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Abstract
Image warping is a popular tool for smoothly trans-

forming one image to another. \Morphing" techniques
based on geometric image interpolation create com-
pelling visual e�ects, but the validity of such transfor-
mations has not been established. In particular, does
2D interpolation of two views of the same scene pro-
duce a sequence of physically valid in-between views of
that scene? In this paper, we describe a simple image
recti�cation procedure which guarantees that interpo-
lation does in fact produce valid views, under generic
assumptions about visibility and the projection process.
Towards this end, it is �rst shown that two basis views
are su�cient to predict the appearance of the scene
within a speci�c range of new viewpoints. Second, it
is demonstrated that interpolation of the recti�ed basis
images produces exactly this range of views. Finally,
it is shown that generating this range of views is a the-
oretically well-posed problem, requiring neither knowl-
edge of camera positions nor 3D scene reconstruction.
A scanline algorithm for view interpolation is presented
that requires only four user-provided feature correspon-
dences to produce valid orthographic views. The quality
of the resulting images is demonstrated with interpola-
tions of real imagery.

1 Introduction
Despite signi�cant advances in 3D computer graph-

ics, the realism of rendered images is limited by hand-
coded graphical models. Existing techniques for cre-
ating 3D models are time intensive and put high de-
mands on the artistry of the modeler. In light of these
limitations, there has been growing interest in the use
of 2D image warping techniques for image synthesis
and animation. The advantage of working in 2D is
that photographs of real scenes can be used as a basis
to create very realistic e�ects. A good example of such
an e�ect is morphing which combines an interpolating
warp and a cross dissolve of two images to produce
in-between images. Morphing techniques have been
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very successful in the entertainment industry, provid-
ing a simple mechanism capable of producing visually
appealing transformations from one image to another.
Despite the popularity of morphing techniques, little
attention has focused on the physical validity of the
resulting images.

In this paper, we investigate the feasibility of us-
ing image warping techniques for view synthesis. We
use the term view synthesis to refer to the rendering of
images of an observed object or scene from new view-
points. A special case of view synthesis is view inter-
polation, which concerns the synthesis of a continuous
series of views starting at one known viewpoint and
ending at another. In the context of these de�nitions,
the main result of this paper is that for a broad class of
scenes and images image interpolation is a phys-
ically valid mechanism for view interpolation.
This result provides a theoretical basis for morphing
techniques and demonstrates that views can be synthe-
sized with simple 2D image operations. In addition, we
demonstrate constructively that, unlike 3D structure
recovery, view interpolation is well-posed and does not
su�er from the aperture problem. The result depends
on an assumption of monotonicity which requires that
corresponding scene points appear in the same order
in both images.

Practical applications of view synthesis include vir-
tual teleconferencing [1, 2] with limited network band-
width. By using view synthesis at the receiving end,
di�erent views of the participants can be synthesized
from a small number of transmitted views. View syn-
thesis has also been used to create panoramic mosaic
images [3]. Several images of a scene can be combined
to create a single mosaic image by warping the images
to be consistent with a common viewpoint. An advan-
tage of image-based view synthesis is that rendering
time is independent of scene complexity. This prop-
erty can be exploited to speed up rendering of complex
scenes [4].

The remainder of the paper is structured as follows:
Section 2 reviews related work in image-based view
synthesis. Section 3 describes the projection model
and relevant terminology. Section 4 formalizes the no-
tion of view interpolation and proves that the prob-
lem is well-posed under a general visibility assumption.
The feasibility of using image interpolation for view in-
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terpolation is explored in Section 5 and a scanline algo-
rithm for view interpolation using minimal correspon-
dence information is introduced in Section 6. Section
7 presents results on real images.

2 Related Work
Ullman and Basri [5] demonstrated that new views

can be expressed as linear combinations of other views
of the same scene. Although the focus of their work
was recognition, it has clear rami�cations for view syn-
thesis, providing a simple mechanism for predicting the
positions of features in new views. However, their work
does not take into account visibility issues that are cru-
cial to understanding which views can be synthesized.

Chen and Williams [4] described an approach for
view synthesis based on linear interpolation of corre-
sponding image points using range data to obtain cor-
respondences. They investigated special situations in
which interpolation produces valid perspective views,
but concluded that the interpolated images do not in
general correspond to exact perspective views.

