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Abstract

A method is presented to recover 3D scene structure and
camera motion from multiple images without the need for
correspondence information. The problem is framed as
finding the maximum likelihood structure and motion given
only the 2D measurements, integrating over all possible as-
signments of 3D features to 2D measurements. This goal is
achieved by means of an algorithm which iteratively refines
a probability distribution over the set of all correspondence
assignments. At each iteration a new structure from mo-
tion problem is solved, using as input a set of ’virtual mea-
surements’ derived from this probability distribution. The
distribution needed can be efficiently obtained by Markov
Chain Monte Carlo sampling. The approach is cast within
the framework of Expectation-Maximization,which guaran-
tees convergence to a local maximizer of the likelihood. The
algorithm works well in practice, as will be demonstrated
using results on several real image sequences.

1 Introduction
A primary objective of computer vision is to enable re-

constructing 3D scene geometry and camera motion from a
set of images of a static scene. The current state of the art
provides solutions that apply only under special conditions.
Specifically, existing techniques generally assume one or
more of the following:

� Known correspondence: given a set of image feature
trajectories over time, solve for their 3D positions and
camera motion. This classical formulation has been
studied in the context of structure from motion [26, 20,
18] and, more recently, self-calibration [8, 21].

� Known cameras: given calibrated images from known
camera viewpoints, solve for 3D scene shape. Stereo
correspondence [6] and volumetric methods [7, 14] fit
within this category.

� Known shape: given one or more images and a 3D
model of the scene, determine the camera viewpoint
corresponding toeach image [12, 15].

The applicability ofeach of these methods is limited by
the need for accurate correspondence, camera calibration,
or shape information as input. Reliable pixel correspon-
dence is difficult to obtain, especially over a long sequence
of images. Feature-tracking techniques often fail to produce
correct matches due to large motions, occlusions, or ambi-
guities. Furthermore, errors in one frame are likely to prop-
agate to all subsequent frames. Outlier rejection techniques
[3, 28, 9] can reduce these problems, but at the cost of elim-
inating valid features from the reconstruction, resulting in a
model that does not take into account all available measure-
ments. A priori knowledge of camera parameters or epipo-
lar geometry can simplify the correspondence problem [6].
However, obtaining accurate calibrated sequences is diffi-
cult even in controlled laboratory environments. While re-
cent progress in self-calibration techniques [8, 21] promises
to alleviate these difficulties, these techniques require point
correspondence as input and therefore are sensitive to errors
due to incorrectly-tracked features. In short, existing shape
recovery techniques are strongly limited by their reliance on
error-prone correspondence techniques.

In this paper, we address the structure from motion prob-
lem (SFM) without prior knowledge of point correspon-
dence or camera viewpoints. We frame the problem as
finding the maximum likelihood estimate of structure and
motion given only the measurements, integrating over all
possible assignments of 3D features to 2D measurements.
While the full computation of this likelihood function is
generally intractable, we propose to use the Expectation-
Maximization algorithm (EM) [10, 5] as a practical method
for finding its maxima. We will show that EM has a simple
and intuitive interpretation in this context.

The outline of our method is as follows: instead of solv-
ing for structure and motion given the original image mea-
surements, we solve a new SFM problem using newly syn-
thesized ’virtual’ measurements, computed using our cur-
rent knowledge about the correspondences. This knowl-
edge comes in the form of a probability distribution, ob-
tained using the actual image data and an initial guess for
the structure and motion. By solving this new SFM prob-
lem we obtain a new estimate for the structure and motion.
This basic step is iterated until convergence. A key step



in our method is in computing the probability distribution
over correspondences, which is hard to obtain analytically.
To circumvent this problem, we use Markov Chain Monte
Carlo methods to sample from the distribution, which can
be done efficiently. In this respect, our approach resembles
that of Forsyth et al. [9] who also applied MCMC for struc-
ture from motion, assuming known correspondence. A key
difference is that we solve for correspondence, structure,
and motion simultaneously–a much more difficult problem.

