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ABSTRACT

This paper describes a series of cepstral-based compensation procedures that render the SPHINX-II continuous
speech recognition system more robust with respect to acoustical changes in the environment. The first two algo-
rithms, SNR based MultivaRiate gAussian based cepsTral normaliZation (SNR-based RATZ) and STAtistical Reesti-
mation of HMMs (STAR), compensate for environmental degradation based on comparisons of simultaneously-
recorded data in the training and testing environments (“ stereo data’). They differ in that RATZ modifies the incom-
ing feature vectors to a recognition system while STAR modifies the internal representation of speech by the system.
We also describe N-CDCN, an improved version of codeword-dependent cepstral normalization (CDCN) which does
not require stereo training data but nevertheless achieves performance levels comparable to RATZ and other algo-
rithms that require stereo training. Use of these compensation algorithms significantly reduces the error rates for
SPHINX-II. The agorithms are tested in a variety of databases and environmental conditions.

INTRODUCTION

Robustness with respect to environmental variability remains a continuing problem for speech recognition technol-
ogy (e.g. [3]). For example, the use of microphones other than the ARPA standard Sennheiser HM-414 headset
(CLSTLK) severely degrades the performance of speech recognition systems like the SPHINX-I1, even in relatively
quiet environments[1, 4].

Traditional algorithms to compensate for environmental variation have either relied on the availability of simulta-
neously-recorded data in the training and testing environments (“stereo data’), or have utilized structural models to
define the degradation. For example, multiple fixed codeword-dependent cepstral normalization (MFCDCN) [4] uses
stereo data to compute correction vectors to compensate for the effects of the environment. Dual-channel codebook
adaptation (DCCA) [4], on the other hand, modifies the statistical representation used in the HMMs for speech on the
basis of comparisons obtained from stereo data. The other approach to environmental compensation is through the
use of structural models of degradation. On the other hand, codeword-dependant cepstral normalization (CDCN) [1]
assumes that speech is degraded by unknown additive noise and unknown linear filtering. It makes use of expectation-
maximization (EM) techniques to determine the parameters characterizing these distortions.

In this paper we describe three new cepstral-domain compensation strategies, SNR based MultivaRiate gAussian
based cepsTral normaliZation (SNR-based RATZ), STAtistical Reestimation of HMMs (STAR), and new CDCN (N-
CDCN). SNR-based RATZ and STAR both make use of stereo data. They differ in that RATZ modifies the incoming
feature vectors to a recognition system while STAR modifies the internal representation of speech by the system.
RATZ and STAR are similar in philosophy to MFCDCN and DCCA, respectively [4], but they achieve improved per-
formance through the use of better mathematical models which introduce strong structural constraints into the
assumed distribution for speech. N-CDCN is a modification and improvement of the original CDCN algorithm,
which is based on a structural model of degradation.

EFFECT OF THE ENVIRONMENT ON SPEECH STATISTICS

In this section we describe how even well-behaved environments, such as those that can be modeled by unknown lin-
ear filtering and additive stationary noise, modify the statistics of “clean” speech in very unpredictable ways. Even
though we can formulate equations that analytically describe how the pdfs of clean speech change, the solutions for
these equations are mathematically intractable.

For analytical purposes, we adopt the simple model of degradation proposed by Acero [1]. In this model, degraded
speech is characterized by passing high-quality clean speech through alinear filter and contaminating the filtered out-
put by additive stationary noise. For simplicity, we will also assume that the feature vector is unidimensional,



although al conclusions developed can be easily extended to an arbitrary N-dimensional space such as the log spec-
tral domain. The degraded speech can be characterized as:

Z(0) = X (o) [H(w)|*+N(0) (1)
where Z (w) represents the power spectrum of the degraded speech, X (w) isthe power spectrum of the clean speech,
H (w) isthe transfer function of the linear filter, and (w) is the power spectrum of the additive noise. In the log-
spectral domain this relation can be expressed as:
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where z x,q,and n represent thelogsof Z(w), X(w), |H(w)|?, and (w), respectively, for some particular w.

Assuming knowledge of the pdf of the clean speech, p (x) , with mean p, and variance 0)2(, degradation will affect the
mean and variance of zin the following manner:
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For simplicity we assume that x is Gaussian and that the power spectrum of the noise and the transfer function of the
filter are known and deterministic. In this ssmplified special case the new equations for the mean and variance are:
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These equations become difficult to solve. In fact we are not aware of any analytical solutions for these equations.