Two groups [2, 6] have recently developed image
warping techniques for perspective-correct view syn-
thesis. Under the assumption that a complete pixel-
wise correspondence is available, it is possible to pre-
dict a broad range of views. Several researchers
[1, 7, 8, 9, 10] have used interpolation to produce new
images without establishing the physical validity of the
resulting images. In addition to computing new views,
these methods can be used to interpolate images of two
di�erent objects to achieve interesting e�ects, although
the plausibility of such transformations is di�cult to
assess.

The applicability of each of these previous ap-
proaches is limited by the requirement that complete
correspondence information must be available. A com-
plete correspondence is generally impossible to obtain
automatically, due to the aperture problem. A theo-
retical contribution of this paper is to show that for a
general class of scenes and views, the problem of view
synthesis is in fact well-posed and does not require a
full correspondence.

3 Viewing Geometry
Under an orthographic projection model (e.g., weak

perspective, paraperspective, a�ne), a view represents
a plane onto which the scene projects to produce an
image. Therefore, a view V can be speci�ed as a tuple
V = hX;Y;oi where the 3D vectors X and Y repre-
sent the coordinate axis of the image plane and the 2D
vector o speci�es the o�set of the image origin from the
projected world origin. The view projection matrix is
denoted

� =

�
XT

YT

���� o

�

and the projection p = (x; y) of a homogeneous scene
point P = (X;Y; Z; 1) is given by p = �P. The image
plane unit normal, also known as the optical axis or
direction of gaze of V is denoted Z. Under strict or-
thographic projection, X and Y are constrained to be
orthonormal, whereas in a general a�ne model [11] X

and Y may be any two linearly independent vectors.
Finally, an image is the projection of the visible scene
into the view. An image can be represented as an ar-
ray of pixels I or a matrix of feature positions I. If S is
a matrix whose columns are the visible homogeneous
scene points then

I = �S (1)

4 View Synthesis from Images
The process of rendering views of a known three

dimensional scene is well-understood in the graphics
community. The inverse problem, of reconstructing
the scene from a collection of images, has been well-
studied, but is known to be ill-posed in general due to
the aperture problem. In this paper, we are concerned
with using a set of views of a scene to synthesize new
views of the same scene. Because this would seem to
entail solving both problems, i.e., reconstruction and
rendering, the natural conclusion would be that image-
based view synthesis is also inherently ill-posed. How-
ever, this turns out not to be the case. We show in
this section that image-based view synthesis is in fact
a well-posed problem under a monotonic visibility con-
straint and is not a�ected by the aperture problem.

4.1 The Monotonicity Constraint
A fundamental di�culty in 3D reconstruction from

images is the problem of establishing correspondences
between points in di�erent images. The correspon-
dence problem is often mitigated in practice by the
epipolar constraint, which states that the projection
of a scene feature in one image must appear along a
particular line in a second image. This constraint re-
duces the search for correspondences to a 1-D search
along epipolar lines. Further constraints have been
used to help reduce the search within epipolar lines
by making assumptions about the structure of the
scene. One example of such a constraint is monotonic-
ity [12, 13], which requires that the relative ordering
of points along epipolar lines be preserved.

Let I1 and I2 be two images of a scene taken from
views V1 and V2, respectively. For brevity, quantities
associated with view Vi will henceforth be written with
subscript i. Any point P in the scene de�nes an epipo-
lar plane E12 spanned by the two plane normals and
passing through P. The epipolar lines l1 and l2 are the
respective intersections of E12 with V1 and V2.

Monotonicity states that the projections of any two
points on E12 appear in the same order along l1 and
l2. If this property holds for all corresponding epipolar
lines in the two views then we say that monotonicity
holds for I1 and I2. Let P and Q be two scene points
on the same epipolar plane that are visible in both
images. Geometrically, the constraint dictates that the
line through P�Q may not intersect the line segment
Z1Z2 joining the tips of the two view normals.

