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Abstract

In this paperwe considerthe problemof computingthe
3D shapeof an unknown,arbitrarily-shapedscenefrom
multiple color photayraphstakenat knownbut arbitrarily-
distributed viewpoints. By studyingthe equivalenceclass
of all 3D shapeghat reproducetheinput photagraphs,we
prove the existenceof a specialmemberof this class,the
maximalphoto-consisterghapethat (1) can be computed
from an arbitrary volumethat containsthe scene and (2)
subsumesll other membes of this class. We thengive a
provably-corect algorithm for computingthis shapeand
presentexperimentalresultsfrom applyingit to the recon-
structionof a real 3D scendrom several photggraphs.The
appmoacdis specificallydesignedo (1) build 3D shapeshat
allow faithful reproductionof all input photayraphs,(2) re-
solvethecompleinteractionsbetweerocclusion parallax,
shading and their effectson arbitrary collectionsof pho-
tographsof a scene and (3) follow a “least commitment”
appmoac to 3D shaperecovery.

1 Intr oduction

Little is currentlyknown abouthow the combinationof
occlusionshadingandparallaxin N arbitraryphotographs
of a sceneconstrainthe scenes shape. The reasonis that
mostapproaches$o shaperecovery have beenfollowing a
principle of mostcommitmentthey employ asmary a pri-
ori assumptionasneededo ensurghatshape-from-stereo,
shadingor occludingcontoursis well-posedwhenconsid-
eredin isolation. Examplesncludethe useof smoothness
constraintsfor regularization[1], the use of small stereo
baselinedor minimizing the effect of occlusiong[2], and
the use of texture-lesssurfacesfor contourbasedrecon-
struction[3, 4]. Unfortunately sinceno shapenformation
aboutthe sceneis available when theseassumptionsare
made,it is impossibleto predicttheir effect on thefinal re-
construction.

In contrastto theseapproacheswe considerthe shape
recovery problem from a completely different perspec-
tive, following a leastcommitmenprinciple to recover 3D
shape:our goalis to extract asmuchinformationas pos-
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sible aboutthe scenefrom arbitrary photographawithout
making ary assumptiongboutthe scenes 3D shapeand
without relying on the existenceof relevantfeaturesn the
input photographs. We achieve this by re-examining the
shapeaecovery problemfrom first principlesandanswering
threequestions:

e How canwe analyzethe family of photo-consistent
shapesi.e., the shapeghat, whenassignedappropri-
atereflectancepropertiesandre-projectednto all the
original photographs;eproducehosephotographs?

e Isit possibleto computea shaperom this family and
if so,whatis thealgorithm?

e Whatis therelationshipof the computedshapeto all
otherphoto-consisterghapes?

Thekey obsenationusedn ourwork is thatthesequestions
becomeparticularly easyto answerwhen sceneradiance
belongsto a generalklassof radiancefunctionswe call lo-
cally computableThis classcharacterizescenegor which
globalillumination effectssuchasshadavs, transparencies
andinter-reflectionscanbeignored,andis sufficiently gen-
eralto includescenesvith parameterizedadiancemodels.
Using this obsenation as a starting point, we shov how
to computea shape startingfrom an arbitraryvolumethat
boundsthe scenethatis photo-consistenwith the N pho-
tographsWe shav thatthe computedshapés preciselythe
shapedefinedby the occlusion,shadingandparallaxcues
andthat it canbe computedwithout detectingimagefea-
turesasanintermediatestep.Theonly requirementarethat
(1) the camerasare calibrated,(2) their positionis known
for all input photographsand(3) sceneradianceollows a
known, locally computableradiancefunction. Experimen-
tal resultsillustrating our methods performanceare given
for ageometrically-compberealscene.

One of the main difficulties in recovering shapefrom
multiple photograph®f a 3D sceneis that radiance self-
occlusion,as well as parallaxall contritute to a photo-
graphs ultimatedependencen viewpoint. A wealthof re-
searchon stereo[5], shape-from-shadin$—8] andshape-
from-contour[3, 9-11] illustratesthe usual paradigmfor
dealingwith this difficulty—studyinga single3D shapecue
underthe assumptionshat (1) othersourcesof variability



canbe safelyignored,and(2) the input photographson-
tain featuresrelevantto that cue. Implicit in this work is

the view thatuntanglingparallax,self-occlusionand shad-
ing effectsin N arbitraryphotograph®f a scendeadsto a
problemthatis eitherunderconstraine@r intractable Here
wechallengehisview by shaving thatshapeecoveryfrom

N arbitraryphotograph®f anunknavn scends notonly a
tractableproblembut hasa simplesolutionaswell.

