
ABSTRACT

Feature representation is a very important factor that has great
effect on the performance of speech recognition systems. In this
paper we focus on a feature generation process that is based on
linear transformation of the original log-spectral representation.
We first discuss several three popular linear transformation
methods, Mel-Frequency Cepstral Coefficients (MFCC), Princi-
pal Component Analysis (PCA), and Linear Discriminant Analy-
s i s  (LDA).  We then propose a  new method  of  l inear
transformation that maximizes the normalized acoustic likeli-
hood of the most likely state sequences of training data, a mea-
sure that directly related to our ultimate objective of reducing
Bayesian classification error rate in speech recognition. Experi-
mental results show that the proposed method decreases the rela-
tive word error rate by more than 9.1% compared to the best
implementation of LDA, and by more than 25.9% compared to
MFCC features. 

1. INTRODUCTION

As is the case with all pattern classification systems, the perfor-
mance of speech recognition systems depends critically on the
features it uses. In addition to the commonly-used cepstral repre-
sentation Mel-Frequency Cepstral Coefficients (MFCC), there
are other front-end representations generated with different
methods and different objectives. These front-end representa-
tions can be categorized according to their generation processes,
such as features based on linear transformation (e.g. MFCC [1],
PCA [2], LDA [3][4]), and features based on non-linear transfor-
mations (e.g. PLP [6], tandem features [7]). Other methods of
feature generation include discriminative-based feature genera-
tion, whose objective is to make the representation of different
classes as different from one another as possible in the resulting
feature space, or maximum likelihood-based representations,
whose goal is to make the data in the new feature space fit the
model assigned to them as well as possible. 

Despite the success of these feature representations, most of
them are based on heuristics, as neither the objectives of maxi-
mal separation [3][4] nor maximum likelihood [1][2] directly
relates to our real objective of minimal word error rates (WERs).
The aim of this paper is to derive a linear feature generation pro-
cess based on an objective function which is intimately linked to

this goal of minimal WERs. Specifically, we will use as our
objective function the normalized acoustic likelihood of the most
likely state sequences generated from forced-alignment, a mea-
sure can be thought of as the a posteriori probability of those

most likely state sequences assuming that the a priori probabili-
ties of the state sequences are equal. We will use the optimization
procedure of gradient ascent to tune a transformation matrix used
in our feature generation process in order to achieve this goal. 

In the following section we will describe the most commonly
used feature generation methods based on linear transformation
as well as our new method. In Section 3, we will present our
experimental results, and we present our conclusions in Section
4.

2. FEATURE GENERATION BASED ON 
LINEAR TRANSFORMATIONS

2.1. DCT-based linear transformation

The most commonly used feature representation in speech recog-
nition is Mel-Frequency Cepstral Coefficients (MFCC [1]),
where the log energies of the outputs of Mel-frequency filters are
transformed via the Discrete Cosine Transform (DCT) as in Eq.
(1)

(1)

where  is the log-energy output of the  Mel-frequency fil-

ter, N is the total number of Mel-frequency filters, and M is the
number of cepstral coefficients.

Due to the large amount of recognition classes used in modern
speech recognition systems based on Hidden Markov Models
(HMMs), many people use a diagonal covariance matrix to
model the observation probabilities of each recognition class,
which implicitly assumes mutual independence among the com-
ponents of feature vector. Even though the DCT transform does
not provide a theoretical guarantee of independence of the trans-
formed components, the MFCC coefficients generated via the
DCT generally become more mutually independent compared to
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the original log-spectral energies from which they are obtained.
This is perhaps one reason for the general success of MFCC fea-
ture representations in most speech recognition systems.

2.2. Principal Component Analysis

Principal Component Analysis (PCA [2]) is a method of dimen-
sionality reduction base on linear transformation that attempts to
obtain the best representation of the original data in the least-
squares sense in the projected space. Letting  represent the

transformation matrix, and letting the column vector  repre-

sent the original data, the goal of PCA is to find  that mini-

mizes the accumulated squared difference between the projection
of the data in the new space and the original data as in Eq.  (2)

(2)

where N is the total number of data samples, M is the dimension

after transformation,  is the  row vector of the transforma-

tion matrix , and  represents the matrix transpose operator.