A useful property of monotonicity is that it extends
to cover a range of views in-between V1 and V2. We
say that a third view V3 is in-between V1 and V2 if its
normal Z3 intersects Z1Z2. Because the line through
P and Q intersects Z1Z2 if and only if it intersects
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Figure 1: Monotonic Viewing Geometry. If P appears
to the left of Q in images I1 and I2 then it must also
in I3, providing Z3 intersects Z1Z2. Monotonicity re-
quires that line P�Q does not intersect Z1Z2.

either Z1Z3 or Z3Z2, monotonicity of I1 and I2 im-
plies monotonicity of I1 and I3 as well as I3 and I2.
That is, any two points on E12 must appear in the
same order on corresponding epipolar lines of all three
images. This property, that monotonicity applies to
in-between views, is quite powerful and is su�cient to
completely predict the appearance of the visible scene
from all viewpoints in-between V1 and V2. Fig. 1 il-
lustrates the impact of the monotonicity constraint on
view synthesis.

The monotonicity condition imposes a strong visi-
bility constraint on the scene. Intuitively, monotonic-
ity of I1 and I2 means that the same scene points are
visible in the range of views between V1 and V2. Be-
cause monotonicity is needed for view interpolation,
this condition limits the set of views that can be in-
terpolated. Nevertheless, monotonicity is satis�ed at
least locally for a wide range of interesting scenes.

4.2 The Aperture Problem
Several tasks in 3D computer vision are complicated

by the aperture problem, which arises due to uniformly
colored surfaces in the scene. In the absence of strong
lighting e�ects, a uniform surface in the scene appears
nearly uniform in projection. Although it is possible
to determine which uniform regions correspond in dif-
ferent images, it is impossible to determine correspon-
dences within these regions. As a result, additional
smoothness assumptions are needed to solve problems
such as optical 
ow and stereo vision [14]. In contrast,
we show in this section that view synthesis does not
su�er from the aperture problem and is therefore in-
herently well-posed.

Consider the projections of a set of uniform sur-
faces into images I1 and I2 (each surface is uniformly
colored, but any two surfaces may have di�erent col-
ors). Fig. 2 depicts the cross sections S1, S2, and S3 of
three such surfaces projecting to epipolar lines l1 and
l2. Each connected cross section projects to a uniform
interval of l1 and l2. The monotonicity constraint in-
duces a correspondence between the endpoints of the
intervals in l1 and l2, determined by their relative or-
dering. The points on S1, S2, and S3 projecting to

l2

l1

l3

s1

s2

s3

Figure 2: Correspondence Under Monotonicity. Top
view of projection of three surface cross-sections into
corresponding epipolar lines of images I1, I2, and I3.
Although the projected intervals in l1 and l2 do not
provide enough information to reconstruct S1, S2, and
S3, they are su�cient to predict the appearance of l3.

the interval endpoints are determined from this cor-
respondence by triangulation. We will refer to these
scene points as visible endpoints of S1, S2, and S3.

Now consider an in-between view V3 with image I3
and epipolar line l3 corresponding to l1 and l2. S1,
S2, and S3 project to a set of uniform intervals of l3,
delimited by the projections of the visible endpoints of
S1, S2, and S3 . Monotonicity is needed to ensure that
the endpoints of each uniform interval in I3 correspond
to the visible endpoints of S1, S2, and S3.

Notice that I3 does not depend on the speci�c shape
of surfaces in the scene, only on the positions of the
visible endpoints of their cross sections. Any number
of distinct scenes could have produced I1 and I2, but
each one would also project to I3. Because correspon-
dence or shape information within uniform regions is
not necessary to predict in-between views, the aperture
problem is avoided.

To see why the monotonicity constraint is so crucial
to view synthesis, observe that it is required not only to
make the correspondence problem well-posed, but also
to predict the appearance of uniform surfaces whose
shapes are unknown. Furthermore, the in-between
views are the only views that can be predicted with
certainty due to the requirement that the visible end-
points of each surface remain �xed. In practice, how-
ever, reasonable results may be obtained even when
monotonicity is locally violated, as we demonstrate in
Section 7.

5 View Synthesis by Image Interpola-

tion
The previous section established that a speci�c

range of views of a scene can be predicted from two
basis views. In this section we demonstrate that knowl-
edge of camera positions is unnecessary and that new

3



views can be synthesized by geometrically interpolat-
ing the two basis images.

