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Abstract 
Gaussian Mixture Model (GMM) computation is known to be 
one of the most computation-intensive components of speech 
recognition.  In our previous work, context-independent model 
based GMM selection (CIGMMS) was found to be an 
effective way to reduce the cost of GMM computation without 
significant loss in recognition accuracy.  In this work, we 
propose three methods to further improve the performance of 
CIGMMS.    Each method brings an additional 5-10% relative 
speed improvement, with a cumulative improvement up to 
37% on some tasks.   Detailed analysis and experimental 
results on three corpora are presented. 

1. Introduction 

Most modern large vocabulary continuous speech recognition 
(LVCSR) systems rely on continuous density hidden Markov 
models (HMMs) for acoustic modeling. They consist of 
thousands of HMM states, each state modeled by a separate 
Gaussian mixture model (GMM), consisting of tens of multi-
dimensional Gaussian densities. The function of the GMM 
computation component in an LVCSR system is to provide 
HMM state scores for the search routine. Given the large 
number of GMMs in the acoustic model, this computation is 
expensive unless done intelligently. In the past, several 
attempts have been made to speed up GMM computation [3-
6]. The key to most of these speed-up techniques is being able 
to intelligently ignore some parts of the computation without 
significant loss of accuracy.  As no single technique is 
sufficient to provide enough speed gain, it becomes necessary 
to apply several techniques simultaneously.  A major concern 
in applying these methods in a practical system is that the 
individual techniques are not usually orthogonal to each other; 
gains from each do not necessarily accumulate.  Researchers 
can have a hard time combining them together effectively. 
 
In our previous work [1], a four-level categorization scheme of 
GMM computation was proposed.  The basic idea is that fast 
GMM computation techniques can be categorized into four 
orthogonal levels (Figure 1): 
1. Frame-level, determining which frames of speech should 

be considered in detail. 
2. GMM-level, identifying which GMMs are to be 

evaluated in any given frame. 
3. Gaussian-level, determining which densities are relevant 

within any given GMM. 
4. Component-level, reducing the dimensionality of an 

individual Gaussian distribution. 
This conceptual framework provides an effective way to easily 
incorporate multiple speed-up techniques into an LVCSR 
system.  In principle, any arbitrary technique can be simply 

“plugged in”  at the appropriate level, without disturbing 
techniques at other levels. 
 
In our previous work, this framework was implemented and 
incorporated in the CMU Sphinx-3 recognizer. We evaluated 
five representative GMM speedup techniques and showed that 
the framework provides a significant speedup by a factor of 4-
5, with only about 5% relative degradation in recognition 
word error rate (WER). 
 
Among the techniques we evaluated, we observed that 
Context-Independent model based GMM Selection 
(CIGMMS), first introduced in the Julius system [4], was a 
major contributor to the speed gains. The idea behind 
CIGMMS is simple: instead of computing the entire set of 
context dependent (CD) GMMs in each frame, the much 
smaller set of context independent (CI) GMMs is first 
computed.  A beam is applied to the resulting scores, 
identifying the active CI set for that frame. Only those CD 
GMMs whose parent CI model is active are computed in 
detail.  The remaining CD GMMs back-off to (or inherit) the 
parent CI GMM scores.  
 

 

Figure 1. Four Level Categorization Scheme of Fast GMM 
Computation proposed in [1] . 

Despite its advantages, we observed that there are several 
issues with CIGMMS.  In particular: 
 
Issue 1. Unpredictable per-frame per formance. When a 
beam is used to determine the active CI GMMs, the number of 
CD GMMs computed varies widely from frame to frame.  If 
most CI GMM scores fall within the threshold, most CD 
GMMs have to be computed. In particular, noisy utterances 
can take much longer than average to decode. 
Issue 2. Poor pruning character istics. Since a large number 
of CD GMMs fall back (share) the same set of CI GMM 
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scores, a subtle consequence is that the search routine can no 
longer distinguish between competing hypotheses. This makes 
the pruning performance of search become less effective. The 
increased size of the search space increases the search cost, 
negating at least some of the speedup in GMM computation. 
 
In this paper, we suggest three improvements to CIGMMS that 
address the above issues. The organization of the paper is as 
follows.  In Section 2 we provide a brief description of our 
corpora and testing conditions.  In Section 3 we describe 
improvement I  for addressing Issue 1 above, by bounding the 
number of CD GMMs computed at every frame. In Section 4 
we address Issue 2 and discuss other approximations to CD 
GMM scores, ending up with improvement I I  to CIGMMS.   
In Section 5 we discuss improvement I I I , a novel technique 
we call adaptive CIGMMS (A-CIGMMS), to further improve 
CIGMMS by dynamically varying its pruning threshold.  In 
Section 6 we present evaluation results for each improvement, 
using the Communicator, WSJ 5k and the ICSI meeting tasks 
as benchmarks.  Finally, we conclude the paper with Section 
7.  We note that each improvement provide significant speed-
gains (5-10%) on multiple tasks. 

