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Abstract
Autonomous robots often rely on models of their sensing and actions for intelligent decision making. However,
when operating in unconstrained environments, the complexity of the world makes it infeasible to create mod-
els that are accurate in every situation. This article addresses the problem of using potentially large and high-
dimensional sets of robot execution data to detect situations in which a robot model is inaccurate—that is,
detecting context-dependent model inaccuracies in a high-dimensional context space. To find inaccuracies trac-
tably, the robot conducts an informed search through low-dimensional projections of execution data to find
parametric Regions of Inaccurate Modeling (RIMs). Empirical evidence from two robot domains shows that
this approach significantly enhances the detection power of existing RIM-detection algorithms in high-
dimensional spaces.
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Introduction
Autonomous robots perform tasks by taking intelligent
actions given potentially rich and multi-modal data
from their sensors. One approach to achieve intelligent
behavior is model-based decision making, in which the
robot explicitly models the effects of its actions, and the
meaning of its observations, to be able to plan how to
perform its tasks effectively. Since the robot’s actuators
and sensors are subject to various forms of noise, these
models are often stochastic.

Although ideally robot models would describe the
stochastic dynamics of the world perfectly in every situ-
ation, this is often implausible for various reasons: It
may be infeasible to collect training data from the en-
tirety of the state space; the deployment environment
may differ in unforeseeable ways from the training envi-
ronment; or computational constraints may require the
robot to use simple and efficient models. In these cases,
the robot may have models that are generally accurate,
but that fail to accurately represent the world dynam-
ics in particular situations—that is, there are context-
dependent model inaccuracies. Furthermore, these
inaccuracies may be subtle, deviating only slightly from

the robot’s model; this subtlety requires the robot to an-
alyze statistics of correlated sets of data, rather than indi-
vidual data points, to find significant deviations from
nominal execution. We note that this subtlety makes
the problem intrinsically different from a binary classifi-
cation problem: It is sets of correlated points, rather than
individual points, that may be classified as anomalous.

Previous work has shown that detecting these subtle
context-dependent model inaccuracies as parametric
Regions of Inaccurate Modeling (RIMs) in the feature
space of the robot can significantly improve the robust-
ness of robot autonomy. In domains in which continuous
execution is crucial, detection of RIMs online can signif-
icantly improve performance by applying appropriate
model corrections.1 In domains in which safe execution
is crucial, detection of the RIMs can be supplemented
by planning to avoid entering such potentially unsafe
RIMs. In addition, reporting of these detected RIMs to
human operators has led to discovery of algorithmic
and modeling flaws in complex real-robot domains.2

Unlike previous work on RIM detection, this article
focuses on high-dimensional robot domains. For com-
plex robots with long-term deployment, as for other
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Big Data domains, the ability to find patterns in large
sets of high-dimensional data is crucial. In particular,
complex robots often rely on a variety of sensors to col-
lect rich, multi-modal execution data. Such rich data
enable robots to maintain a large set of contextual fea-
tures, such as estimated pose, velocity, battery voltage,
time of day, presence of humans, and weather condi-
tions, among many others. Since many of these fea-
tures can be informative to the detection of RIMs,
the scalability of RIM-detection approaches with do-
main dimensionality is crucial. This article presents
an approach to RIM detection that significantly outper-
forms previous approaches as the dimensionality of the
robot’s feature space increases.

Illustrative example: golf robot
Figure 1 shows a simplified illustrative example of the
type of problem that this article addresses. A robot
shoots a golf ball from different locations on a field,
obtaining a reward of 1 every time it hits the target
on the right, and a reward of 0 otherwise.

Stochastic nominal model. During training, the robot
uses a combination of domain knowledge and training
data (Fig. 1b) to build a simple and generally accurate

model of nominal behavior (Fig. 1c). If the robot always
shoots in the direction of the target using a predefined
behavior, its expected reward depends only on its posi-
tion of the field: The robot expects a higher reward
when shooting from closer to the target, since it is
more likely to hit its target.

Subtle context-dependent model inaccuracy. During
deployment—that is, after training—there is a bump
on the field (Fig. 2a) that was not present during train-
ing and that is not directly perceptible to the robot’s
sensors. Because of this bump, the robot’s execution
differs from its model’s predictions in a particular set
of similar contexts: when the shot starts behind the
bump (Fig. 2b, c). This model inaccuracy can be de-
scribed as an RIM in the robot’s context space, in
which the collection of observations differ significantly
from their modeled distribution. We note that each in-
dividual point, whether a success or a failure, does not
contain enough information to detect an RIM.

High-dimensional domain. Similar to how the golfing
robot’s performance is affected by a bump on the field in
this example, it could also be affected by various other

a Robot golf-putting domain

b Sample observations

0  

0.5

1  

c Expected reward model

FIG. 1. (a) Nominal execution in the robot golf-
putting domain. (b) Successful (white) and failed
(black) shots on the target (black/gray concentric
circles) follow the nominal expected reward model
of (c), as a function of shot location on the field.

a Imperceptible bump causes model inaccuracy

b Anomalous samples

0  

0.5

1  

c Anomalous distribution

FIG. 2. (a) A bump on the field illustrates a
context-dependent model inaccuracy. (b) The
observations from behind the bump (dashed
lines) differ significantly from the nominal
expected reward distribution of Figure 1c, instead
following the expected reward of (c).
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context variables, such as wind speed, lighting condi-
tions, battery voltage, etc. Our approach must be able
to find RIMs in this high-dimensional set of variables.

Contribution: RIM detection in high dimensions
This article contributes an approach for RIM detection
that scales significantly better than existing approaches
to high-dimensional domains.

Key assumption: low-dimensional RIMs. To find RIMs
in high-dimensional context spaces efficiently and effec-
tively, we assume that the RIMs can be fully described in
a low-dimensional projection of the robot’s observa-
tions, although the correct projection is unknown a pri-
ori. For example, the golfing robot’s performance may
be affected by an unseen bump on the field (2D RIM),
by the wind velocity vector (3D RIM), or even by light-
ing conditions generated by the sun at a particular time
of the day, during some months of the year in a partic-
ular section of the field (4D RIM); but not by an RIM
that is intrinsically high dimensional. In practice, this
assumption is met by many real-world model inaccura-
cies. The challenge of the problem, then, lies in identify-
ing the best low-dimensional projection efficiently to
find the RIMs in that subspace.