First we describe morphing techniques and discuss
their application for view synthesis. Then the connec-
tions between image transformations and changes in
viewpoint are discussed. It is shown that after a sim-
ple recti�cation procedure, linear interpolation of cor-
responding points in images produces new in-between
views of the scene.

5.1 Image Interpolation
Morphing techniques combine a geometric warp

with a cross dissolve to interpolate two images. A set
of corresponding user-speci�ed control points is pro-
vided in each image to guide the interpolation. As
these points are typically sparse, the correspondence
must be extended so that every pixel has a well-de�ned
path. For analytical purposes, we assume for the mo-
ment that a correct and complete correspondence is
provided between pixels of the two images. This con-
straint is relaxed in the next section to require corre-
spondences between but not within uniform regions of
the two images. We consider the common case where
linear interpolation of corresponding point positions is
used to create intermediate images. In other words, if
p1 and p2 are corresponding points in images I1 and
I2 respectively, the corresponding point in image Ii,
1 � i � 2 is

pi = (2� i)p1 + (i� 1)p2

If images I1 and I2 are represented by arrays of corre-
sponding points, then image interpolation is expressed
by the following equation:

Ii = (2� i)I1 + (i� 1)I2 (2)

Image interpolation has a direct physical interpre-
tation in terms of views, a connection that was recog-
nized by Ullman and Basri [5] in the general context of
linear combinations of views. Here we present a sim-
ple geometric interpretation that makes the underlying
principles more explicit.

Consider two views V1 and V2 of a scene S. By
Eqs. (1) and (2),

Ii = [(2� i)�1 + (i� 1)�2]S

= �iS (3)

where �i = (2� i)�1 + (i� 1)�2. Ii represents what
the scene would look like from a new viewpoint if every
feature visible in I1 and I2 were also visible in Ii. The
axes and o�set of the new viewpoint are interpolations
of the corresponding vectors of V1 and V2.

Eq. (3) provides a simple link between interpolation
of images in 2D and of views in 3D. In spite of this re-
sult, image interpolations do not account for changes in
visibility and often correspond to very unintuitive view
interpolations. Fig. 3a graphically depicts the interpo-
lation of views V1 and V2. Although both V1 and V2
are normal to the epipolar plane E12, the interpolated
view V1:5 is tilted by 45 degrees with respect to E12.
In addition, the axes of V1 and V2 are orthonormal,
whereas the axes of V1:5 are neither orthogonal nor of

unit length. Clearly, V1:5 does not correspond to an
in-between view, as de�ned in Section 4.1, so mono-
tonicity may not be preserved and correctness of the
interpolated image cannot be ensured. Furthermore,
there are cases where interpolation degenerates, such
as when I2 is a 180 degree rotation of I1. In this case,
the morph collapses to a point, with all points mapping
to the origin in I1:5. In short, image interpolation will
generally not produce valid views. Fortunately, how-
ever, these problems can be corrected by appropriately
aligning the two images before performing the interpo-
lation (see Fig. 3b), as demonstrated in the remainder
of this section.

5.2 Image Recti�cation
The odd view trajectories obtained from image in-

terpolations arise because linear interpolation of views
does not amount to linear interpolation of gaze direc-
tions. Two views V1 and V2 each de�ne a direction
of gaze, Z1 and Z2. Intuitively, we might expect the
direction of gaze to follow the most direct path be-
tween Z1 and Z2 during a smooth transition between
V1 and V2 . However, this is generally not the case
in view interpolation, as Fig. 3a illustrates, due to
the nonlinear relationship between plane and normal
transformations1.

A morph can be made to interpolate gaze direc-
tion and to generate valid in-between views by �rst
aligning the coordinate axes of the two views. This
is accomplished by means of a simple image recti�-
cation procedure that aligns epipolar lines in the two
images. The result of recti�cation is that correspond-
ing points in the two recti�ed images will appear on
the same scanline. In other words, a point (x1; y) in
the �rst image will correspond to point (x2; y) in the
second. The technique is a variant of the recti�cation
procedure described in [15].