2. Descr iption of Corpora for  Evaluation 

All the experimental results presented in this paper are based 
on three different corpora: the Communicator task for 
planning air travel [7], the Wall Street Journal task [8], and the 
ICSI meeting transcription task [9]1.  The acoustic model 
configurations we used, optimized for each task to minimize 
WER, are summarized in Table 1. However, models with 
fewer component densities/GMM were also used for the 
analysis presented in Section 4. 
 

Table 1. Corpora used in the experiments 

3. Improvement I : CIGMMS with a bound on 
GMMs computed 

As we described in the introduction, when a beam in used to 
prune the set of CD GMMs evaluated based on CI GMM 
scores, the number of CD GMMs computed at every frame 
tends to vary widely.  As a result, this computation can take 
much longer than average for some utterances, especially if 
they are noisy. Clearly, this is undesirable for real-time 
applications.  One simple way to deal with this problem is to 
modify the original CIGMMS scheme to limit the number of 
CD GMMs computed to some upper bound.  In other words, 
incorporate absolute pruning into the scheme.  The absolute 
pruning threshold is chosen such that it gets activated only 
when there are a large number of competing candidates to be 
evaluated.  This reason this heuristic works is the same reason 

                                                           
1 The test set we were using in the ICSI task were bdb001 and bro002 
in the ICSI meetings.   The model was trained by the rest of the 71 
meetings.  

that absolute pruning works in limiting the number of active 
models during search.  Specifically, when a large number of 
models lie within the beam pruning threshold, they all have 
relatively good scores.  In such a situation, the chances of 
picking out the correct candidate are not much better without 
absolute pruning anyway. 
 
The following procedure summarizes the implementation: 
1. Compute all CI GMM scores and sort them in descending 

score order. 
2. Run down this ordered list, computing the corresponding 

CD GMM scores, until either the CI GMM scores 
become worse than the beam pruning threshold, or the 
absolute pruning limit on the number of CD GMMs 
evaluated is exceeded. 

4. Improvement I I : Using Best Gaussian Index 

The other problem with the CIGMMS scheme is that with 
many CD GMMs backing off to the same CI GMM score, the 
search algorithm is unable to distinguish between competing 
candidates.  The key to improving the pruning of search with 
CIGMMS is to introduce a better approximation scheme than 
backing off to a common score. One possibility is to use a 
score derived from the individual CD GMM models, but 
without incurring the cost of computing it entirely. In this 
section, we perform a detailed analysis of the behavior of a 
commonly known such scheme. We dub this the best 
Gaussian index (BGI) scheme. 
 
The BGI scheme can be described as follows.  When a 
particular GMM is fully computed in any frame, we also 
remember the index of the component density with the highest 
score.  In the next frame, if this GMM is not fully computed, 
we use the stored best Gaussian index and compute only that 
component of the GMM. We note that when the chosen 
component is truly the best within the GMM in a given frame, 
its score is an excellent approximation to the full GMM score.  
 
Despite the widespread knowledge of the BGI scheme, its 
behavior has not been fully documented in detail. The 
assumptions behind the above approximation can be broken 
down in two parts: 
1. Given an input frame of speech and a GMM, the score of 

the single best Gaussian within the GMM is an excellent 
approximation to the score of the entire GMM. 

2. Given any GMM, the best-scoring Gaussian in one frame 
is usually the same as in a neighboring frame (the 
principle of locality of the best Gaussian index).   

 
Literature provides ample evidence showing that assumption 1 
is accurate.  For example, in [6] it was shown that the single 
best Gaussian contributes 95% of the likelihood or score of the 
entire GMM.  This is the major assumption for all Gaussian 
selection ideas.  
Assumption 2, however, has rarely been studied in detail in the 
past. A notable exception can be found in [5], in which the 
authors studied the behavior of GMM computation and 
measured the locality rate.  They found that this number is 
roughly 70%.  Unfortunately, there was no further analysis 
beyond that measurement.  
 