The problem of computing structure and motion from a
set of imageswithoutcorrespondence information remains
largely unaddressed in the literature. Several authors con-
sidered the special case of correct butincompletecorre-
spondence, by hallucinating occluded features [26, 2], or
expanding a minimal correspondence into a complete cor-
respondence [22]. However, these approaches require that a
sufficient and non-degenerate set of initial correspondences
be provided a priori which is assumed to be correct. A few
authors have proposed methods for using geometric con-
straints to facilitate the correspondence problem in uncali-
brated images. In particular, Irani [13] described how geo-
metric rank constraints can be used to facilitate optical flow
computation over closely-spaced views. Beardsley et al. [3]
proposed a two-phase approach for robustly computing fea-
ture correspondences by processing images triplets. In the
first phase, a minimal point correspondence is computed
from a set of candidate matches using a RANSAC-based
algorithm. The results from this phase are used to compute
the trifocal tensor [23] which in turn constrains the search
for other feature correspondences. Although we adopt a dif-
ferent approach and do not require closely-spaced views, we
follow these authors’ lead in coupling the estimation of cor-
respondence and structure. Rather than consider a small set
of images or features at time, however, our strategy is to
simultaneously optimize over all features in all images.

The remainder of this paper is structured as follows: in
Section 2 we state the problem, introduce our notation, and
sketch the outline of our approach. Section 3 provides the
intuitive interpretation in terms of virtual measurements. In
Section 4, we discuss the use of MCMC sampling to imple-
ment the E-step. Section 5 presents the results.

2 SFM without Correspondences

2.1 Problem Statement and Notation

Thestructure from motion(SFM) problem is this: given
a set of images of a scene, taken from different viewpoints,
recover the 3D structure of the scene along with the cam-
era parameters. In the feature-based approach to SFM, we
consider the situation in which a set ofn 3D featuresxj is
viewed by a set ofm camerasmi. As input data we are
given the set of 2D measurementsuik, wherek 2 f1::Kig
andKi is the number of measurements in thei-th image. To
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Figure 1. An example with 4 features seen in 2 images.
The 7 measurements uik are assigned to the individual

features xj by means of the assignment variables jik.

model correspondence information, we introduce foreach
measurementuik the indicator variablejik, indicating that
uik is a measurement of thejik-th featurexjik

. Our nota-
tion is illustrated in Figure 1.

The choice of feature type and camera model defines the
measurement functionh(mi;xj), predicting the measure-
mentuik givenmi andxj (with j = jik):

uik = h(mi;xj) + n

wheren is the measurement noise. Without loss of general-
ity, let us consider the case in which the featuresxj are 3D
points and the measurementsuik are points in the 2D im-
age. In this case the measurement function can be written
as a 3D rigid displacement followed by a projection:

h(mi;xj) = �i[Ri(xj � ti)] (1)

whereRi andti are the rotation matrix and translation of
the i-th camera, respectively, and�i : R3 ! R

2 is a
projection operator which projects a 3D point to the 2D
image plane. Various camera models can be defined by
specifying the action of this projection operator on a point
x = (x; y; z)T [19]. For example, the projection operators
for orthography and calibrated perspective are defined as:

�o
i [x] =

�
x
y

�
; �p

i [x] =

�
x=z
y=z

�

2.2 SFM with Known Correspondences

To set the stage for the rest of the paper, it is convenient
to view SFM as amaximum likelihood(ML) estimation
problem. Let us denote the set of 3D points asX, the set of
cameras asM, the set of measurements asU, and a set of
assignments asJ. Furthermore, define�

�
= (X;M). The

maximum likelihood estimate�� = (X�;M�) of structure



X and motionM given the dataU andJ is given by

�� = argmax
�

logL(�;U;J) (2)

where the likelihoodL(�;U;J) of � givenU andJ is de-
fined as any function proportional toP (U;Jj�) [25].

If we are given the correspondence informationJ,
logL(�;U;J) is easy to evaluate. In the case that the
noisen on the measurements is i.i.d. zero-mean Gaussian
noise with standard deviation�, the negative log-likelihood
is simply a sum of squared re-projection errors:

� logL(�;U;J) =
1

2�2

mX
i=1

KiX
k=1

kuik � h(mi;xjik
)k2

(3)

In the case of orthographic, weak- and para-perspective
camera models, we find the estimate�� that minimizes
(3) using thefactorizationapproach. Using this technique,
affine structureXa and motionMa are first obtained from
the measurementsU by means of singular value decom-
position. They are then upgraded to Euclidean structure
and motion by imposing metric constraints onMa. This
is a well developed technique, and the reader is referred to
[26, 20, 18] for details and additional references.