Feature selector for RIM detection. This article con-
tributes a Feature Selector for RIM detection (FS-RIM)
that scales well to high-dimensional and big data do-
mains. The approach leverages previous work on RIM
detection in low-dimensional spaces (e.g., Refs.3–5) to
create a feature selector that alternatively conducts a heu-
ristic best-first search for subsets of features that are
likely to contain RIMs, and it explicitly searches for
RIMs in the most promising projections, using existing
low-dimensional approaches. We apply this algorithm
to robotics domains, but its generality extends to other
autonomous systems in which (i) the dimensionality of
the domain is high, (ii) the system has a model of nom-
inal behavior that is generally accurate, but (iii) the
model may have inaccuracies in particular regions of
context space. For example, previous work has applied
RIM detection for early detection of disease3 and homi-
cide6 hotspots in 2D maps to prevent epidemics. Our ap-
proach can enable such detection in context spaces well
beyond two spatial dimensions on a map.

Evaluation and results. We evaluate the effectiveness
of FS-RIM in two domains: simulated data from the
golf-putting robot scenario above, and real motion data

from the CoBot mobile service robots.7 Results show
that the robots are able to autonomously detect vari-
ous types of injected model inaccuracies effectively and
efficiently, significantly outperforming existing RIM-
detection algorithms as domain dimensionality increases.

Paper organization. CoBot Mobile Robot Domain
section describes the CoBot domain, highlighting its
key properties: high-dimensional context, stochastic
models of nominal behavior, and context-dependent
model inaccuracies. The Background section contextu-
alizes our problem and approach within existing exe-
cution monitoring and anomaly detection literature.
The Feature Selection Algorithm section presents the
technical details of our search-based feature selection
algorithm, whereas the Empirical Evaluation section
validates this approach through experiments on the
golf-putting robot and CoBot domains. Finally, the
Conclusion section concludes the article with a discus-
sion of results and future work.

CoBot Mobile Robot Domain
The CoBots (Fig. 3) are mobile service robots that au-
tonomously perform tasks for the inhabitants of the

FIG. 3. CoBot mobile service robot.
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Gates-Hillman Center at Carnegie Mellon University.
Each CoBot has various stochastic models of nomi-
nal behavior that enable intelligent and robust per-
formance, with more than 1000 km of autonomous
navigation in the building8: A motion model translates
desired robot translational and rotational velocities
into motor currents; sensor models enable the robot
to estimate its motion via wheel encoders and discern
walls via laser rangefinders and depth cameras; task
models enable the robot to estimate the time it will
take to perform a particular task, and, thus, schedule
various requested tasks accordingly.

Although the CoBot has generally accurate models
for all of these, over its long deployment, it has encoun-
tered various context-dependent model inaccuracies
that have negatively impacted its performance. For ex-
ample, its motion is inaccurate when the robot moves
at high speeds in a particular region of its building,
such as bumps on the floor, corridors with rough ter-
rain, or slanted ramps; the CoBot’s depth camera is
blinded when the robot goes to particular areas of its
building, during particular times of the day, due to sun-
light coming in through the windows; and its time to
perform a task is significantly higher during times of
the day when the corridors of the building are over-
populated, causing congestion. These are all examples
of the context-dependent model inaccuracies that this
work addresses; for this work, we focus on inaccuracies
in the CoBot’s motion model.

There is a high-dimensional space of context vari-
ables that may affect the robot’s performance, such as
its position, velocity and orientation, the presence of
humans, the time of the day or day of the week, the
presence of obstacles in its path, its battery voltage,
and the amount of sun that shines into its sensors,
among many others. This article examines model inac-
curacies that affect different subsets of these features.

Projecting the data onto informative subsets of fea-
tures can be crucial for finding RIMs of the CoBot’s
space. For example, Figure 4 shows data in which the
CoBot’s motion is subtly inaccurate in a particular cor-
ridor of the building; projecting the data onto the spa-
tial location of the robot reveals a clear cluster of highly
unlikely points in a particular corridor, likely to yield a
region with high anomaly value, whereas projecting
onto the angular velocity and time dimensions does
not reveal any clear pattern of unlikely observations.
On the other hand, Figure 5 shows data in which the
CoBot’s motion is subtly inaccurate when it turns
left—that is, its angular velocity is greater than 0; pro-

jecting onto the angular velocity dimension reveals a
cluster when the angular velocity is positive (the time
dimension is shown simply for ease of visualization),
whereas projecting onto the dimensions of the robot lo-
cation does not reveal any clear pattern. We, thus, seek
an approach that can reliably project the data onto in-
formative dimensions efficiently.

Background
The problem of detecting and characterizing execution
failures or anomalies has been studied extensively in
robotics and other domains. This section contextual-
izes this work in relation to previous work in Execution
Monitoring and Anomaly Detection.

Execution monitoring
The problem of execution monitoring, also called Fault
Detection and Identification, or Diagnosis,9 consists of
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FIG. 4. Data from a motion inaccuracy affecting
the CoBot in a particular corridor of its domain,
shown in two different projections. The likelihood
of each individual observation is shown by using
the provided color scale.
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FIG. 5. Data from a motion inaccuracy that
affects the CoBot only when it turns left, shown in
two different projections.
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detecting, identifying, and recovering from failures in
execution. Execution monitoring is a well-established
problem in various areas of scientific research, and
the complex and stochastic nature of robotics domains
has led to increased exploration of execution monitor-
ing in the field.10,11

Execution monitoring can be divided into model-
based methods, which monitor using models of the sys-
tem, and model-free methods, which do so using only
observed data.12 This work focuses on domains in
which robots have access to models of nominal execu-
tion; however, model-free methods have also been suc-
cessfully applied in robotics.13,14

This work focuses on detecting contextual model
inaccuracies given a list of stochastic contextual obser-
vations in which the robot’s state st and action at can be
mapped into a high-dimensional context feature point
xt , and the outcome zt is the observation to be moni-
tored. Most work in execution monitoring has focused
on fault detection by analyzing the likelihood of a single
observation zt or that of a sequence of observations
[ziji = 0, 1, . . . , t]—that is, using only time as a context
that correlates various observations. Several algorithms
have been developed to address this problem, and their
properties, such as speed of detection and detection
power, have been extensively studied.

