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Abstract

The question of which views may be inferred froma set of
basisimagesis addressed. Under certain conditions, a dis-
crete set of imagesimplicitly describes scene appearancefor
a continuousrange of viewpoints. In particular, it isdemon-
strated that two basis views of a static scene determine the
set of all views on theline betweentheir optical centers. Ad-
ditional basis views further extend the range of predictable
views to a two- or three-dimensional region of viewspace.
These results are shown to apply under perspective projec-
tion subject to a generic visibility constraint called mono-
tonicity. In addition, a smple scanline algorithm is pre-
sented for actually generating these views from a set of ba-
sisimages. The technique, called view morphing may be
applied to both calibrated and uncalibrated images. At a
minimum, two basisviews and their fundamental matrix are
needed. Experimental results are presented on real images.
Thiswork providesa theoretical foundationfor image-based
representationsof 3D scenesby demonstrating that per spec-
tive view synthesisis a theoretically well-posed problem.

1 Introduction

Image-based representations of 3D scenes are currently
being developed by many researchers in the computer vi-
sion and computer graphics communities (see, for example,
[4,5,1, 3, 13]). These representationsencode scene appear-
ance with a set of images that may be adaptively combined
to produce new views of a scene. Image-based techniques
are especially attractive because they provide photometric
information which has proven very valuablefor recognition
tasks. In addition, these representations are readily acquired
from a set of basisviews, avoiding the need for automatic or
manual techniques for acquiring 3D object models.

At the heart of this new arealies afundamental question:
to what extent may scene appearance be modeled with a
sparse set of images? Clearly, theimages provide scene ap-
pearance at adiscrete set of viewpoints. It isnot clear, how-
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ever, that a more complete coverage of viewspace is theo-
retically possible. A number of “view synthesis’ techniques
have been devel oped recently [4, 2, 5, 7] to extend the range
of predictableviews. However, those methods require solv-
ing ill-posed correspondencetasks, suggesting that the view
synthesis problem isinherently ill-posed.

Asafoundation for work in this area, we fedl it isneces-
sary to answer the following two questions: given two per-
spective views of a static scene, under what conditions may
new views be predicted? Second, which views are deter-
mined from a set of basis images? In this paper, we show
that a specific range of perspectiveviewsistheoretically de-
termined from two or more basisviews, under agenericvis-
ibility assumption called monotonicity. This result applies
when either the relative camera configurationsare known or
when only the fundamental matrix is available. In addition,
we present a simple technique for generating this particu-
lar range of views using image interpolation. Importantly,
the method relies only on measurable image information,
avoiding ill-posed correspondence problems entirely. Fur-
thermore, all processing occurs at the scanline level, effec-
tively reducing the original 3D synthesis problem to a set
of ssimple 1D transformations that may be implemented ef-
ficiently on existing graphics workstations. The work pre-
sented here extends to perspective projection previous re-
sults on the orthographic case [10]. In addition, this paper
discusses extensionsto three or more basis views, animpor-
tant generalization not considered in [10].

We begin by introducing the monotonicity constraint and
describing its implications for view synthesis in Section 2.
Section 3 considers how views may be synthesized, and de-
scribes a simple and efficient method called view morphing
for synthesizing new views by interpolating images, under
the assumption that the relative geometry of the two cam-
eras is known. Section 4 investigates the case where the
images are uncalibrated, i.e., the camera geometry is un-
known. Section 5 presents extensions when three or more
basis views are available. Section 6 presents some results
on real images.



2 View Synthesisand Monotonicity

Can the appearance from new viewpoints of a static
three-dimensional scene be predicted from a set of basis
views of the same scene? One way of addressing this ques-
tion is to consider view synthesis as a two-step process—
reconstruct the scene from the basis views using stereo or
structure-from-motion methods and then reproject to form
the new view. The problem with this paradigm is that view
synthesis becomes at least as difficult as 3D scene recon-
struction. This conclusion is especialy unfortunatein light
of the fact that 3D reconstruction from sparse images is
generally ambiguous—anumber of different scenesmay be
consistent with agiven set of images; it isanill-posed prob-
lem [8]. This suggeststhat view synthesisis aso ill-posed.