In the case of full perspective cameras the measure-
ment functionh(mi;xj) is non-linear, and we resort to
non-linear optimization to minimize the re-projection error.
This procedure is known in photogrammetry and computer
vision asbundle adjustment, and details can be found in
[24, 11, 4]. We use factorization to obtain an initial esti-
mate and then use the Levenberg-Marquardt optimization
method to find��. Sparse matrix techniques discussed in
[11] are used to significantly reduce the computational cost.

2.3 SFM without Correspondences

In the case that the correspondences are unknown, the
maximum likelihood estimate�� = (X�;M�) of structure
and motion givenonly the measurementsU is given by:

�� = argmax
�

logL(�;U) (4)

Although this might seem counterintuitive at first, the above
states thatwe can find the ML structure and motion with-
out explicitly reasoning about which correspondence as-
signment might be correct. We ’only’ need to maximize
the likelihoodL(�;U), which does not depend onJ.

To gain a better understanding for what the function
L(�;U) looks like, consider the example of Figure 2,
where two featuresx1 andx2 are seen in a 1D camera. In
this case there are two measurementsu11 andu22, and two
possible assignments:J1 (shown) assignsu11 to x1 and
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Figure 2. Example where 2 features x1 and x2, con-

strained to have y = 2, are seen in one image. The

associated likelihoods are shown in Figure 3.

u12 tox2, and the opposite assignmentJ2. Suppose that the
cameram1 is known, and that the features are constrained
to lie on the liney = 2, such that they have only one free
parameter each. To calculateL(�;U), note that we can
write it as a sum of likelihood terms of the form (2), with
one term for every possible correspondence assignmentJ:

L(�;U) =
X
J

L(�;U;J) (5)

The computation ofL(�;U) for this example is illustrated
in Figure 3: for each of the two possible assignments the
likelihood is a unimodal distribution,but thetotal likelihood
functionL(�;U) is bimodal. This agrees with the intuition
that either one of the assignmentsJ1 orJ2 is equally likely.

2.4 Maximizing the Likelihood Using EM

While the full computation ofL(�;U) in (5) is gener-
ally intractable, the EM algorithm [10, 5] provides a prac-
tical method for finding its maxima. In general,L(�;U)
is hard to obtain explicitly, as it involves summing over a
combinatorial number of possible assignments. However, it
can be proven that the EM algorithm converges to a local
maximum ofL(�;U).

The idea of EM is to maximize theexpectedlog likeli-
hood functionE

f t
flogL(�;U;J)g, where the expectation

is taken with respect to the posterior distributionf t(J)
�
=

P (JjU;�t) over all possible assignmentsJ given the data
U and a current guess�t for structure and motion. The EM
algorithm then iterates over [25]:

1. E-step: Calculate the expected log likelihoodQt(�):

Qt(�) =
X
J

f t(J) logL(�;U;J) (6)
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Figure 3. The joint likelihood of x1 and x2 from Figure 2

in three cases: (left) given U and the ’obvious’ assign-
ment J1, (middle) given U and the ’reverse’ assignment

J2, and (right) given U only, which is their sum .

2. M-step: Find the ML estimate�t+1 for structure and
motion, by maximizingQt(�):

�t+1 = argmax
�

Qt(�)

It is important to note thatQt(�) is calculated in the E-step
by evaluatingf t(J) using thecurrent guess�t for structure
and motion (hence the superscriptt), whereas in the M-step
we are optimizingQt(�) with respect to thefree variable
� to obtain the new estimate�t+1.

3 SFM with Virtual Measurements
In this section we show that the EM algorithm outlined

above can be interpreted in a simple and intuitive way. We
show that the expected log-likelihood can be rewritten such
that the M-step amounts to solving a similar SFM problem,
but using as input a newly synthesized set of virtual mea-
surements, created in the E-step.

3.1 Virtual Measurements
In the context of SFM, we substitute the expression for

the log likelihoodlogL(�;U;J) from (3) in equation (6),
and obtain the following expression forQt(�):

1

2�2

X
J

f t(J)
mX
i=1

KiX
k=1

kuik � h(mi;xjik
)k2 (7)

It is clear that a direct evaluation of (7) is infeasible, as the
number of possible assignments is combinatorial inn. An
efficient implementation is nevertheless possible.