Two of the most studied algorithms, sequential
probability ratio test15 and cumulative sum control
charts,16 detect faults by using thresholds on the likeli-
hood ratio of residual observations, given a nominal
model h0, and an alternative failure model h1. These al-
gorithms can be very efficiently computed by maintain-
ing an aggregate statistic St and updating it in constant
time with a new observation zt . However, they require
prior knowledge about the fault model h1, or sets of
models fhig for multiple fault detection.17 In contrast,
we are interested in problems in which the anomalous
distributions are not known a priori.

The generalized likelihood ratio approach18 uses the
maximum likelihood estimate of h1 for detection of
faults with unknown parameters. Faults are again
detected by thresholding a statistic St. However, in gen-
eral domains, St requires computation that is not con-
stant, but linear in t.

In our approach, we seek to use similar statistical
techniques as these well-established methods. How-
ever, the key difference between our work and these
and other time-series monitoring approaches19–21 is
that we need to detect inaccuracies that occur in partic-
ular regions of context space. Thus, we use methods

that consider the full contextual observation (xt; zt),
rather than just time t and the likelihood of the out-
come zt .

Anomaly detection
The anomaly detection community has extensively ex-
plored the problem of finding anomalies in contextual
data. According to a classification proposed by previ-
ous survey work of anomaly detection research,22

some of the important characteristics of our approach
are: (i) it works on multi-dimensional continuous con-
text data, (ii) it is semi-supervised—that is, it assumes
that either a nominal model or nominal execution
data is given, and (iii) apart from detecting anomalies,
our approach also returns a measure of confidence on
that detection [the anomaly value discussed later in Eq.
(1)]. However, the main distinguishing characteristic of
our work is that it can detect spatial collective anoma-
lies—that is, anomalies that occur in particular regions
of context space, and that require collections of data for
detection, rather than individual points.

The problem of detecting spatial collective anomalies
has received significant attention from the computer
vision (CV) community, often for the different but re-
lated goal of image segmentation: This problem entails
finding regions of an image that do not fit a model or
their surroundings. Unfortunately, the algorithms de-
veloped for CV are not directly applicable to our prob-
lem, since they often rely on the structured and low-
dimensional nature of images to detect anomalies
(e.g., Refs.23,24).

Spatial scan statistics
The spatial scan statistic3 is an approach for detecting re-
gions of a multi-dimensional point process in which the
number of observed points is significantly different from
the number expected from a given model. This statistic
has a wide range of applications, from forestry to astron-
omy3; however, it has been most often studied in the
context of early disease outbreak detection. The core
idea of the algorithm, given a set of contextual data Z
and a model h0 of nominal behavior, is to search over
a set of regions of context space to find the region R�

that maximizes the following log likelihood ratio:

anom(R, Z; h0) = ln
P(Zjh0is inaccurate in R)

P(Zjh0is accurate in R)
(1)

More specifically, given a set H of alternate possible
models, and denoting by Z(R) the set of observations in
Z that lie within R, Equation (1) becomes
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anom(R, Z; h0) = ln
maxh2YP(Z(R); h)

P(Z(R); h0)
: (2)

This approach searches for the region R� that is most
likely to be anomalous, after which it conducts a statis-
tical test to decide whether R� is likely an anomalous
region. Although the original exhaustive search algo-
rithm3 to find the most anomalous region R� was suffi-
cient for their two-dimensional search space, this
approach does not scale well to higher-dimensional con-
text spaces.

More recent work has extended the spatial scan sta-
tistics approach in several directions. A more efficient
search algorithm has been proposed for axis-aligned
rectangles,25 but it does not scale well with the dimen-
sionality of the domain. Graph-based approaches6,26 are
applicable in domains with a graph structure in their
context space, such as border-connected regions of a
map; however, these approaches are not applicable to
our high-dimensional continuous-valued context spaces,
which do not have an implicit structure. The Fast Subset
Scan,27,28 though efficient, limits its search to only re-
gions of a fixed radius around each observation.

Focused Anomalous Region Optimization:
RIM detection in low-dimensional domains
The Focused Anomalous Region Optimization (FARO)
approach to RIM detection has been applied to online
RIM detection5 and recovery1,2 in robotics domains.
FARO has been shown to work well in domains of
up to eight dimensions, but its performance degrades
quickly with increasing dimensionality, as shown in the
Empirical Evaluation section.

This article presents an approach for RIM detection
in high-dimensional domains that acts as a wrapper
around approaches for low-dimensional approaches
such as FARO. Thus, for completeness, this section de-
scribes the FARO approach, presented in more detail in
previous work.5

FARO anomaly value. FARO addresses the problem of
finding the parametric region, out of a family of possi-
ble regions, that maximizes the anomaly value of Equa-
tion (2). In particular, this article focuses on model
inaccuracies in which the observed mean of the distri-
bution significantly deviates from the expected mean*.
In this case, Equation (2) becomes:

anom(R, Z; h0) = ln

max
d

Q
xi2R

P(zijl(xijh0)þ d)Q
xi2R

P(zijl(xijh0))
(3)

For the domains in this article, the robot models are
given by normally distributed observations P(zijxi; h)~
N l(xijh);R(xijh)ð Þ. For brevity, when discussing the
nominal model h0, we use the abbreviations li �
l(xijh0), Ri � R(xijh0), Dzi � zi� li. anom (R, Z; h0)

in Equation (3) becomes:

= max
d

+
xi2R

ln (P(zijliþ d, Ri)� ln (P(zijli;Ri)½ �

= max
d

+
xi2R

1
2

Dz>i R� 1
i Dzi�

�
(Dzi� d)>R� 1

i (Dzi� d)
�

= max
d

+
xi2R

d>R� 1
i Dzi�

1
2
d>R� 1

i d

� �

= max
d

d> +
xi2R

R� 1
i Dzi

� �
� 1

2
d> +

xi2R
R� 1

i

� �
d

" #
:

(4)

Substituting dmax by its analytically derived value
gives the expression for the quantity to maximize:

anom(R, Z; h0) =
1
2

S>1 S� 1
2 S1 (5)

S1 � +
xi2R

R� 1
i Dzi

S2 � +
xi2R

R� 1
i :

This is the value function that FARO optimizes,
which depends only on two sufficient statistics S1 and
S2 of the data contained in a region R.