Reconstructiomy leastcommitmenthasseveral advan-
tagesover existing methods. First, it allows us to delay
the applicationregularizationtechniquesuintil the very end
of the reconstructiorprocesswhen their implicationson
photo-consistenc can be thoroughlyresohed. This ap-
proachis similar in spirit to “stratification” approachesf
shaperecovery [12,13], in which 3D shapeis first recov-
eredmoduloan equialenceclassof reconstructionandis
thenrefinedwithin that classat subsequenstagesof pro-
cessing.Secondpecausghe reconstructedcends photo-
consistentit ensureshatits projectionswill closelyresem-
ble photograph®f the true scene. This propertyis espe-
cially importantin computergraphics,virtual reality, and
tele-presensapplications[2,11,14,15] wherethe photo-
realismof constructe@D modelsis of primaryimportance.
Third, it is theonly methodto ourknowledge thatdoesnot
putary restrictionson the camergpositionsfrom whichthe
photographgsanbeacquired.

Our approachextends and generalizesprevious work
by providing a detailedgeometricalanalysisof the family
of shapeghat are photo-consistentvith N arbitrary pho-
tographs. This family definesthe shapeambiguity inher
entin theinput photographsndtells us preciselywhat 3D
shapeinformationaboutthe scenewe can extract without
imposinga priori assumptionsasidefrom ascenaadiance
model.Ouranalysighereforesharesimilarobjectveswith
studiesof the ambiguitiesin structure-from-motioralgo-
rithms[16], eventhoughthe geometryandtechniqueem-
ployed hereare completelydifferent. Moreover, the spe-
cial geometricapropertiesof this family give away to ex-
tract this 3D shapeinformation using discretevolumetric
algorithmthat iteratively “carves” space. In this respect,
our approachbearsstrongsimilarity to previous volume-
basedeconstructiomethodsindeedtheresultspresented
hererepresenta direct generalizationof silhouette-based
techniquedike volume intersection[4, 10] to the caseof
grayscaleandfull-color images,andextendvoxel coloring
[17] andplenopticdecompositiorj18] to the caseof arbi-
trary camerageometries.

Theremaindenf thispapeliis structuredasfollows. Sec-
tion 2 analyzesthe constraintsthat a set of photographs
place on scenestructure,given a known model of scene
radiance. Basedthese constraints,a theory of photo-
consisteny is developedthat providesa basisfor charac-
terizingthe spaceof all reconstructionsf a scene.Section
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Figurel.The scenevolumeand cameradistrib ution cov-
ered by our analysiscan both be completely arbitrary .
Examplesinclude (a) a 3D environment viewed from a
collection of camerasthat are arbitrarily dispersedin
freespace,and (b) a 3D object viewed by a single cam-
eramoving around it. (c) Viewing geometry

3 usesthis theoryto derive the notion of a maximalphoto-
consistenshapewhich providesthetightestpossiblebound
on the spaceof all photo-consistenécenereconstructions.
Section4 presentour leastcommitmenapproacho scene
reconstructiorand Section5 concludeswith experimental
resultsonrealimages.

2 Picture Constraints

Let V be a 3D scenedefinedby a finite, opaque,and
possiblydisconnectedolumein space.We assumeahatV
is viewed underperspecitie projectionfrom N known po-
sitionscy, ...,cy in ®3 — V (Figure1). The radianceof
a point p on the scenes surfaceis a functionrad, (¢) that
mapsevery orientedray ¢ throughthe point to the color
of light reflectedfrom p alongé. We usethe term shape-
radiancescenedescriptionto denotethe scene) together
with an assignmentf a radiancefunction to every point
onits surface.This descriptioncontainsall theinformation
neededo reproducea photograptof thescendor any cam-
eraposition. In general,sucha photograptwill containa
potentiallyemptysetof backgroundpixelsthatarenotim-
agesof any scenegpoint.

Every photograplof a 3D scenaakenfrom a known lo-
cationpartitionsthe setof all possibleshape-radiancecene
descriptiongnto two families,thosethatreproducehepho-
tographand thosethat do not. We characterizehis con-
straintfor a given shapeand a given radianceassignment
by the notionof photo-consistency



Definition 1 (Point Photo-Consistency)A point p thatis visible
frome is photo-consistenwith thephotograplatc if (1) p doesnot
projectto a badkground pixel, and (2) the color at p’s projection
is equalto rad, (pe).