To see this, let us first calculate the probabilityf tijk that
a measurementuik in imagei is assigned to a featurexj ,
regardless of how the other measurements are assigned.
In other words,f tijk is the marginal posterior probability
P (jik = jjU;�t), and it can be calculated by summing
f t(J) over all possible assignmentsJ wherejik = j:

f tijk
�
= P (jik = jjU;�t) =

X
J

�(jik; j)f
t(J) (8)

where�(:; :) is the Kronecker delta function.
Equation (8) allows us to rewrite the expected log-

likelihoodQt(�) from (7) in a form that only depends in-
directly on the assignment variablesjik:

Qt(�) =
1

2�2

mX
i=1

nX
j=1

KiX
k=1

f tijkkuik � h(mi;xj)k
2 (9)

Now we state the main result in this section: it can be
shown by simple algebraic manipulation that (9) can be
written as the sum of a constant that does not depend on
�, and a new re-projection error ofn features inm images

Qt(�) = C +
mX
i=1

nX
j=1

1

2(�tij)
2
kvtij � h(mi;xj)k

2 (10)

where thevirtual measurementsvtij and virtual measure-
ment variances(�tij)

2 are defined as

vtij
�
=

PKi

k=1 f tijkuikPKi

k=1 f tijk

; (�tij)
2 �
=

�2PKi

k=1 f tijk

(11)

Each virtual measurementvtij is simply a weighted aver-
age of the original measurementsuik in thei-th image, and
the weights are the marginal probabilitiesf tijk. If there is
no occlusion and all features are seen in all images, thenPKi

k=1 f tijk = 1 and the expressions further simplify.

3.2 Summary and Implementation Outline

Writing Qt(�) as a re-projection error with respect to
virtual measurements as in equation (10) provides an intu-
itive interpretation for the overall algorithm:

1. E-step: Calculate the weightsf tijk from the distribu-
tion over assignments. Then, in each of them images
calculaten virtual measurementsvtij.

2. M-step: Find the structure and motion estimate�t+1

that minimizes the (weighted) re-projection error given
the virtual measurements:

�t+1 = argmin
�

mX
i=1

nX
j=1

1

2(�tij)
2
kvtij � h(mi;xj)k

2



In other words, the E-step synthesizes new measurement
data, andthe M-step is a conventional SFM problem of
the same size as before. This means that we can use any
known SFM algorithm at our disposal as is, from straight-
forward orthographic factorization to the more recent algo-
rithms that work with uncalibrated images. What is left is
to show how the E-step can be implemented.

4 Implementing the E-step

Since the M-step can be implemented using known SFM
approaches, we need only concern ourselves with the imple-
mentation of the E-step. In particular, we need to calculate
the marginal probabilitiesf tijk = P (jik = jjU;�t).

4.1 Conditional Independence, Mutual Exclusion

If we assume that the feature assignmentsjik are con-
ditionally independent givenU and�t, we can write the
probability ofeach assignmentJ as the product of the prob-
abilities of the individual assignmentsjik:

P (JjU;�t) =
mY
i=1

KiY
k=1

P (jikjuik;�
t) (12)

If this were a good approximation it would lead to an effi-
cient implementation, as in that case the marginal probabil-
itiesf tijk only depend on the distance from the measurement
uik to the projected feature point:

f tijk = Ct
ik exp

�
�

1

2�2
kuik � h(mi;xj)k

2

�
(13)

with Ct
ik a normalization constant.

However,in reality the assignments are not independent:
if a measurementuik has been assignedjik = j, then no
other measurement in the same image should be assigned
the same feature pointxj. The probability of such a double
assignment is zero, which cannot be modeled by the expres-
sion above. In other words, it does not take into account the
important global constraint of mutual exclusion.

Imposing the mutual exclusion constraint, however,
makes it difficult to analytically express the weightsf tijk.
Conditional independence no longer holds, while the sim-
ple expression (13) for the weightsf tijk relies crucially on
this assumption. We know of no efficient closed form ex-
pression forf tijk that allows only permutations.

4.2 Sampling the Correspondence Distribution

The solution we propose is to insteadsamplefrom the
posterior probability distributionf t(J) over valid assign-
mentsJ, to obtain approximate values for the weightsf tijk.
Formally this can be justified in the context of aMonte
Carlo EM or MCEM, a version of the EM algorithm where

the E-step is executed by a Monte-Carlo process [25, 17].
The sample can be efficiently obtained using the Metropo-
lis algorithm, as will be described below.