FARO optimization space. FARO finds RIMs by opti-
mizing over the parameter space of a particular family
of regions. For the examples used in previous work
and in this article, the search spaces for the optimiza-
tion are ellipsoidal regions, which can express rotation,
translation, and scaling, while requiring only O(d2)

parameters. In a d-dimensional state space, an ellipsoid
can be parameterized by a d-vector u and a d · d posi-
tive definite matrix A as the set of points that satisfy:

(x� u)>A� 1(x� u) < 1 (6)

Thus, the parameter vector w(u;A) describing a par-
ticular ellipsoid is the linearized form of u and A, con-
sisting of dþ d(dþ 1)

2 = 1
2 d2þ 3dð Þ dimensions. The

search space is then the space of such vectors w 2 W
such that the matrix A is positive definite.

*Analogous mathematics can be used to detect model inaccuracies in which the
variance of the distribution, and not the mean, is affected.
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FARO optimization procedure. To find the ellipsoid
that maximizes Equation (5), FARO relies on a nonlin-
ear optimization method, such as the Cross-Entropy
Method.29 These methods are able to find the pa-
rameter vector w� that maximizes the anomaly value
anom(R){ of Equation (5). As an online method, FARO
seeds the optimization with small regions surrounding
the latest contextual observation of the robot each time
it runs.

Figure 6 shows an example of the maximum anom-
aly regions detected by FARO in the simulated two-
dimensional golf-putting domain. As the robot gathers
more execution data, it is better able to outline the
RIM generated by a bump on the field. However, as the
Empirical Evaluation section shows, this remarkable
performance degrades quickly in domains with higher
dimensions.

Feature Selection Algorithm
This section presents the technical details of the main
contribution of this article: an FS-RIM in high-
dimensional domains. Similar to related work,5 the
goal is to find the region R� of context space that max-
imizes the anomaly measure anom(R) of Equation (2).
The key assumption that enables FS-RIM to find R�

efficiently is that these RIMs are intrinsically low-
dimensional regions that are embedded in a high-
dimensional context space. This enables the use of a
Feature Selection algorithm to greatly reduce the di-
mensionality of the search for RIMs.

In particular, FS-RIM is a wrapper-style Feature
Selection algorithm,30 in which the optimal projection

of context space is found by evaluating the function
to be maximized—that is, by finding R�—in selected
low-dimensional projections of the full context space.
Choosing a wrapper approach enables the approach to
leverage previously existing low-dimensional approaches
(e.g., exhaustive search3 or the FARO optimization-based
search5) in its search for high-dimensional RIMs. Thus,
the approach assumes that there exists a function, called
findRIM(Z; h0), which, given a set of low-dimensional
contextual observations Z and a model of nominal behav-
ior h0, can find the region R� that maximizes Equation
(2).

The core problem is, thus, to efficiently and effec-
tively search through the space of possible projections
to explore more informative ones, such as those of
Figures 4a and 5b, before exploring less informative
ones, such as those of Figures 4b and 5a, since there
exists 2jFj different possible subsets of the full set of fea-
tures F in the context space. FS-RIM uses an informed
best-first search over elements F 2 2F of the power set
2F of F. The search is conducted on a graph G in which
the vertices V(G) of the graph are the possible feature
sets F 2 2F , and edges E(G) connect a vertex v0 = F to
a vertex v1 = F [ ff g if v1 is the result of adding a single
feature to v0:

V(G) = 2F (7)

E(G) = f F, F [ ff gð Þ : F 2 2F ; f 2 F; f =2Fg (8)

Figure 7 shows an abbreviated illustration of the first
three levels of the resulting search tree, which always
starts with the empty set of features as the root.

Algorithm 1 details the search procedure. The search
starts by setting the boundary O of the search to the
empty set of features (line 3). For each step i of the

anom(R) = 10.0,
7 observations

anom(R) = 20.6,
43 observations

anom(R) = 40.8,
84 observations

FIG. 6. Most anomalous ellipses found by FARO during three stages of execution. During nominal execution,
the robot succeeds with probability 0.8. From behind the bump, it succeeds with probability 0.5. FARO, Focused
Anomalous Region Optimization.

{Since the observations Z and the nominal model h0 are constant throughout RIM-
detection, anom(R, Z; h0) is abbreviated to anom(R) when the arguments are clear,
for brevity.
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search, the algorithm finds the edges that lie at the
boundary of the search (line 5) and determines which
one to explore by using a heuristic value function
H(e) (line 6). To explore the chosen edge (F �i , fi), the
algorithm first projects the original contextual obser-
vations Z onto the space spanned by the union Fi =
F �i [ ffig (line 8). Then, the algorithm uses a low-
dimensional search method findRIM to search for
the most anomalous region R� in the resulting low-
dimensional space (line 9). Although this low-dimensional
search method can be one of many options—for exam-
ple, an exhaustive search if the low-dimensional space is
small enough3—here, we use the FARO algorithm pro-
posed by previous work.5 Once the search has com-
pleted, and the most likely RIM R� has been found,
the algorithm decides whether the evidence is strong
enough or not to declare a significant model inaccuracy
(lines 14–18).

Algorithm parameters
Line 4 in Algorithm 1 specifies that the search contin-
ues until a domain-dependent maximum number of
nodes imax has been expanded. Depending on the re-
quirements of the domain, this search-ending con-
straint may be exchanged by a time limit instead of a
maximum number of expanded nodes. In general, the
algorithm’s performance may only improve with exe-
cution time or maximum number of nodes imax.