There are two questions we need to ask about assumption 2: 

Task Vocabulary #GMM Comp/GMM 

Communicator  2-3k 2000 64 

WSJ-5k  ~5k 5000 8 

ICSI 12k 5000 32 



1. How does locality rate relate to the number of 
densities in a mixture? The number of Gaussians can 
vary from system to system.  Clearly, locality rate should 
decrease when the number of Gaussians per GMM 
increases. 

2. Can we assume that the high scor ing GMMs in any 
frame also have a high locality rate? It is intuitive that 
the highest-ranking GMMs play a more important role in 
guiding the search process. They are usually the “correct”  
models for a given frame of speech and therefore one 
should avoid underestimating their scores. For the BGI 
scheme to be successful, it is crucial that the high scoring 
GMMs have a high locality rate. 

In Sections 4.1 and 4.2, we describe experimental results 
investigating the above two issues. Based on this analysis, in 
Section 4.3 we propose a modified scheme for CIGMMS that 
improve its pruning characteristics. 

4.1. Effect of mixture size on BGI locality rate 

In this experiment, we measured the locality rate of best 
Gaussian indices vs. the number of component densities/GMM 
in three different tasks.  The results are shown in Table 2. Note 
that the models with higher densities/GMM were essentially 
derived by splitting the densities in a lower density/GMM 
model, and retraining.  This is a common and representative 
method for obtaining several acoustic models with varying 
densities/GMM.  
 

Task 1 2 4 8 16 32 64 

Comm. 100 93.1 88.2 84.5 80.7 76.2 70.7 
WSJ5k 100 90.7 84.7 80.3 NA NA NA 
ICSI  100 89.5 82.6 77.3 71.7 64.6 NA 

Table 2. Variation of locality rate with GMM size for various 
tasks. (NA stands for “ not available” .) 

A couple of points are worth mentioning here. First, the 
locality rate decreases as the number of densities/GMM 
increases, as is to be expected. Second, the rate of decline of 
the locality rate depends on the corpora used, and perhaps 
conditions such as noisiness of speech.  

4.2. Locality rate for  high scor ing GMMs 

In the next experiment, we investigated the locality rate 
specifically for the high-ranking GMMs in different frames. In 
Table 3, we compare the locality rate for the 50-best scoring 
GMMs to that for all GMMs on average. The result is 
interesting: the best scoring GMMs have a much lower locality 
rate. This result is consistent across the different domains 
tested.  The implication is that the BGI method should only be 
used selectively.  In particular, it is not advisable to use the 
method directly for the high scoring GMMs.  
 

Task Best  50 GMMs All 
Comm. (64 den/GMM) 42.4 70.7 

WSJ5k (8 mix) 67.5 84.7 

ICSI   (32 mix) 49.2 64.6 

Table 3. Locality rates for best 50 GMMs vs all GMMs. 

4.3. Summary of insights from the two exper iments and a 
modified CIGMMS scheme 

The previous two sections provide several insights about 
GMM approximation using the best Gaussian index.  The first 
is that the number of densities per GMM dictates how 
aggressively one can pursue the BGI scheme for speeding up 
GMM computation.  The second insight is that the BGI 
approximation is quite inappropriate for the high-ranking 
GMMs in general, owing to their poor locality rate. A blind 
application of this scheme would result in their scores being 
underestimated too frequently, and recognition accuracy to 
degrade significantly. 
 
The above analysis suggests that the CIGMMS and BGI 
schemes might be complementary to each other, and the two 
may be used in conjunction very effectively.  Assuming that 
the active CI set of the CIGMMS scheme accurately predicts 
which CD GMMs are high-scoring ones, the scheme ensures 
that these CD GMMs are evaluated fully. (The assumption is 
usually valid because CD GMMs are usually trained by 
bootstrapping from CI GMMs.) Thus, the problem of their 
poor BGI locality is avoided. For the remaining CD GMMs, 
instead of simply using the corresponding CI GMM scores, we 
use the best Gaussian index from the previous frame whenever 
possible.  We know from the above analysis that these GMMs 
do enjoy a higher locality rate and hence the approximation is 
mostly valid. Thus, the use of approximate scores more 
specific to individual CD GMMs addresses the problem of 
increased search space in plain CIGMMS. 
 
Of course, this scheme is slightly more expensive than the 
original version of CIGMMS evaluated in [1] and [4], since a 
CD GMM cannot simply back off to CI GMM score.  
However, their complementary nature is expected to improve 
recognition accuracy, while also providing better pruning 
characteristics. 