Equations (4) were obtained under the unrealistic assumption that  (w) isknown a priori and deterministic. In prac-
tice, (w) must be estimated, producing a random estimate for n to which we assign the pdf p (n) . Assuming that n

and x are statistically independent, the new expression for p, becomes:
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This equation is more difficult to solve than equations (4). The computation for o, becomes even more complicated.

We conclude that when we assume that the corrupted distributions have a Normal shape, the effects of the environ-
ment on signal statistics can be modeled by additive correction terms to the mean of z (thus shifting its pdf), and the
variance of z (thus compressing its pdf). This is the approach that is followed in the SNR-based RATZ and STAR
algorithms described in this paper.

COMPENSATION ALGORITHMS

In this section we briefly describe the three new algorithms RATZ, N-CDCN and STAR. SNR-based RATZ and
STAR assume the availability of a database of “stereo” training sentences, with one channel containing speech
recorded using a high-quality microphone and a second channel containing degraded speech samples.

SNR-based RATZ

SNR-based RATZ uses frame energy information, represented by the zero™ component of the cepstral vector (Xp), to

model the statistics of the cepstra of the clean speech hierarchically: the X, cepstral coefficients are defined to have a

Gaussian mixture distribution, and the cepstral vectors corresponding to each xy Gaussian are further assumed to have

amixture Gaussian distribution:
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where P[K ,u,, ando,  represents the a priori probability, mean and variance of each energy component, and

P LIl K, Hxp, jkand Zxp, jk represent the a priori probability, mean vector and covariance matrix of each multivariate
Gaussian mixture conditioned on the frame energy. These parameters are learned through traditional EM methods.

The effects of the environment on the statistics of clean speech are modeled as shiftsin the means and variances:
— 2 — — —
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resulting in anew set of statistics describing the degraded speech vector z.

The shift parameters are learned using a traditional maximum likelihood approach that attempts to maximize the
probability that the observed noisy data set is generated by the transformed statistics. When stereo data are available
the reestimation formulas use it by modelling the a posteriori probabilities using the stereo clean vectors.



The degraded speech is compensated by using an MM SE technique to shift them back to the clean speech statistics:
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STAR

STAR assumes that any effect of noise, channel, or environment can be accurately formulated as shifts in the means
and corrections to the variances of HMMs:

I‘J'z,k = l'lx,k+rk zz,k = Zx,k+Rk ©)

Thisisapproach issimilar to that in [2]. This model is applied to all of the four streams of data that SPHINX-I1 uses,
that is, cepstral, delta-cepstral, double delta-cepstral coefficients, and a fourth three-dimensional stream that contains

the cepstral component c,, its difference Ac,, and its double difference A%c,,.

Correction factors for the statistics of each of these four streams are computed using the following modified Baum-
Welch estimation formulas:
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where y, (k), the probability of being in state k at time t is conditioned on statistics A of the clean speech channel of

the stereo training data. We assume that the a priori probabilities do not change due to the effects of noise or environ-
ment. We note that v, (k) is computed using clean speech and clean models. As aresult, it does not change from esti-

mation to estimation, and no iteration is needed.
The estimation formulas for corrections to the covariance matrices are similar:
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N-CDCN

New Codebook-Dependent Cepstral Normalization (N-CDCN) is an improved version of its predecessor, CDCN.
The original CDCN has been able to achieve a respectable amount of error reduction [1] for many types of acoustical
degradations without requiring the use of stereo training data. Nevertheless, it has not found much use in current
CMU speech systems because it requires empirical information and retraining of the HMMs. N-CDCN alleviates
these problems while retaining CDCN'’s ability to compensate for the combined effects of additive noise and distor-
tion produced by unknown linear filtering. As before, compensation is performed on a sentence-by- sentence basis.

N-CDCN assumes a structural model of the degradation where speech is contaminated by additive stationary noise
after being filtered by an unknown linear filter. This can be expressed as:

z[K = x[K *h[K +n[K

A statistical description of the cepstral space characterizing “clean” speech, as parametrized by a mixture of multi-
variate Gaussians, is estimated by EM methods. Given a noisy utterance, parametrized by a sequence of cepstral vec-
tors, and given the previously learned statistics describing the clean speech, N-CDCN iteratively estimates noise and
linear-filtering vectors that maximize the likelihood of observing the degraded speech. The initial values of the filter
and noise estimates are the values that maximize the likelihood in the case of no estimation error.