The threshold athresh in line 14 is domain specific,
and it can be computed to correspond to a desired
rate of false positive (FP) detections. As specified in pre-
vious work,3 an approximate map from threshold to FP
rate can be computed empirically through simulations
of the domain under nominal execution—for example,
to determine the anomaly threshold for an FP rate of

5%, one may run 100 simulations of the domain under
nominal execution, run FS-RIM each time, and set the
threshold athresh to the value of the fifth most anomalous
region detected during nominal execution. In our exper-
iments, we have used this 5% FP rate.

Search heuristic
A crucial step in the Algorithm is the choice of heuristic
function H(e) in line 6. Computation of this heuristic
must be relatively efficient in comparison to the
findRIM function of line 9, since the former is invoked
for each of the edges in the boundary of the search to
decide which one is next explored with the latter. Fur-
thermore, the heuristic must be as informative as pos-
sible for RIM detection—that is, it should approximate

FIG. 7. Search tree for feature selection. The algorithm always starts the search with no features, and at each
step searches the node on the boundary of unvisited nodes with the maximum heuristic value H.

Algorithm 1. Algorithm for detection of an RIM in a high-dimensional
context space.
Input: List of contextual observations Z, nominal behavior model h0 .
Output: An RIM R� , or ; if no RIM is detected.

1: function FS-RIM (Z = [(x0; z0); . . . , (xn; zn)], h0)
2: R�); . Most anomalous region thus far
3: O)f;g . Graph search boundary
4: for i = [0, 1, . . . , imax] do
5: Ei) (F 2 O; f 2 F) : f =2Ff g
6: (F �i , fi))arg maxe2Ei [H(e)]
7: Fi)F �i [ ffig
8: Zi)[(xi

t , zt) : xi
t = Project(xt ; Fi)]

9: R�i )findRIM(Zi; h
0)

10: if anom(R�i ) > anom(R�) then
11: R�)Ri

12: end if
13: end for
14: if anom(R�) > athresh(Z; h0) then
15: return R�

16: else
17: return ;
18: end if
19: end function
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the anomaly value anom(R�) of the maximum anomaly
region R� in that projection.

To compute efficient and informative heuristics for
each edge (F, f ), FS-RIM leverages the fact that the
maximum anomaly region for the projections defined
by F has been computed precisely in earlier stages of
the search, and that the maximum anomaly region

for all the individual features f can be computed only
once in O(jFj) time. Thus, the heuristics can use the
corresponding maximum anomaly regions R�F and
R�ff g in their computations with little extra cost.

For visualization purposes, we describe each heuris-
tic by using as an example an edge in which F = ff1g
and f = f2, shown in Figure 8. However, we note that
F is a set that can contain zero or more features,
whereas f is a single feature to be added to F. Thus,
even though both R�F and R�ff g appear as ranges along
a single dimension in Figure 8, more generally, R�F is
a jFj-dimensional parametric region (ellipsoid in this
work), whereas R�ff g is a one-dimensional parametric
region. We note that neither R�ff g nor R�F in Figure 8
contains all of the missed shots; this is because in
their respective 1D projections, extending the region
to contain every missed shot would also require con-
taining many more scored shots, thus lowering the
overall anomaly value anom of the region.

Anomaly sum heuristic (H1). The first heuristic, com-
putable in constant time, is given by the sum of the
anomaly values of F and f :

H1(e) = anom R�F
� �

þ anom R�ff g

� 	
: (9)

Figure 9a illustrates the meaning of this heuristic in
the case where F is a one-element set: Heuristic H1 is
given by the sum of the anomaly values of each of
the two regions independently.

For each feature f, the maximum anomaly region
R�ff g needs to be computed only once at the beginning

FIG. 8. Nonsutble golf domain RIM for heuristic
visualization: every shot from within the RIM (red
lines) is missed (black circles), whereas every shot
from outside the RIM is scored (white circles). Blue
dashed lines and squares show the maximum
anomaly region when projecting onto F = ff1g,
whereas green dashed lines and diamonds show
the maximum anomaly region along when
projecting onto f = f2. RIM, Regions of Inaccurate
Modeling.

a Heuristic H1 b Heuristic H2 c Heuristic H3

FIG. 9. Visualization of the proposed heuristics. Blue and green dashed lines show the relevant regions in
lower dimensions, whereas cyan-highlighted data points are those that contribute to the heuristic value.
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of the search, so its cost per edge of the search is con-
stant. Furthermore, since the graph vertex containing F
has already been explored, anom(R�F) has already been
computed by the time edge e is explored (see line 9 of
Algorithm 1). This heuristic is very efficient, but may
not be extremely informative in domains in which F
and f may not seem highly anomalous independently,
but they are together.

Region intersection heuristic (H2). The second heuris-
tic is more informative than H1, but has a O(n) computa-
tional cost per edge, where n is the number of data points.
Given edge e = (F, f ), this heuristic is obtained by inter-
secting the points contained in the maximum anomaly
region R�F from the subspace of features F, with those con-
tained in the maximum anomaly region R�ff g of the single-
dimensional space of f, as illustrated in Figure 9b:

H2(e) = anom R�F \ R�ff g

� 	
: (10)

In this work, where we use ellipsoids as our chosen
parametric regions for optimization, this heuristic com-
putes the anomaly value of the hyper-cylindrical region
obtained from intersecting R�F and R�ff g: R�F forms the
elliptical base in F, whereas R�ff g constrains the points
to those in a particular range along f. To compute H2,
each point in R�F is tested for belonging to the range
R�ff g, leading to a O(n) computation for each edge.

Conditional range heuristic (H3). Finally, we present a
highly informative heuristic with a O(n2) computational
cost. Given edge e = (F, f ), H3 computes the precise most
anomalous range along dimension f, given only the ob-
servations contained in R�F , as illustrated in Figure 9c:

H3(e) = anom R�ff gjR�F
� 	

: (11)

Similar to H2, this heuristic computes the anomaly
value of a hyper-cylindrical region with base R�F . How-
ever, this region is the most anomalous such hyper-
cylinder, and, thus, H3 dominates H2.

Heuristic H3 can be computed in O(n2), because the
most anomalous range R�ff g along a single dimension f
can be computed exactly in O(n2) by using dynamic
programming, as explained in Appendix 1. The same
procedure can be used to compute R�ff gjR�F , using
only points within region R�F . In cases in which the
number of points n is prohibitively high, computa-
tional costs can be diminished through the use of
approximate methods for finding R�ff g (e.g., Ref.5) or
by binning points along feature f.