We assume that a set of at least four reference image
features is provided and that their positions in each
image are known. The centroid of the reference fea-
tures is chosen to be the origin of each image, i.e., if
r1i ; : : : ; r

k
i are the positions of the reference features in

Ii then

kX
j=1

rji =

�
0
0

�

Let Ti denote the coordinates of the top-left corner of
Ii in this reference frame. Denote the image coordi-
nates of rji as (x

j
i ; y

j
i ). De�ne the measurement matrix

as

M =

2
64

x1
1

: : : xk
1

y1
1

: : : yk
1

x1
2

: : : xk
2

y1
2

: : : yk
2

3
75

Singular value decomposition yields the following fac-
torization:

M = U�V

1Normals are transformed by the inverse transpose of the

plane coordinate transformation.
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Figure 3: Views Generated by Image Interpolation. (a) Interpolating the X and Y axes of V1 and V2 produces
a view that is skewed and tilted with respect to the epipolar plane E12. (b) Recti�cation remedies the problem
by aligning the view coordinate systems prior to interpolation.

Let U0 be the matrix formed by the �rst 3 columns of
U. The (nonhomogeneous) a�ne projection matrices
�1 and �2 are the consecutive 2 � 3 blocks of U0:

�
�1

�2

�
= U0

The direction of epipolar lines in I1 and I2 can
be determined from �1 and �2 as follows: partition
�i = [Ai j di] where Ai is 2 � 2 and di is 2 � 1.
De�ne Bi as

Bi =

�
A�1

i �A�1

i di
0 0 1

�

Let �0

1
= �1B2 and �

0

2
= �2B1. Let (xi; yi)

T
be the

third column of�0

i. In [15] it is shown that the epipolar
lines in image Ii make an angle of �i = arctan( yixi

)
with the horizontal axis. To make the epipolar lines
horizontal, each image is rotated by an angle of ��i,
using the matrix:

R��i =

�
cos�i sin�i
�sin�i cos�i

�

To ensure that corresponding epipolar lines share
the same numbered scanline, we must vertically
scale I2 with respect to I1. Accordingly, let

B =

�
R��1

�
0

1

(R��2
�

0

2)1

�
where (R��2�

0

2
)1 is the �rst

row of R��2�
0

2
. If B is not invertible, either the

two views have parallel optical axes or the reference
features are co-planar. In either case, choose instead

B =

�
R��1

�
0

1

0 0 1

�
. It follows that

R��2�
0

2
B�1 =

�
0 0 1
0 s 0

�

If s < 0 it means that the epipolar lines in I2 are
horizontal but reversed with respect to I1. In this case,
I2 should be rotated 180 degrees. To understand why

the last column of R��2�
0

2
B�1 is of this form, note

that the images have been rotated so that epipolar
lines are horizontal. Therefore, the y coordinate of a
point in one image depends only upon the y coordinate
of the corresponding point in the other image. If the
two original images are weak perspective projections,
s is the scaling factor of I2 with respect to I1. In
particular, if orthographic images are used, s is 1. The
recti�cation process is completed by applying a scale

matrix Hs =

�
1 0
0 1=s

�
. To summarize, two images

I1 and I2 are recti�ed by the following sequence of
image transformations:

Î1 = R��1(I1 +T1) (4)

Î2 = HsR��2(I2 +T2) (5)

5.3 Recti�ed View Interpolation
Although image interpolation is not always physi-

cally valid, interpolation of recti�ed monotonic images
always produces valid in-between views of a scene. In
light of Eq. (3), it su�ces to show that recti�ed image

interpolation preserves monotonicity. Let V̂i be an in-
terpolation of recti�ed views V̂1 and V̂2. Denote the
�rst row of �̂1, �̂2, and �̂i by �1, �2, and �i re-
spectively. Because epipolar lines are horizontal, i.e.,
parallel to the image x-axis, X̂1 and X̂2 are in the same
epipolar plane. Therefore, the position of a scene point

P along its epipolar line in Îj is given by �jP. Let P
and Q be two scene points in the same epipolar plane
of V1 and V2. Suppose that monotonicity is satis�ed
for Î1 and Î2 so that �1P > �1Q and �2P > �2Q.
Then

�i(P�Q) = [(2� i)�1 + (i� 1)�2](P�Q)

= (2� i)�1(P�Q)

+ (i� 1)�2(P�Q) (6)

Since both terms on the right of Eq. (6) are strictly
positive for 1 � i � 2, it follows that �iP > �iQ and
hence monotonicity is preserved.