In this section we present an alternate paradigm for view
synthesis that avoids 3D reconstruction and dense corre-
spondence as intermediate steps, instead relying only on
measurable quantities, computable from a set of basisim-
ages. We first consider the conditions under which recon-
structionisill-posed and then describe why these conditions
do not impede view synthesis. Ambiguity arises within re-
gionsof uniformintensity in theimages. Uniformimagere-
gions provide shape and correspondence information only
at boundaries. Consequently, 3D reconstruction of thesere-
gionsis not possible without additional assumptions. Note
however that boundary information is sufficient to predict
the appearance of these regionsin new views, since the re-
gion's interior is assumed to be uniform. This argument
hingeson the notion that uniform regionsare“preserved” in
different views, a constraint formalized by the condition of
monotonicity which we introduce next.

Consider two views, V, and V7, with respective optical
centers Cy and Cy, and images I, and I;. Denote CyC,
as the line segment connecting the two optical centers. Any
point P in the scene determines an epipolar plane contain-
ing P, Cy, and C; that intersects the two images in con-
jugate epipolar lines. The monotonicity constraint dictates
that al visible scene points appear in the same order along
conjugate epipolar linesof I, and I;. Thisconstraintisused
commonly in stereo matching [6] because the fixed relative
ordering of points along epipolar lines smplifies the cor-
respondence problem. Despite its usual definition with re-
spect to epipolar lines and images, monotonicity constrains
only thelocation of the optical centerswith respect to points
in the scene—the image planes may be chosen arbitrarily.
An dternate definition that isolates this dependence more
clearly isshowninFig. 1. Any two scenepointsP and Q in
the same epipolar plane determine angles 6, and #; with the
optical centersC, and C;. Themonotonicity constraint dic-
tates that for all such points, and 6; must be nonzero and
of equal sign. Thefact that no constraint is made on theim-
age planesis of primary importance for view synthesis be-
cause it means that monotonicity is preserved under homo-
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Figure 1. The Monotonicity Constraint. Any two points P
and Q inthe same epipolar planedetermineanglesf, and 6,
with the respective camera optical centers, Co and C,. For
monotonicity to apply, these angles must satisfy 6,6, > 0.
If satisfied for Cy and C;, monotonicity applies aswell for
any other view with optical center along CC;.

graphies, i.e., under image reprojection. This fact will be
essential in the next section for devel oping an algorithm for
view synthesis.

A useful consequence of monotonicity is that it extends
to cover a continuous range of views in-between 14, and
V1. We say that a third view V; is in-between 1, and V;
if its optical center C, ison CyC;. Observe that mono-
tonicity is violated only when there exist two scene points,
P and Q, in the same epipolar plane such that the infinite
line PQ through P and Q intersects C,C;. But PQ in-
tersects CyC; if and only if it intersects either C,C, or
C,C;. Thereforemonotonicity appliesto in-between views
aswell, i.e., signs of angles are preserved and visible scene
points appear in the same order along conjugate epipolar
lines of all views along CqC;. We therefore refer to the
range of viewswith centerson C,C; as amonotonic range
of viewspace. Noticethat thisrange givesalower bound on
the range of views for which monotonicity is satisfied in the
sense that the latter set contains the former. For instance, in
Fig. 1 monotonicity is satisfied for all views on the openray
from the point C,C; (P Q through both camera centers.
However, without a priori knowledgeof the geometry of the
scene, we may infer only that monotonicity is satisfied for
therange CyC; .

The property that monotonicity applies to in-between
views is quite powerful and is sufficient to completely pre-
dict the appearance of the visible scene from all viewpoints
along CyC;. Consider the projections of a set of uniform
Lambertian surfaces (each surface has uniformradiance, but
any two surfaces may have different radiances) into views
Vo and V7. Fig. 2 shows cross sections Sp, S3, and Ss of
three such surfaces projecting into conjugate epipolar lines




Figure 2: Correspondence Under Monotonicity. Cross-
sectional view of three surfaces projecting into conjugate
epipolar lines of three images. Although the projected in-
tervalsinly and [, do not provide enough information to re-
construct Sy, Sy, and Ss3, they are sufficient to predict the
appearance of [,.

lp and I;. Each connected cross section projects to a uni-
forminterval (i.e., aninterval of uniformintensity) of [, and
[,. The monotonicity constraint induces a correspondence
between the endpoints of the intervalsin ly and [,, deter-
mined by their relative ordering. The pointson S, Sz, and
S5 projecting to the interval endpoints are determined from
this correspondence by triangulation. We will refer to these
scene points as visible endpoints of Sy, S», and Ss.