Empirical Evaluation
The performance of the contributed FS-RIM was eval-
uated via experiments on simulated data from the golf-
putting domain and on real robot data from the CoBot
domain. The primary purpose of this experimental val-
idation is to demonstrate a significant performance
improvement of RIM-detection algorithms in high-
dimensional domains using FS-RIM, when compared
with the FARO method without feature selection. In ad-
dition, the experiments provide a comparison among
the different heuristic functions of the Search Heuristic
section.

Evaluation metrics
The primary performance metric of FS-RIM is its abil-
ity to correctly identify data points that lie within an
RIM. This is achieved by comparing each point’s be-
longing to the ground truth RIM Rþ to its belonging
to the maximum anomaly RIM R� detected by FS-
RIM, if any exists. For a given experiment, then, the
number of true positives, FP, true negatives, and false
negatives (FN) are given by:

TP = +
(xi;zi)2Z

1(xi 2 R� ^ xi 2 Rþ )

FP = +
(xi;zi)2Z

1(xi 2 R� ^ xi =2 Rþ )

TN = +
(xi;zi)2Z

1(xi =2 R� ^ xi =2 Rþ )

FN = +
(xi;zi)2Z

1(xi =2 R� ^ xi 2 Rþ )

(12)

These measures are combined into a single standard
F1 performance metric, which evenly weights the preci-
sion and recall of the evaluated algorithms:

F1 =
2TP

2TPþ FPþFN
(13)

In particular, the performance of different detection
algorithms is evaluated as a function of domain dimen-
sionality. In particular, we hypothesize that the perfor-
mance of FS-RIM would be comparable to FARO with
no feature selection in lower-dimensional domains, but
we expect to see a significant difference in higher-
dimensional domains.

Furthermore, we evaluate the performance of FS-RIM
compared with FARO as a function of computational
running time. In both algorithms, the performance is
expected to improve as the algorithm runs for longer.
In FS-RIM, this is due to the search being able to expand
more nodes; whereas in FARO, this is due to the optimi-
zation being able to explore more of the optimization
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space. In both cases, we also expect the performance to
plateau at a certain point in time, once the best option
(locally best for FARO) has been found. Evaluating per-
formance as a function of time is essential, because the
best-first search method presented here has the goal of
expanding nodes in an efficient order to avoid having
to intractably search the entire space.

Golf-putting experiments
The first experimental domain is a variant of the golf-
putting domain explained in the Introduction section.
Although the binary-reward golf domain is useful for
explanation and has been explored empirically in pre-
vious work,5 here we explore empirically a continuous-
reward variant: Instead of a binary reward of 0 or 1, the
robot receives a continuous reward proportional to how
close to the target the shot ends. This variant enables the
work to focus on models defined as Gaussian distribu-
tions throughout; however, similar mathematical deriva-
tions can be used for other types of distributions.

Experimental setup.
Nominal behavior model. The golf-putting domain

was set up as a highly controlled simulation, as an ini-
tial evaluation of FS-RIM with fully known ground
truth. In this simulation, the locations pi from which
the robot shoots are chosen uniformly and randomly
throughout the field. By design, the robot has a single
action to shoot in the known direction of the target,
and it receives a noisy reward ri depending on pi:

ri =�r(pi)þ � (14)

where �~N (0, 0:12) is a normally distributed noise term,
and the expected reward �r at location pi is given by a lin-
early decreasing function of the distance di from pi to the
target: �r(pi) = 1:0� 0:5 di

FieldLength
. During training, the

robot has access to the expected reward function �r(pi),
and the parameters of the noise e are extracted from
the data.

Context-dependent model inaccuracy. A straight
bump, such as that of Figure 2, is placed randomly on
the field, in a different location for each experiment.
The bump is always perpendicular to the target on the
right, at a minimum distance of 5% of the field and a
maximum distance of 75% of the field from the target.
The center of the bump is placed at an angle between
135 deg and 235 deg from the target, and its subtended
angle varies from p

8 to p
7 radians. When the robot takes

a shot from a location pi behind the bump, its expected

reward is r̂(pi) =�r(pi)� 0:2 instead of the original �r(pi),
creating a region behind the bump in which the robot’s
model is inaccurate. For each of the experiments given
later, the simulated robot repeatedly took shots until it
had shot 30 times from behind the bump.

High-dimensional context. In addition to the two di-
mensions defining the spatial golf field dimensions,
higher context dimensions were introduced as required
for each experiment. The value of each data point in
each of the added dimension is uniformly distributed
in the range [� 1, þ 1]. The desired outcome of this ex-
periment, then, is for FS-RIM to be able to distinguish
the two features that affect the model inaccuracy—that
is, the x and y spatial dimensions—from the remaining
dimensions, which are irrelevant to how well the model
predicts the robot’s reward.

Experimental results. Figure 10 shows an example of
the detected RIM in a 100-dimensional domain, using
FS-RIM with heuristic H3. The algorithm correctly iden-
tifies that the shown projection is the most informative
one, and it proceeds to run an optimization over possi-
ble ellipses to find the one most likely to be an RIM.

FIG. 10. Example of FS-RIM applied to a 100-
dimensional golf domain. The green ellipse shows
the detected RIM, whereas the red straight lines
surround the ground truth RIM. The intensity of
each point shows the received reward, whereas
the background intensity shows the expected
reward throughout.
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Figure 11 shows the performance of FS-RIM using
the three different heuristics of the Search Heuristic
section (FS Hi), as well as that of the original FARO al-
gorithm5 without Feature Selection (No-FS). The first
result is that the performance of No-FS quickly de-
grades with the increasing dimensionality of the do-
main. In a 2D environment, No-FS reaches peak
performance before the FS methods, since it does not
need to initially compute the heuristic values for each
feature. However, this small-time advantage is over-
shadowed by the performance deficiency in higher di-
mensions.

Figure 11 also shows that the performance of the FS
algorithms scales well with dimensionality. The time
required to reach peak performance for each of the
heuristics changes from about 18 seconds in the 2D
domain, to between 20 and 30 seconds in the 100D do-
main. Furthermore, the performance of the algorithms,
especially for heuristic H3, does not degrade greatly be-
tween the 2D and the 100D domains.