This result indicates that linear interpolation of cor-
responding points in two recti�ed basis images always
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produces a valid view, assuming that monotonicity
holds for the basis images. The signi�cance of this
result is that

1. Valid views can be produced by simple 2D im-
age operations, without knowledge of either scene
structure or camera geometry, and

2. Morphing techniques based on geometric image
interpolation will produce physically-valid inter-
mediate images if the basis images are appropri-
ately recti�ed and satisfy monotonicity.

Image recti�cation ensures valid interpolated views
and a smooth transition between Î1 and Î2. If, in-
stead, the goal is to obtain a smooth transformation
between the original images I1 and I2, it is necessary
to also interpolate the recti�cation transformations,
R��1 , R��2 , Hs, T1, and T2. Accordingly, let Î1
and Î2 be two images recti�ed by Eqs. (4) and (5).
The angle, scale and translation of image Ii with re-
spect to Îi are given by �i = (2 � i)�1 + (i � 1)�2,
si = (2� i)+ (i� 1)s, and Ti = (2� i)T1+(i� 1)T2.
Using Eqs. (4) and (5) as boundary conditions, Ii,
1 � i � 2, produces a sequence of views that inter-
polates I1 and I2 given by

Ii = R�iH1=si Îi �Ti (7)

5.4 Orthographic View Interpolation
The above discussion demonstrates that interpola-

tion of recti�ed images produces valid views using a
general a�ne view model. In practice, a�ne projec-
tion may be too lenient in that arbitrary image skews
are permitted. If the two basis images were produced
by orthographic projection, what can be said about the
interpolated images, i.e., are they also orthographic
projections of the scene?

To address this question, suppose that Î1 and Î2 are
recti�ed orthographic images of a scene with respective
views V̂1 and V̂2, and V̂i is an interpolated view. To see
that the axes of the interpolated view are orthogonal,
note that X̂1 and X̂2 both lie in the epipolar plane de-

�ned by Ẑ1 and Ẑ2. It follows by interpolation that X̂i
also lies in the same epipolar plane. Because the view
coordinate systems are assumed orthonormal, Ŷ1 and
Ŷ2 both coincide with the epipolar plane unit normal.

Therefore, Ŷi also coincides with the unit normal and
the orthogonality of X̂i and Ŷi follows.

To determine the projective scale factors of an in-

terpolated view, we must consider the norms of X̂i and
Ŷi. Although the unity of Ŷi is preserved, the norm
of X̂i depends on the interior angle between gaze di-
rections: � = arccos(Ẑ1 � Ẑ2). Speci�cally, it can be

shown by a geometric argument that the norm of X̂i
is given by

kX̂ik =

q
(2� i)2 + 2(2� i)(i� 1)cos� + (i� 1)2

Therefore Îi is an orthographic view of the scene
with aspect ratio kX̂ik : 1. In general, 0 < kX̂ik � 1,

with kX̂ik decreasing monotonically as j�j increases.

In particular, if V̂1 and V̂2 are within 45 degrees of one
another then kX̂ik is strictly greater than 0:92. In this
case, the greatest possible distortion, an 8% horizontal
contraction, occurs when i = 1:5, corresponding to a
view halfway between Î1 and Î2.

If � is known, this distortion can be avoided alto-

gether by scaling the rows of Îi by 1=kX̂ik. Although �
cannot be determined from the two basis images alone,
any third view of the scene is su�cient to uniquely de-
termine � [16].

6 A Scanline View Interpolation Algo-

rithm
In Section 4 we argued that synthesis of a range

of views under monotonicity is possible. In this sec-
tion we attest that view synthesis is practical and de-
scribe an algorithm for generating in-between views
from two basis images and minimal user-provided cor-
respondence information.