5. Improvement I I I : Adaptive CI  GMMS     
(A-CIGMMS) 

In this section we explore the possibility of limiting the CD 
GMM computation even further, by linking CIGMMS to 
frame down-sampling [1]. We hypothesize that, even with 
CIGMMS and the absolute limit scheme of Section 3, in many 
frames too many CD GMMs are computed unnecessarily. At 
the other extreme, frame down-sampling (briefly mentioned in 
Section 1) ignores some frames of speech entirely, as far as 
GMM computation is concerned.  Instead, one simply re-uses 
GMM scores from a previous frame. This technique is 
certainly effective in speeding up GMM computation, but is 
also very damaging to recognition accuracy. (Experimental 
results can be found in our evaluation in [1].)  
 
One can explain the poor performance of frame down-
sampling based on the analysis of section 4. Namely, it is not 
advisable to apply any approximation scheme to the high-
scoring GMMs in any frame.  What is needed is a version of 
CIGMMS that approaches frame down-sampling in those 
frames where most GMMs need not be fully computed. 
 
We propose a new method, called Adaptive CIGMMS (A-
CIGMMS) that effectively achieves this. First, we identify 



selected frames to be “dropped” (as in frame down-sampling). 
Then, instead of ignoring the frame completely, we resort to 
CIGMMS, but with a much tighter beam for selecting the 
active CI set.  The tighter beam is determined by multiplying 
the regular beam (in log-space) by a tightening factor (TF; 
0<=TF<=1). TF=1 is equivalent to normal CIGMMS, and 
TF=0 is equivalent to frame down-sampling.  In between, we 
have a tradeoff between the two. Thus, far fewer CD GMMs 
are computed fully than with a normal CIGMMS beam.  
However, the high-scoring CD GMMs (predicted by the active 
CI set) will still be computed correctly.     

6. Exper imental Results 

We evaluated the improvements described in this paper on the 
three corpora outlined in Section 2. To summarize, the 
methods evaluated are: 
1. CIGMMS with an absolute pruning threshold on the 

number of CD GMMs computed (Sec. 3). 
2. CIGMMS with non-computed GMMs using the BGI 

scheme (best Gaussian in the previous frame, Sec. 4.3). 
3. A-CIGMMS (Sec. 5). 
 
The experiments were carried out on a 2.2GHz P4 machine 
using Sphinx 3.5 [1]. Table 4 summarizes the experimental 
results. BL represents the baseline condition in which the 
following techniques were already applied: 
1. The tightest (well-tuned) state, phone and word-level 

beam as well as histogram pruning. 
2. The search structure optimized using a tree lexicon, with 

unigram look-ahead. 
3. CIGMMS in its original form, without the improvements 

of this paper. 
4. Sub-vector quantization-based Gaussian selection [10]. 
 
The improvements were applied to the baseline in succession, 
and cumulatively. The overall speed performance with the 
addition of each new method was measured.  The results 
summarized in Table 4 are discussed below: 
• Improvement I provides significant speed gain on both 

Communicator and ICSI tasks (19% and 16% relative, 
respectively) with only a 3% relative increase in WER. 
The advantage of the scheme is twofold.  First, the 
average number of CD GMMs computed per frame is 
reduced from 916 to 536 in the Communicator task, and 
from 1210 to 807 in the ICSI task.  Second, the worst 
case speed improves from 2.08 xRT to 1.20 xRT for the 
ICSI task and 1.56 xRT to 0.96 xRT for the 
Communicator task. The WSJ5k task, however, is already 
highly tuned, and it is very hard to reduce the average 
number of CD GMMs computed.  Still, its worst case 
behavior improves from 1.12 to 1 xRT.  

• Improvement II also provides significant gains on the 
Communicator and ICSI tasks (11 and 5%, respectively).  

• Improvement III provides consistent improvement 
on all three tasks.  In our tests, we only 
experimented with tightening the CI beam every 
other frame, blindly. We expect that the gains could 
be higher if a more intelligent  strategy of “ ignoring 
frames” is used (e.g., based on similarity of 
successive frame feature vectors). 

Table 4. Performance of proposed improvements to CIGMMS 
on different tasks.(xRT stands for “ times real-time” .) 

7. Conclusion 

 In this work, we analyzed in detail the behavior of CIGMMS 
for improving GMM computation performance. One of our 
main observations is that it is necessary to preserve the 
integrity of the high-scoring GMMs in each frame, and avoid 
approximating them as far as possible. With this in mind, we 
proposed several variants of CIGMMS, by combining it with 
absolute pruning, the previous best Gaussian index scheme, 
and with frame down-sampling, respectively. We found that it 
is possible to improve over the basic CIGMMS by 
incorporating each one of these, cumulatively. The 
improvements are consistent across multiple corpora. 
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