CoBot experiments
The CoBot robots provide a platform to evaluate FS-
RIM on real robot data. To run controlled experiments,
the model inaccuracies were injected into the robot, dur-
ing real execution, in precise regions of context space.

Experimental setup.
Nominal behavior model. The experiments in this

article focus on the robots’ motion models. The
CoBot’s motion commands are given by desired linear
and angular velocities vd = [vd

x , vd
y , vd

r ], where vd
x , vd

y , and

vd
r are the desired speeds in the robot’s forward direc-

tion, horizontal direction, and heading, respectively.
These desired velocities are capped by known accel-
eration constraints of the robot, and they are trans-
formed into individual wheel motion commands
that a PID controller turns into the appropriate
motor currents. As the robot moves, its wheel
velocities are measured through wheel encoders
and mapped back to robot velocity estimates
vm = [vm

x , vm
y , vm

r ]. After accounting for the latency of
this process, a nominal model of wheel measurements
is given by

vm = vd þ �, (15)

where �~N (lv;Sv) is the normal noise associated with
robot sensors and actuators. The noise bias and vari-
ance parameters are estimated by using data from
nominal robot execution.

High-dimensional context. The CoBot operates in
an unconstrained office environment, and, thus, its do-
main is naturally high dimensional. To vary the dimen-
sionality of the context space in these experiments,
different subsets of the robot’s context space were pre-
selected:

7D context space: Time (1D), robot estimated posi-
tion (2D) and orientation (1D), linear and angular ve-
locity commands (3D).

15D context space: 7D context plus robot battery volt-
age (1D), progress information along the current naviga-
tion graph edge (3D), depth-camera plane-extraction
statistics (4D).

FIG. 11. Detection performance of FS-RIM with different heuristics (FS Hi) and no Feature Selection (No FS) as
a function of algorithm running time, in the simulated golf-putting domain. Shaded areas show a standard
error above and below the mean.

280 MENDOZA ET AL.

D
ow

nl
oa

de
d 

by
 C

A
R

N
E

G
IE

-M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
2/

26
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



30D context space: 15D context plus depth values
from 15 laser rangefinder rays, uniformly spaced along
the rangefinder’s field of view.

100D context space: 15D context plus depth values
from 85 laser rangefinder rays, uniformly spaced along
the rangefinder’s field of view.

Context-dependent model inaccuracies. Two differ-
ent types of model inaccuracies were injected into the
robot’s motion execution:

Corridor failure (Fig. 4): When moving in a particu-
lar corridor of the building, one of the robot’s wheel en-
coders observes 0:95d, at each timestep, where d is the
displacement of the wheel observed during nominal ex-
ecution. Thus, the RIM encompasses nonzero velocity
points in a rectangular region of physical space.

Left turn failure (Fig. 5): The robot’s execution
is nominal except when it turns left (i.e., / > 0), in
which case each of its wheels moves only at 0:95v
for a velocity command v. Since the robot usually
turns only at intersections or when it needs to face a
doorway, this failure mode tests the algorithm when
the anomalous data are quite far apart in physical
space and time, but close along the angular velocity
dimension.

These different types of inaccuracies affect different
regions of the robot’s context space, thus testing the
generality of our feature selection algorithm.

Experimental procedure. For all the experiments, the
CoBot was commanded, at a higher level, to navigate to
various random points in the same floor as itself. The
chosen path, as well as lower-level behaviors such as
obstacle avoidance and localization, is handled by
pre-existing algorithms.31 The variance of the noise
in Equation (15) was estimated from nominal execu-
tion data captured over *10 minutes of robot execu-
tion. Then, each of the testing anomalous conditions
was run 10 times, each for *3 minutes of execution.

Experimental results. Figure 12 shows an example of a
detected RIM on the Corridor Failure scenario. We
note that the robot autonomously found the most in-
formative projections for RIM detection, as well as
the RIM approximation within the projected subspace.

Similarly, Figure 13 shows an example of FS-RIM in
the Left Turn Failure scenario. In this case, FS-RIM
finds the most anomalous region to lie only along the
angular velocity dimension, and thus appears as the
region above the horizontal green line in Figure 13a.

Most of the FN in the Left Turn Failure scenario are
points with angular velocity near 0. The deviation
from nominal of these points is very small, since it is
proportional to the angular velocity itself; thus, these
points would not increase the anomaly value of the
detected RIM.

Figures 14 and 15 show the performance of FS-RIM
in the Corridor Failure and Left Turn Failure scenar-
ios, respectively. Similar to the golf-putting results
of the Experimental Results section, FS-RIM enables
the robot to detect RIMs in high-dimensional domains
much more effectively than not using FS-RIM. In these
domains, the three heuristics did not show a significant
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FIG. 12. Example of FS-RIM applied to the
Corridor Failure. (a) An informative projection
enables detection of a region containing
collectively-highly-unlikely observations.
(b) Detection performance.
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FIG. 13. Example of FS-RIM applied to the Left
Turn Failure. (a) The optimal detected region lies
only along the angular velocity dimension (above
the green line). (b) Detection performance.
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difference in performance from each other. We hy-
pothesize that this, as well as the overall better perfor-
mance of the various algorithms on these domains,
is due to the higher density of data, which enables
the robot to more clearly differentiate between nominal
and anomalous execution. Figures 14d and 15d show a
distinct shape: a quick increase in performance score,
followed by a short plateau, followed by another in-
crease and the final plateau. The first increase reflects
the robot computing the anomaly value of the entire
data set—that is, the 0D projection at the root of the
search tree. The first plateau happens while the robot
computes the maximum anomaly region R�ff g for
each feature f, as required for each of the heuristics of

the Search Heuristic section. Finally, the next increase
happens as the robot finds the right projection onto
the 2D physical space in Figure 14d, and onto the 1D
angular velocity space in Figure 15d.

Conclusion
This article presented the FS-RIM approach for scal-
able detection of RIMs in high-dimensional robot do-
mains. Although the problem of RIM-detection has
been addressed by previous work, we present an ap-
proach that scales well with the dimensionality of the
robot’s domain, provided that any anomalies can be
characterized by a low-dimensional subspace of the
high-dimensional context space of the robot.