The resulting matrix  is actually the eigenmatrix of the covari-

ance matrix of the original data, and each row vector  is a prin-

cipal axis of the original data, ranked according to the value of its
corresponding eigenvalue.

In contrast to the DCT used in MFCC feature generation, the pro-
jected data obtained using PCA are guaranteed to be mutually
uncorrelated due to the orthogonality of their principal axes .

Consequently, projected data obtained using PCA are in principle
more in accord with the common assumption of diagonal covari-
ance matrices.

2.3. Linear Discriminant Analysis

While the objective of PCA is to preserve the original data in the
projected space to the extent possible, linear discrimination analy-
sis (LDA) [3][4] is a linear transformation-based dimensionality
reduction method that attempts to maximally separate the data of
different recognition classes in the new space. It uses the Fisher
ratio of the determinants of the between-class and within-class
scatter matrices as the measure of data separation, and maximizes
this measure. 

If we use  and  to represent the between-class and within-

class scatter matrices respectively[4], then the goal of LDA [3][4]

is to find the transformation matrix A that maximizes the Fisher
ratio:

(3)

As is shown in [4], the transformation matrix that maximizes the

ratio is actually the matrix of eigenvectors of the matrix . 

As in the case of PCA, LDA transforms the data into a space
where components are uncorrelated with each other. On the other
hand, LDA requires that each sample of training data be labelled
according to decision class, which causes the result to depend on
the way that the classes are defined. Hence, defining the decision
classes to be according to states versus phonemes will affect the
resulting system recognition accuracy. In addition, LDA assumes
that covariance matrices for all recognition classes are the same,
which is a strong assumption.

2.4. Maximum Bayes Classification Probability 
Based Linear Feature Generation

Despite their success, methods of feature generation based on
MFCC, PCA and LDA all share the same drawback: the objective
of linear transformation is not directly related to the true goal of
minimizing Bayesian classification error, which is usually
expressed in terms of WER in speech recognition systems. The
method we describe in this paper also performs a linear transfor-
mation to generate new features with reduced dimensions. Unlike
other methods, the present transformation matrix is generated via
an optimization procedure whose objective function is the nor-
malized acoustic likelihood  of the true recognition classes in

the training data as in Eq.  (4), 

(4)

where  is the data sample in frame i,  is the most likely

state in frame i from the forced-alignment result, and C is the total
number of recognition classes.

As reflected in Eq.  (4),  can be treated as the a posteriori

probability of true recognition classes with the flat a priori proba-
bility assumption, which is directly related to the Bayes classifica-
tion error.

Since the training data sample  in each frame i is fixed in the

feature space before transformation, the normalized acoustic like-

lihood  will only depend on the parameters of the model used

for the observation probability for each recognition class as
reflected from Eq.  (4). Suppose the training data can be parti-
tioned into recognition classes in a frame-by-frame manner based
on forced-alignment to the correct hypothesis, and those parame-
ters of the model for observation probability can be generated via
a maximum likelihood estimation approach based on the training
data assigned (using an approach such as the K-means training
algorithm).  will hence only depends on the partitioning based

on forced alignment of the training data in the feature space
before the transformation. When we apply a linear transform to
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the original data space, both  and the new partition of the

transformed training data will change according to the exact
nature of the transformation matrix. If we assume that (1) the par-
tition of the transformed data is the same as the partition in the
original data space (which can be easily enforced via forced-
alignment of the training data) and (2) the model for the observa-
tion probabilities of each recognition class is a single Gaussian,
then we can write the equations for  as a function of the trans-

formation matrix, and maximize it with respect to the transforma-
tion matrix A.

The method can be described as follows: we rewrite the term 

in the transformed space as:

(5)

where  is the transformed feature vector. The condi-

tional density  can be written as:

(6)

where m is the dimensionality of the transformed data, and 

and  are the transformed means and variance of the recogni-

tion class j, respectively:

(7)

With  and  the original mean and variance estimated from

the partition of the training data in the original data space, they are
fixed with respect to the transformation matrix A.