First, note that we can do the sampling for each image
individually, as the assignmentJi within each imagei is
conditionally independent of the assignments in other im-
ages. This means thatf t can be factored as:

f t(J) =
mY
i=1

P (JijUi;�
t)

whereUi are the measurements in imagei only.
To sample fromP (JijUi;�

t) we use the Metropolis
algorithm, an instance of the Markov Chain Monte Carlo
methods (abbreviated MCMC), which involve a Markov
chain in which a sequence of samples is generated [16, 9].
If we set up the transition probabilities correctly, the equi-
librium distribution of the Markov chain will be equal to the
posterior distribution we would like to sample from. In our
case, we would like to generate a sequence ofR samples
Jri from the posteriorP (JijUi;�t), and the Metropolis al-
gorithm can be formulated in the current context as follows
(adapted from the general description in [16]):

1. Start with a valid initial assignmentJ0i .

2. Propose a new valid assignmentJ0

i, which is proba-
bilistically generated fromJri .

3. Compute the ratio

a =
P (J0ijUi;�t)

P (Jri jUi;�t)
(14)

4. If a >= 1 then acceptJ0

i, i.e. we setJr+1i = J0i.
Otherwise, acceptJ0i with probabilitya. If the pro-
posal is rejected, then we keep the previous sample,
i.e. we setJr+1i = Jri .

To actually implement this scheme, we need to specify three
elements: (a) define what a ’valid’ assignment is, (b) a way
to probabilistically perturb them, and (c) an explicit expres-
sion for a. Below we do this for the case when there is
no occlusion, no spurious features, and all features are seen
in all images. Note that this is without loss of generality:
in particular, this assumption is not needed for the general
desciption of the algorithm above. In this restricted case,
the onlyvalid assignmentsjik are permutations of the fea-
ture indices1::n. The proposal stepcan be implemented
by swapping the assignment variablesjik of two randomly
chosen measurementsuik, which conserves the permuta-
tion property. Finally, the posterior ratioa can be evaluated
very efficiently, as it can be shown to depend only on the dot
product of two vectors related to the swap (proof omitted):

a = exp(
1

�2
(u1 � u2)

T (h2 � h1))



whereu1 andu2 the measurements whose assignments will
be swapped, andh1 andh2 are the projections of the fea-
tures originally assigned to them .

To conclude the E-step and compute the virtual measure-
ments in (11), the only thing left to do is to compute the
marginal probabilitiesf tijk from the samplefJrig. Fortu-
nately, this can be done without explicitly storing the sam-
ples by keeping running counts of how many timeseach
measurementuik is assigned to featurej, and use that to
computef tijk. If we defineCt

ijk to be this count, we have:

f tijk �
1

R
Ct
ijk (15)

4.3 Implementation in Practice

The pseudo-code for the final algorithm is as follows:

1. Generate an initial structure and motion estimate�0.

2. Given�t and the dataU, run the Metropolis sam-
pler in each image to obtain approximate values for
the weightsf tijk, using equation (15).

3. Calculate the virtual measurementsvtij with (11).

4. Find the new estimate�t+1 for structure and motion
using the virtual measurementsvtij as data. This can
be done using any SFM method compatible with the
projection model assumed.

5. If not converged, return to step 2.

To avoid getting stuck in local minima, it is important in
practice to addannealingto this basic scheme. In annealing
we artificially increase the noise parameter� for the early
iterations, gradually decreasing it to its correct value. This
has two beneficial consequences. First, the posterior distri-
bution f t will be less peaked when� is high, so that the
Metropolis sampler will explore the space of assignments
more easily, and avoid getting stuck on islands of high
probability. Second, the expected log likelihoodQt(�) is
smoother and has less local maxima at higher values for�.
We use a exponentially decreasing annealing scheme, but
have found that the algorithm is not sensitive to the exact
scheme used.

5 Results

In this section we show the results obtained with three
different sets of images. For each set we highlight a partic-
ular property of our method. For all the results we present,
the input to the algorithm was a set of manually obtained
image measurements. To initialize , the 3D pointsxj were
generated randomly in a normally distributed cloud around
a depth of 1, whereas the camerasmi were all initialized at
the origin. We ran the EM algorithm for 100 iterations each

Figure 4. Three out of 11 cube images. Although the

images were originally taken as a sequence in time, the

ordering of the images is irrelevant to our method.

t=0   σ=0.0 t=1   σ=25.1 t=3   σ=23.5

t=10   σ=18.7 t=20   σ=13.5 t=100   σ=1.0

Figure 5. The structure estimate as initialized and at suc-

cessive iterations t of the algorithm.

time, with the annealing parameter� decreasing exponen-
tially from 25 pixels to 1 pixel. For each EM iteration, we
ran the sampler in each image for10000 steps. An entire
run takes about a minute of CPU time on a standard PC. As
is typical for EM, the algorithm can sometimes get stuck in
local minima, in which case we restart it manually.