Now consider an in-betweenview, V;, withimage I, and
corresponding epipolar line I,. As a consequence of mono-
tonicity, Si, Se, and S3 project to three uniform intervals
along ., delimited by the projections of their visible end-
points. Notice that the intermediate image does not depend
on the specific shapes of surfaces in the scene, only on the
positions of their visible endpoints. Any number of dis-
tinct scenes could have produced Iy and I;, but each
onewould also produce the same set of intermediateim-
ages. Hence, dl views along CyC; are determined from
Iy and I;. Thisresult demonstrates that view synthesis un-
der monotonicity isan inherently well-posed problem—and
is therefore much easier than 3D reconstruction and related
motion analysis tasks requiring smoothness conditions and
regularization techniques|[8].

A final question concerns the measurability of mono-
tonicity. Under the monotonicity assumption we have estab-
lished that view synthesisisfeasible and relies only on mea-
surable image correspondence information. However we
have not yet considered whether or not monotonicity itself is
measurable—can we determineif two images satisfy mono-
tonicity by inspecting the images themselves or must we
know the answer a priori? Strictly speaking, monotonicity
is not measurable, in the sense that two images may be con-
sistent with multiple scenes, some of which satisfy mono-

tonicity and othersthat do not. However, we may determine
whether or not two images are consistent with a scene for
which monotonicity applies, by checking that each epipolar
linein thefirstimageisamonotonic warp of itsconjugatein
thesecondimage. Thatis, if [ and [, are conjugateepipolar
lines, expressed as functions mapping position to intensity,
there exists a monotonic function o such that [ = [; o o.
If we denote by M the class of al monotonic scenes con-
sistent with two basisimages, thisconsistency property says
that we may determinefrom the basisimageswhether or not
M isempty. If M isnonempty, theresult of view synthesis
isaset of imagesthat are consistent with every scenein M.

3 View Morphing

The previous section established that certain views are
determined from two basis views under an assumption of
monoatonicity. In this section we present a simple approach
for synthesizing these views based on image interpolation.
The procedure takes as input two images, I, and I, their
respective projection matrices, I, and IT;, and athird pro-
jection matrix IT, representing the configuration of athird
view along CoC;. Theresult is anew image I represent-
ing how the visible scene appears from the third viewpoint.

We begin with a special case where the image planes are
paralel and aligned with CyC;. Thisconfigurationis often
used in stereo applicationsand will bereferred to asthe par-
allel configuration. The situation is expressed algebraically
using the projection equations as follows. A camerais rep-
resented by a3 x 4 homogeneousmatrix IT = [H | — HC].
Theoptical center isgiven by C and theimage plane normal
isthelast row of H. A scenepoint (X,Y, Z) isexpressedin
homogeneous coordinatesas P = [X Y Z 1]7 and anim-
agepoint (z,y) byp = [z y 1]T. Because homogeneous
structures are invariant under scalar multiplication, sP and
P represent the same point, and similarly for sp and p. We
thereforereserve the notation P and p for pointswhose last
coordinateis 1. All other multiples of these points will be
denoted as P and p. The perspective projection equationis:

p = IIP

In the parallel configuration, the projection matrices may be
chosensothat Iy = [I| — Cy]andII; = [I| — C4], where
Listhe 3 x 3 identity matrix. Without loss of generality, we
assume that Cy is at the world origin and C,C; is paralléel
to the world X-axisso that C; = [C'x 00]”. Let po and
p1 beprojectionsof ascenepoint P = [X Y Z I]T in the
two views, respectively. Linear interpolation of py and p;
yields

1 1
1

=II.P
A

(1-s)po+sp1 =

where



Figure 3: View Morphingin Three Steps. (1) Original im-
ages I, and I; are prewarped (rectified) to I, and I, in par-
allel configuration. (2) I, isproduced by interpolation of the
prewarped images. (3) I, is postwarped to form I.

Hs = (]. — S)Ho + SH1 (1)

Image interpolation, or morphing, therefore produces a
new view whose projection matrix, Il,, is a linear in-
terpolation of I, and II; and whose optical center is
C., = [sCx 00]". Eq. (1) indicates that in the parallel
configuration, any parallel view along C;C, may be syn-
thesized simply by interpolating corresponding pointsin the
two basis views. In other words, image interpolation in-
duces an interpolation of viewpoint for this special camera
geometry.