Finally, an MM SE technique is used to estimate the unobserved clean speech vectors given the observed degraded
speech, the previously-estimated noise and filter vectors, and the statistics describing clean speech.

PERFORMANCE ANALYSIS

In this section we describe the results of a series of experiments that compare the recognition accuracy of the algo-
rithms described in Sec. with previous algorithms developed at CMU. The experiments measure recognition accu-
racy obtained using speech from the CENSUS database [1] that was recorded using the omnidirectional desktop
Crown PZM 6FS microphone. The CENSUS database consists of strings of |etters and digits stereo that were simul-
taneously recorded using the close-talking Sennheiser HM D-414 microphone and the Crown PZM6FS desktop
microphone.

Table 1 shows the results of these experiments. The system was trained on clean speech from the close-talking Sen-
nheiser HMD-414 microphone and tested using noisy speech from the desktop Crown PZM-6FS microphone. The
word error rate of the SPHINX-I1 system when training and testing on clean speech was 14.7%. It can be seen that
SNR-based RATZ and STAR provide dightly better performance than FCDCN. The performance of N-CDCN is bet-



ter than that of its predecessor, CDCN, and it has the additional advantage of not requiring that the system be
retrained.

1001 .
. |
Compensation Stereo Error "ot
Method Data Needed? Rate
CMN No 29.5% 60}
FCDCN Yes 21.9% Retrained
STAR Yes 21.5% “of o L SiRbssedrATz
SNR-based RATZ Yes 21.0% 4 ‘ a—a NCDON
CDCN No 24.3% 0%~ _a’ e
N-CDCN No 20.7% ou/ , . . . . .
0.0 5.0 10.0 15.0 20.0 25.0 30.0
SNR (dB)

Table 1: Word error rates obtained using speech from CEN- Figure 1. Comparison of recognition accuracy obtained using
SUS database using different compensation algorithmsin con- STAR, SNR-based RATZ, and N-CDCN with no compensation
junction with SPHINX-II. at al (CMN) and with full retraining using noisy speech data.

In a separate set of experiments we evaluated the performance of the various compensation algorithmsin low signal-
to-noise ratio (SNR) conditions. Clean speech from the CENSUS database was contaminated with artificially-pro-
duced additive Gaussian noise at different global SNRs. Figure 2 compares recognition accuracy obtained using the
census database for the STAR, SNR-based RATZ, and N-CDCN algorithms, as a function of global SNR. For com-
parison purposes, we also provide the recognition accuracy obtained when the system was completely retrained at
each SNR using the speech with added noise, as well as the baseline accuracy obtained using cepstral mean normal-
ization (CMN) alone. In contrast, the experimental results described in Table 1 are based on datarecorded at an SNR
of 23.0 dB, whichisindicated by the vertical dashed linein Figure 2.

As can be seen in Figure 2, the STAR algorithm outperforms all other algorithms, and the difference becomes espe-
cially evident at low SNRs. Algorithms that attempt to correct the noisy cepstra using MM SE techniques introduce
additional classification errors over the optimal classifier based on noisy cepstra. Hence, atechnique like STAR, that
attempts to “classify” the noisy speech based on noisy cepstral statistics can outperform techniques that attempt to
clean noisy data using MM SE methods, and classify the data using clean statistics.

SUMMARY AND CONCLUSIONS

In this paper we described three new procedures, SNR-based RATZ, STAR, and N-CDCN, that improve speech rec-
ognition accuracy in unknown acoustical environments. SNR-based RATZ and STAR are based on the availability of
stereo training data, while N-CDCN performs blind compensation.

We also presented a brief analytical study with simulations to support our modelling of how noise and filtering can
affect clean speech statistics. We showed how the addition of a hierarchical structure to data driven methods like
SNR-based RATS improves performance compared to previous methods developed at CMU, especialy at low SNRs.
Finally, we aso show how methods that attempt to modify the statistics of the HMMs can perform even better, espe-
cidly at low SNRs.
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