It is assumed that at least 4 corresponding refer-
ence features are provided in images I1 and I2. Based
on these features, the images can be recti�ed using
the procedure described in Section 5.2 to produce im-
ages Î1 and Î2. Once the images have been recti�ed,
correspondences are found between uniform intervals
in conjugate scanlines in the two images. With ideal
data, the correspondence is completely determined by
the monotonicity constraint. In practice, errors and
noise in the imaging process complicate matters, caus-
ing monotonicity to be locally violated. Consequently,
our approach is to �nd the optimal monotonic warp
Ŵ of Î1 that minimizes jŴ (Î1) � Î2j. We employ a
stereo correspondence algorithm adapted from [13] to
�ndW that uses both inter-scanline and intra-scanline
constraints. We chose to use dynamic programming
techniques because they make strong use of monotonic-
ity and are relatively simple to implement. It should
be noted, however, that our approach is not depen-
dent on a particular stereo matching algorithm; other
researchers [1, 9, 10] have had success with di�erent
stereo algorithms for view synthesis.

The complete algorithm is as follows:

1. Obtain either 4 or more feature correspondences
or relative camera positions from the user

2. Rectify I1 and I2 to produce Î1 and Î2.

3. Match uniform intervals of corresponding scan-
lines in Î1 and Î2

4. For each scanline, linearly interpolate positions
and intensities of corresponding intervals

5. Derectify Îi to produce Ii using Eq. (7).

A disadvantage of this �ve-step approach is that
it requires multiple image resampling operations, in-
curred by repeated rotations and scales. Since each
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resampling operation decreases image quality, it is ad-
vantageous to minimize the number of image transfor-
mations. One solution would be to perform steps 1 -
5 to obtain composite warping functions that directly
map I1 to Ii and I2 to Ii respectively. Then the warp
and cross-dissolve may be performed once at the end.

7 Experiments
We present the results of the algorithm applied to

two views of a Band-Aid box and to two views of a
stapler and cube scene. For each pair of images, 5-10
point correspondences were manually chosen. Fig. 4
illustrates the control 
ow of the algorithm for the
Band-Aid images. The original images, I1 and I2,
were �rst recti�ed using the procedure described in
Section 5.2. A correspondence between uniform re-
gions of Î1 and Î2 was found using a stereo matching
algorithm. Then an image Î1:5 halfway between Î1 and
Î2 was produced by linear interpolation of correspond-
ing regions. Finally, Î1:5 was derecti�ed to produce the
intermediate image I1:5. Notice that �ne details such
as the word \BAND-AID" are preserved in I1:5 despite
the fact that the image has undergone a warp, a cross-
dissolve, and multiple rotation, scale, and resampling
operations.

Fig. 5 shows two views of a stapler and cube scene.
These images pose a challenge because some regions
that are visible in one image are occluded in the other.
For example, a metallic surface of the stapler is visi-
ble in I1 but completely occluded in I2. This region
appears fuzzy in I1:5 due to the cross-dissolve between
the two images. We have found that local violations of
the monotonicity assumption cause only local errors in
corresponding regions of the interpolated images and
do not corrupt the entire view interpolation procedure.
This property is re
ected in I1:5 where the occlusion
of a surface of the stapler a�ected only a limited area
in the interpolated image.

8 Conclusion
In this paper we investigated the feasibility of gen-

erating new views of a scene from two basis views. Un-
der an assumption of monotonicity, it was shown that
the problem is theoretically well-posed. This result is
signi�cant in light of the fact that it is not possible to
fully recover the structure of the scene due to the aper-
ture problem. Furthermore, we demonstrated that a
particular range of views can be generated by linear
interpolation of the basis images, if the basis images
are �rst recti�ed. This result provides a theoretical ba-
sis for morphing techniques based on geometric image
interpolation [1, 7, 8, 9, 10] and provides a simple way
of generating new views of a scene. Finally, a scan-
line algorithm for interpolating two basis images was
described that requires only a small number of user-
provided feature correspondences. The application of
the method was demonstrated on real images.
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Figure 4: View interpolation control 
ow. The two original images are at top-left and top-right and an intermediate
synthesized view is at top-center. The corresponding recti�ed images are shown below the originals. The arrows
show the 
ow of the algorithm, from original to recti�ed to interpolated to derecti�ed.
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Figure 5: Interpolation of images of a cube and a stapler. Original images are at left and right, and the interpolated
image is in the center. Note that a metallic surface of the stapler in the left image is occluded in the right image,
locally violating the assumption of monotonicity and causing local blurring in the interpolated image. Other local
artifacts, such as an incorrect region near the top of the cube in I1:5, result from errors in correspondence.
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