e) => false) l)@getValueDomain(pl)
| getValueDomain(speaksfor((w1,w2,w3))::pl) = getValueDomain(pl)
| getValueDomain([]) = []

(* getWorldDomain: proposition list -> proposition list *)
fun getWorldDomain(Pred(w’,q,l)::pl) = w(w’)::(List.filter (fn v(e) => false | w(e) => true) l)

@getWorldDomain(pl)
| getWorldDomain(speaksfor((w1,w2,w3))::pl) = w(w1)::w(w2)::w(w3)::getWorldDomain(pl)
| getWorldDomain([]) = []

(* replaceValueList: value * value * expression list -> expression list *)
fun replaceValueList(v1,v2,v(expr)::l) = if(v1=expr)

then v(v2)::replaceValueList(v1,v2,l)
else v(expr)::replaceValueList(v1,v2,l)

| replaceValueList(v1,v2,w(expr)::l) = w(expr)::replaceValueList(v1,v2,l)
| replaceValueList(v1,v2,[]) = []

(* replaceValue: value * value * formula -> formula *)
fun replaceValue(v1,v2, prep(Pred(w’,q,l))) = prep(Pred(w’,q,replaceValueList(v1,v2,l)))

| replaceValue(v1,v2, prep(speaksfor(w3,w4,w5))) = prep(speaksfor(w3,w4,w5))
| replaceValue(v1,v2, andf(f1,f2)) = andf(replaceValue(v1,v2,f1),replaceValue(v1,v2,f2))
| replaceValue(v1,v2, orf(f1,f2)) = orf(replaceValue(v1,v2,f1),replaceValue(v1,v2,f2))
| replaceValue(v1,v2, Exists(v(expr),f)) = if (expr = v1) then Exists(v(expr),f)

else Exists(v(expr),replaceValue(v1,v2,f))
| replaceValue(v1,v2, Exists(w(expr),f)) = Exists(w(expr),replaceValue(v1,v2,f))

(* replaceWorldList: value * value * expression list -> expression list *)
fun replaceWorldList(w1,w2,w(expr)::l) = if(w1=expr)

then w(w2)::replaceWorldList(w1,w2,l)
else w(expr)::replaceWorldList(w1,w2,l)

| replaceWorldList(w1,w2,v(expr)::l) = v(expr)::replaceWorldList(w1,w2,l)
| replaceWorldList(w1,w2,[]) = []

(* replaceWorld: value * value * formula -> formula *)
fun replaceWorld(w1,w2, prep(Pred(w’,q,l))) = if (w’=w1)

then prep(Pred(w2,q,replaceWorldList(w1,w2,l)))

12

else prep(Pred(w’,q,replaceWorldList(w1,w2,l)))
| replaceWorld(w1,w2, prep(speaksfor(w3,w4,w5))) = let

val w3’ = if (w3=w1) then w2 else w3
val w4’ = if (w4=w1) then w2 else w4
val w5’ = if (w5=w1) then w2 else w5
in
prep(speaksfor(w3’,w4’,w5’))
end

| replaceWorld(w1,w2, andf(f1,f2)) = andf(replaceWorld(w1,w2,f1),replaceWorld(w1,w2,f2))
| replaceWorld(w1,w2, orf(f1,f2)) = orf(replaceWorld(w1,w2,f1),replaceWorld(w1,w2,f2))
| replaceWorld(w1,w2, Exists(w(expr),f)) = if (expr = w1) then Exists(w(expr),f)

else Exists(w(expr),replaceWorld(w1,w2,f))
| replaceWorld(w1,w2, Exists(v(expr),f)) = Exists(v(expr),replaceWorld(w1,w2,f))

val removeDuplicates:(expression list -> expression list) =
List.foldl (fn (x,b)=> if (List.exists (fn y=>(y=x)) b) then b else x::b) []

(* prove: proposition list * formula -> boolean*)
fun prove(model, policy) =

let
(* check: expression list * expression list * proposition list * formula list -> boolean *)
fun check(d, d’, model, prep(p)::f) = (List.exists (fn x => case (x,p)

of (Pred(w’,q,l),Pred(w’’,q’,l’)) => (w’’=w’)
andalso (q=q’) andalso (listequal l l’)

| (speaksfor(w1,w2,w3),speaksfor(w1’,w2’,w3’)) =>
(w1=w1’) andalso (w2=w2’) andalso (w3=w3’)

| _ => false)
model) orelse check(d,d’,model,f)

| check(d, d’, model, andf(pol1,pol2)::f) = check(d,d’, model,pol1::f)
andalso check(d,d’, model, pol2::f)

| check(d, d’, model, orf(pol1,pol2)::f) = check(d,d’, model, pol1::pol2::f)
| check(d, d’, model, Exists(v(x),pol)::f) =

check (d,d’, model,(List.map (fn v(y):expression => replaceValue(x,y,pol)
| w(y) => pol) d’)@f)

| check(d, d’, model, Exists(w(x),pol)::f) =
check (d,d’, model,(List.map (fn w(y):expression => replaceWorld(x,y,pol)

| v(y) => pol) d)@f)
| check(d, d’, model, []) = false

in
check(removeDuplicates(getWorldDomain(model)),

removeDuplicates(getValueDomain(model)),
model, [policy])

end

13

	Introduction
	Related Work
	Motivating Example
	Extending Qwel With a Distributed Access Control Model
	Credentials
	Access Control Policies
	Issuing Credentials and Evaluating Policies
	Full Extended Syntax
	Syntactic Sugar

	Examples
	Example 1: University Submission System
	Example 2: Managing Medical Reports at the Hospital

	Semantics
	Conclusion and Future Work
	SML implementation of the policy evaluator