To interpolate general views with projection matrices
II, = [HO | — H()C()] and II, = [Hl | — chl], we
first apply homographies Hy ' and H; ' to convert I and
I, to aparallel configuration. This procedureisidentical to
rectification techniques used in stereo vision [9]. This sug-
gests athree-step procedure for view synthesis:

1. Prewarp: Iy = Hy'Iy, I, = H{ 'Ly

2. Morph: linearly interpolate positions and intensities of
corresponding pixelsin Iy and I; to form I

3. Postwarp: I, = H,I,

Rectification is possible providing that the epipoles are
outside of the respective image borders. If this condition is
not satisfied, it is still possible to apply the procedure if the
prewarped images are never explicitly constructed, i.e., if
the prewarp, morph, and postwarp transforms are concate-
nated into a pair of aggregate warps[12]. The prewarp step
implicitly requiresselection of aparticular epipolar planeon
which to reproject the basisimages. Although the particular

plane can be chosen arbitrarily, certain planes may be more
suitable due to image sampling considerations. Methods of
choosing the rectification parameters that minimize image
distortion with uniform sampling are discussed in [9].

4 Uncalibrated View Morphing

In order to use the view morphing a gorithm presented in
Section 3, we must find away to rectify the images without
knowing the projection matrices. Towardsthisend, it can be
shown [11] that two images are in the parallel configuration
when their fundamental matrix is given, up to scalar multi-

plication, by
0 0 0
F:[o 0 —1]
0 1

[ J

We seek a pair of homographies Hy and H; such that the
prewarped images I, = H;'I, and I, = H'I, havethe
fundamental matrix given by Eq. (2). Intermsof F the con-
ditionon Hy and H; is

o

H,"FH, = F 2

Specific solutionsto Eq. (2) are discussed in [11, 9].

We have established that two images can berectified, and
thereforeinterpolated, without knowing their projection ma-
trices. Asin Section 3, interpolation of the prewarped im-
agesresultsin new viewsaong C,C; . Incontrast tothecal-
ibrated case however, the postwarp step is underspecified;
there is no obvious choice for the homography that trans-
forms I, to I,. One solution is to have the user provide the
homography directly or indirectly by specification of asmall
number of image points[4, 12]. Another method isto sim-
ply interpolate the components of H, ' and H; !, resulting
in acontinuoustransition from I, to I; [11]. Both methods
for choosing the postwarp transforms generally result in the
synthesis of projective views. A projective view is a per-
spective view warped by a 2D affine transformation.

5 Three Viewsand Beyond

The paper up to this point has focused on image synthe-
sis from exactly two basis views. The extension to more
views is straightforward. Suppose for instance that we
have three basis views that satisfy monotonicity pairwise
((Io, I), (Io, I2), and (I, I») each satisfy monotonicity).
Three basis views permit synthesis of atriangular region of
viewspace, delimited by the three optical centers. Each pair
of basisimages determines the views along one side of the
triangle, spanned by CoC,, C;C,, and C,Cy.

What about interior views, i.e., views with optica cen-
tersin theinterior of thetriangle? Indeed, any interior view
can be synthesized by a second interpol ation, between acor-
ner and asideview of thetriangle. However, theassumption
that monatonicity applies pairwise between corner viewsis




not sufficient to infer monotonicity between interior views
in the closed triangle A CyC, C»; monotonicity is not tran-
sitive. In order to predict interior views, a slightly stronger
constraint is needed. Strong monotonicity dictates that for
every pair of scene points P and Q, the line PQ does not
intersect ACy,C;C,. Strong monotonicity is a direct gen-
eralization of monotonicity; in particular, strong monotonic-
ity of ACyC;C, impliesthat monotonicity is setisfied be-
tween every pair of views centered in thistriangle, and vice-
versa. Consequently, strong monotonicity permits synthesis
of any view in AC,C; C>.

Now suppose we have n basis views with optical cen-
tersCy, ..., C, 1 andthat strong monotonicity applies be-
tween each triplet of basis views'. By the preceding argu-
ment, any triplet of basis views determines the triangle of
views between them. In particular, any view on the con-
vex hull H of Cy,...,C, ;1 isdetermined, as H is com-
prised of a subset of these triangles. Furthermore, the inte-
rior views are also determined: let C be apoint in the inte-
rior of # and choose a corner C; on . The line through
C and C,; intersects H in apoint K. Since K lies on the
convex hull, it representsthe optical center of aset of views
produced by two or fewer interpolations. Because C lies
on C;K, al views centered at C are determined as well by
one additional interpolation, providing monotonicity is sat-
isfied between C; and K. To establish this last condition,
observe that for monotonicity to be violated there must ex-
ist two scene points P and Q such that PQ intersects C; K,
implying that PQ also intersects . Thus, PQ intersects at
least one triangle AC;C;C;, on H, violating the assump-
tion of strong monotonicity. In conclusion, n basis views
determine the 3D range of viewspace contained in the con-
vex hull of their optical centers.