In practice, the algorithm converges consistently and fast
to an estimate for the structure and motion where the correct
correspondence is the most probable one, and where most if
not all assignments in the different images agree with each
other. We illustrate this using the image set shown in Fig-
ure 4, which was taken under orthographic projection. The
typical evolution of the algorithm is illustrated in Figure 5,
where we have shown a wire-frame model of the recovered
structure at successive instants of time. There are two im-
portant points to note: (a)the gross structure is recovered
in the very first iteration, starting from random initial struc-
ture, and (b) finer details of the structure are gradually re-
solved as the parameter� is decreased. The estimate for the
structure after convergence is almost identical to the one
found by factorization when given the correct correspon-
dence. Incidentally, we found the algorithm converges less
often when we replace the random initialization by a ’good’
initial estimate where all the points in some image are pro-



Figure 6. 4 out of 5 perspective images of a house.

jected onto a plane of constant depth.
To illustrate the EM iterations, consider the set of images

in Figure 6 taken under perspective projection. In the per-
spective case, we implement the M-step as para-perspective
factorization followed by bundle adjustment. In this ex-
ample we do not show the recovered structure (which is
good), but show the marginal probabilitiesf tijk at two dif-
ferent times during the course of the algorithm, in Figure
7. In early iterations,� is high and there is still a lot of
ambiguity. Towards the end, the distribution focuses in on
one consistent assignment. If all the probability were con-
centrated in one consistent assignment over all images, the
large f tijk matrix would be a set of identical permutation
matrices stacked one upon the other.

The algorithm also deals with situations where the im-
ages are taken from widely separate viewpoints, as is the
case for the images in Figure 8. In this sequence, the im-
age features used were the colored beads on the wire-frame
toy in the image, plus four points on the ground plane. Im-
ages were taken from both sides of the object. Because of
the ’see-through’ nature of the object, there is also a lot of
potential confusion between image measurements. Figure 9
shows the wire-frame model obtained by our method, where
each of the wires corresponds to one of the wires on the toy.
Although in the final iteration there is still disagreement be-
tween images about the most likely feature assignment, the
overall structure of the model is recovered despite the arbi-
trary configuration of the cameras.

6 Conclusions and Future Directions

In this paper we have presented a novel tool, which en-
ables us to solve the structure from motion problemwith-
out a priori correspondence information. In addition, it can
cope with images given in arbitrary order and taken from
widely separate viewpoints.
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Figure 7. The marginal probabilities f tijk at an early and at

a later iteration, respectively. Each row corresponds to
a measurement uik , grouped according to image index,

whereas the columns represent the n features xj . In this

example n = 58 and m = 5. Black corresponds to a

marginal probability of 1.

Despite the space we have devoted to explaining the ra-
tionale behind it, the final algorithm is simple and easy to
implement. As summarized in Section 4.3, at each itera-
tion one only needs to obtain a sample of probable assign-
ments, compute the virtual measurements, and solve a syn-
thetic SFM problem using known methods. In addition, it
is fast: the Metropolis sampler, which is the main computa-
tional bottleneck, can be implemented very efficiently due
to the incremental computation of the posterior ratios, and
the fact that we do not need to store the samples.

However, there is plenty of opportunity for future work.
In the current paper, all features were hand-picked, and we
have not shown results on sequences with occlusions or spu-
rious features. This was a conscious choice on our part, in
order to study our particular approach independent of other
factors. Clearly, in order to be more widely applicable, the
performance of the algorithm under these more general con-
ditions needs to be evaluated. This is a practical rather than
a theoretical hurdle, as in theory occlusions and spurious
features are easily incorporated in the formulation above.
However, it does introduce the issue of how many features
need to be instantiated, since now this will not be known a
priori. This problem of model selection has been addressed
successfully before in [1, 27], and it is hoped that the lessons
learned there can equally apply in the current context.
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