FIG. 14. Detection performance in the real-robot CoBot domain under a Corridor Failure. As the
dimensionality of the domain increases by adding more features from execution, RIM detection using Feature
Selection (FS Hi) with various heuristics significantly outperforms not using Feature Selection (No FS).

FIG. 15. Detection performance in the real-robot CoBot domain under a Left Turn Failure. As the
dimensionality of the domain increases by adding more features from execution, RIM detection using Feature
Selection (FS Hi) with various heuristics significantly outperforms not using Feature Selection (No FS).
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This approach frames the RIM-detection problem as
an optimization problem in which the robot searches
for the region R� of its context space that maximizes
an anomaly value anom(R). However, performing this
optimization directly in the high-dimensional context
space of the robot is a difficult problem. Therefore,
FS-RIM instead optimizes in low-dimensional pro-
jections of the data. The selection order of these
low-dimensional projections is conducted through a
best-first-search process that uses various approxima-
tions of the anomaly value function as heuristics to
guide the search.

Empirical evaluation of this detection approach was
conducted in two robot domains: a fully controlled and
an easily visualizable golf-putting simulation domain,
and a semi-controlled real robot domain with injected
motion anomalies. In both of these domains, the FS-
RIM detector significantly outperformed existing ap-
proaches that do not use the Feature Selection as the
dimensionality of the domain increases. Furthermore,
since FS-RIM is a wrapper-style feature selector that
uses a low-dimensional RIM detector at each step
of its search, it may be used on top of various low-
dimensional RIM detectors for high-dimensional
RIM detection.

To the authors’ knowledge, this is the first method
designed to detect subtle context-dependent model
inaccuracies in high-dimensional domains as RIMs.
However, exploring comparisons to alternate possible
approaches is an area of interest for future work. For
example, one approach may include using decision
trees32 or random forests33 to divide the space in a

way that maximizes the anomaly value of one of the
resulting regions. Although this approach would be
best suited for axis-aligned RIMs, it could present
other advantages over FS-RIM. Another example ap-
proach would be to use Gaussian Processes to create
an approximation of the process distribution mean
over the entire context space; however, such an ap-
proach may be prohibitively data intensive without
some feature-selection preprocessing such as FS-RIM.

Although the FS-RIM detector has been evaluated
exclusively in robotics domains, we expect its general-
ity to extend well beyond to other domains requiring
detection of anomalous regions in high-dimensional
spaces, such as early detection of disease spread in
rich data sets.
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Appendix 1. Computing R� in 1D
In a one-dimensional domain, the convex region (e.g.,
ellipse) of maximum anomaly R� can be computed in
quadratic time, with respect to the number of data
points, using dynamic programming. This algorithm
exploits the fact that sufficient statistics for the anomaly
measure of the union of two nonoverlapping regions R1

and R2 can be computed in constant time once the suf-
ficient statistics for each of them has been computed.
Thus, starting with regions that surround each individ-
ual data point, the maximum anomaly region R� is
found by merging adjacent regions and calculating
their anomalies.

The anomaly measure of Equation (2) can often be
computed from sufficient statistics of the data Z(R).
For example, as shown in previous work,5 when try-
ing to find a shift in the mean of normally distributed

observations, the logarithm of the anomaly F(R) =
log anom(R) is computed as:

F(R) =
1
2

+
xi2R

R� 1
i Dzi

 !>
+

xi2R
R� 1

i

 !� 1

+
xi2R

R� 1
i Dzi

 !

(16)

where Si is the expected covariance of observation zi, and
Dzi is the deviation of observation zi from its expected
value, according to the nominal model. Thus, the statis-
tics SDz = +xi2RS

� 1
i Dzi and SS = +xi2RS

� 1
i are sufficient

for computing anom(R). Furthermore, given the statistics
for two nonoverlapping regions (S1

D z, S1
S) and (S2

D z, S2
S),

the statistics for the combination of their data is simply
S1þ 2
D z = S1

D zþ S2
D z and S1þ 2

S = S1
Sþ S2

S. Thus, it is possible
to create a function anom(S) that computes the anom-
aly value from sufficient statistics of a region, and a
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function merge (S1; S2) that merges sufficient statistics
from two nonoverlapping regions; both of these run in
constant time.

Given these sufficient statistics, Algorithm 2 de-
scribes the procedure of finding the region R� of max-
imum anomaly in 1D. The algorithm finds the range
R� = [x�R , xþR ], where x�R , xþR 2 R. First, the observa-
tions are sorted along their context dimension (line
2). This ordering enables the dynamic programming
to create a table (line 3) such that, by the end of the pro-
cedure, this table T[i][j] contains sufficient statistics of
the observations in the range Z¢

j;Z
¢
jþ i

� �
to compute

its anomaly value. This is achieved by first storing the
statistics of each individual point in T[0][j] (lines 5–7),
and then incrementally computing the statistics of larger
regions by combining smaller ones (lines 8–12). Finally,
the most anomalous range can be computed by finding
the statistics in T that produce the maximum anomaly

value (lines 13–15). Figure 16 illustrates the contents of
the table for an example with four observations.

Algorithm 2. Algorithm to find the region R� of maximum anomaly in
a one-dimensional domain.
Input: Set of 1D contextual observations Z, nominal model h0 .
Output: The region R� that maximizes anom(R).

1: function FINDANOM1D (Z = (xt ; zt)jt = 0, . . . , N½ �, h0)
2: Z¢)sort(Z)
3: . 2D table stores stats of range Z¢

j;Z
¢
jþ i

� �
4: T)table(jZ¢j, jZ¢j)
5: for j 2 jZ¢j do
6: T[0][j])anomStats(zj)
7: end for
8: for i)1 to jZ¢j do
9: for j)0 to jZ¢j � i do

10: T[i][j])merge(T[i� 1][j], T[0][iþ j])
11: end for
12: end for
13: (i�; j�))arg max(i, j) anom T[i][j]ð Þ½ �
14: R�) Z¢

j� � �, Zj� þ i� þ �
� �

15: return R�

16: end function
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