This constructive argument suggeststhat arbitrarily large
regions of viewspace may be constructed by adding more
basis views. However, the prediction of any range of view-
space depends on the assumption that all possible pairs of
views within that space satisfy monotonicity. In particular,
a monotonic range may span no more than a single aspect
of an aspect graph [11], thuslimiting the range of views that
may be predicted. Nevertheless, it is clear that a discrete
set of views implicitly describes scene appearance from a
continuous range of viewpoints. Based on this observation,
a set of basis views is seen to constitute a scene represen-
tation, describing scene appearance as a function of view-
point. Given an arbitrary set of basis views, the range of
views that may be represented is found by partitioning the
basis views into sets that obey monotonicity pairwise or
strong monotonicity three at atime. Each monotonic set de-
termines the range of views contained in its convex hull.

LIn fact, strong monotonicity for each triangle on the convex hull of
Co,...,C,_1 issufficient.

6 Experiments

We applied the view morphing algorithm to different
pairs of basis images, two of which are shown in Fig. 4.
Each pair of basisimageswasuncalibrated. In each casethe
fundamental matrix was computed from several manually-
specified point correspondences. The synthesized images
shownin thefigure represent views halfway between the ba-
sisviews.

Thefirst pair of imagesrepresent two views of aperson’s
face. For the most part monotonicity is satisfied, except in
the region of the right ear, nose, and far sides of the face.
A sparse set of user-specified feature correspondences was
used to determine the correspondence map, using an image
morphing technique[12]. The synthesized image represents
aview from a camera viewpoint halfway between the two
basis views. The image gives the convincing impression
that the subject hasturned hishead, despitethefact that only
2D image operations have been performed. Some visible
artifacts occur in regions where monotonicity has been vi-
olated, near the right ear for instance.

The second pair of images show a wooden mannequin
from two viewpoints. The mannequin is an example of an
object for which it is difficult to reconstruct but relatively
easy to synthesizeviewsdueto lack of texture. Inthisexam-
ple, image correspondences were automatically determined
using a dynamic programming technique [6] that exploits
monoatonicity. Even with the monotonicity constraint, ob-
taining reliable correspondences with large baselines is a
formidable challenge. However, incorporating limited user
interaction [12] or domain knowledge can significantly im-
prove the results and is a promising line of future research.

As in the previous example, some artifacts occur where
monotonicity is violated, such as near the left foot and the
left thigh. Also, the synthesized view is noticeably more
blurry than the basis views. Blurring is in fact evident in
both synthesized views in Fig. 4, and is a direct result of
image resampling. In our implementation of the view mor-
phing algorithm, the synthesized image—a product of two
projective warps and an image interpolation—is resampled
three times, causing a noticeable blurring effect. The prob-
lem may be ameliorated by super-sampling the intermediate
images or by concatenating the multiple image transforms
into two aggregate warps and resampling only once [12].

7 Conclusion

In this paper we considered the question of which views
of a static scene may be predicted from a set of two or more
basis views, under perspective projection. The following
results were shown: under monotonicity, two perspective
views determine scene appearance from the set of all view-
points on the line between their optical centers. Second, un-
der strong monotonicity, a volume of viewspace is deter-
mined, corresponding to the convex hull of the optical cen-
ters of the basis views. Third, new perspective views may



Figure 4: Morphed Views. Basis views of aface (Top) and mannequin (Bottom) are shown with halfway interpolations. The
basisviews appear at |eft and right and morphed (synthesized) images appear in the center. The morphedimagesuse 2D image

transformsto synthesize a 3D scene rotation.

be synthesized by rectifying a pair of images and then inter-
polating corresponding pixels, one scanline at atime, apro-
cess called view morphing. Fourth, view synthesis is pos-
sible even when the views are uncalibrated, providing the
fundamental matrix is known. In the uncalibrated case, the
synthesized images represent projective views of the scene.
These results provide a theoretical foundation for image-
based representations of three-dimensional scenes, demon-
strating that a discrete set of imagesimplicitly models scene
appearance for a potentially wide range of viewpoints.
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