By substituting Eq.  (6) and Eq.  (7) into Eq.  (5), we obtain:

(8)

For simplicity, we replace  by  as our objective func-

tion and optimize it with respect to A. , which is the first

derivative of  with respect to transformation matrix A, can

be expressed as:

(9)

Where:

(10)

Since  is the acoustic likelihood of recognition class j

based on the transformed data, it can be computed easily. Hence
all that is needed is to compute , the first deriva-

tive of the log acoustic likelihood of class j in the transformed

data  with respect to the transformation matrix A.

By assuming that the output probabilities can be modeled by a
single Gaussian with a diagonal covariance matrix , we obtain:

(11)

where ,  and  are the individual components of the

transformed feature values, and the mean and variance of class j:

(12)

where N is the original dimension, m is the reduced dimension,

 represents component (p, j) of the transformation matrix A,

and  and  are the mean and variance of the  compo-

nent of recognition class j. 

Finally, by combining Eq.  (11) and Eq.  (12) we can write the
closed-form solution to . Substituting this term

into Eq.  (9) produces the closed-form solution of the first deriva-
tive of the log-normalized acoustic likelihood  with
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respect to A. This quantity is then used as the increment in the

gradient ascent approach to find the A matrix that optimizes the
log-normalized acoustic likelihood term.

3. EXPERIMENTAL RESULTS

To compare the performance of our proposed method with that of
other feature generation methods, we carried out a series of exper-
iments using the DARPA Resource Management (RM) database.
All of these the experiments were conducted using the CMU
SPHINX-III speech recognition system, using 3-state continuous
HMMs. Since the proposed method was derived by assuming a
single Gaussian for the output distributions, we used a single-
Gaussian observation probabilities for all feature sets to which the
proposed method was compared. In addition to our own method,
we evaluated the performance of MFCC, PCA and LDA features
for comparison. Since there is no theoretically-motivated conclu-
sion about the best class level to use for LDA, we obtained results
using both phoneme based-classes and state-based classes, with
class labels generated from the forced-alignment of the MFCC
model. 

Since the distributions of correctly-classified and mis-classified
frames may be different from one another, optimizing the normal-
ized acoustic likelihood  of the whole training data may be

biased to correctly-classified frames given the large amount of
such frames compared with mis-classified frames. We optimize

 both for the entire ensemble of training frames as well as only

for the frames in which misclassifications occurred.

We used the method of steepest gradient ascent as the optimiza-
tion procedure, using the transformation matrix obtained by the
phoneme-based LDA method as an initial value. The optimization
process was terminated when the results converged.

Our experimental results are reported in Figure 1.  These results
results show that the proposed optimization over only the mis-
classified frames decreases the relative word error rate by more
than 9.1% compared to the best implementation of LDA, and by
more than 25.9% compared to MFCC features. We also computed

the statistical significance measure between our proposed meth-
ods with the best-performing previous method of phoneme-based
LDA. The matched pairs method [5] provides a significance mea-
sure of 0.09 between phoneme-based LDA and our optimization
over the entire training data, and 0.03 between phoneme-based
LDA and our optimization over only the mis-classified training
data.

4. DISCUSSION AND CONCLUSIONS

We first note that our proposed method outperforms conventional
feature generation methods, and that the improvement, particu-
larly for the optimization of normalized acoustic likelihood in
mis-classified frames, is significant.

While we made several assumptions before deriving our methods,
we can relax these assumptions with some modification of our
current method. We can use an iterative procedure, which parti-
tions the training data according to the model generated from the
previous iteration, to relax the assumption of fixed partitioning of
training data. We are also attempting to use iterative procedures to
develop a modified version of our method that is based on Gauss-
ian mixture output distributions, with the parameters and coeffi-
cients of each Gaussian mixture based on the model from the last
iteration. Of course, the iterative procedure will require substan-
tial additional computation, given that the optimization process
will have to be performed for each iteration.

Another improvement that can be applied to our method is to par-
tition the training data based on the Baum-Welch method, the
actual ML training method used in most current speech recogni-
tion system, instead of the K-means algorithm. We expect even
better performance to be obtained with the “soft” partitioning of
training data based on the Baum-Welch algorithm.
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