Definition 2 (Shape-Radiancd?hoto-Consistency)A  shape-
radiance scenedescriptionis photo-consistentvith the photo-
graphat ¢ if all visible points are photo-consistenand every
non-ba&groundpixelis the projectionof a pointin V.

Definition 3 (ShapePhoto-Consistency)A shapeV is photo-
consistentwith the photographat ¢ if there is an assignmenbf
radiancefunctionsto thevisible pointsof V that malestheresult-
ing shape-adiancedescriptionphoto-consistent.

Our goalis to provide a concretecharacterizatiowof the
family of all sceneghatare photo-consistenwith N input
photographs.We achieve this by making explicit the two
waysin which photo-consistencwith N photographgan
constrainascenes shape.

2.1 Background Constraints

Photo-consisterncrequiresthat no point of V projects
to a backgroundixel. If a photographtaken at positionc
containsidentifiablebackgroundpixels, this constraintre-
strictsV to a conedefinedby ¢ andthe photographs non-
backgroungixels. Given N suchphotographshescends
restrictedo thevisualhull, whichis thevolumeof intersec-
tion of their correspondingoned4, 10].

When no a priori information is available about the
scenes radiancethe visual hull definesall the shapecon-
straintsin the input photographs.This is becausehereis
alwaysanassignmentf radianceunctionsto the pointson
thesurfaceof thevisualhull thatmakestheresultingshape-
radiancelescriptiorphoto-consistenwith the N inputpho-
tographs: Thevisualhull canthereforebe thoughtof asa
“least commitmentreconstruction”of the 3D scene—an
further refinementof this volumemustnecessarilyely on
additionalassumptionaboutthe scenes shapeor radiance.

While visual hull reconstructiorhasoften beenusedas
a methodfor recovering 3D shapefrom photograph$10],
the picture constraintapturedoy the visual hull only ex-
ploit informationfrom the backgroundpixelsin thesepho-
tographs.Unfortunately theseconstraintsbecomeuseless
when photographgontainno backgroundpixels (i.e., the
visual hull degenerateso %3) or whenbackgrounddenti-
fication cannotbe performedaccurately Below we study
the picture constraintprovided by non-backgroungbixels
whenthe scenes radiancds restrictedto a specialclassof
radiancemodels. The resultingpicture constraintswill in
generalleadto photo-consisteréceneghat are strict sub-
setsof thevisualhull.

For example setrad, (pe) equalto the color atp’s projection.

2.2 RadianceConstraints

Thecolor of light reflectedn differentdirectionsfrom a
singlescengointusuallyexhibitsacertaindegreeof coher
encefor physicalsceneghatarenot transparenbr mirror-
like. This coherencgrovidesadditionalpictureconstraints
that dependentirely on non-backgroundgixels. Herewe
exploit this ideaby focusingon scenewhoseradiancesat-
isfiesthefollowing criterion:

Consistency Check Criterion: An algorithm
consi st x() is available that takes as input at
least K << N colorscols,...,colx, K vectors
&,...,€x, and the light source positions (non-
Lambertiancase),and decideswhetherit is possible
for asinglesurfacepointto reflectlight of colorcol; in
direction; simultaneouslyoralli =1,..., K.

Givenashape), theConsisteng CheckCriteriongivesusa
way to establistithe photo-consistencof everypointon)’s
surface. This criterion definesa generalclassof radiance
modelswhich we call locally computablethatarecharac-
terizedby a locality property: the radianceat ary pointis
independentf theradianceof all otherpointsin thescene.
The classof locally-computablgadiancemodelstherefore
restrictsour analysisto sceneswhereglobal illumination
effectssuchastranspareny; inter-reflection,and shadavs
canbeignored. This classsubsumed& ambertianradiance
(K = 2) aswell asradiancemodelsthatcanbe expressed
in closedform by a smallnumberof parameters.

Whenana priori locally computableadiancemodelis
establishedor aphysical3D scenethemodelprovidessuf-
ficientinformationto determinavhethera givenshapey is
not photo-consistenwith a collectionof photographsThe
useof radiancanodelsthatarelocally consistents impor-
tantin this context becauséhe non-photo-consistencof a
shapeV tells us a greatdeal aboutthe shapeof the under
lying scene. This in turn imposesa very specialstructure
on the family of photo-consistenshapes.We usethe fol-
lowing two lemmasto make this structureexplicit. These
lemmasprovidethe analyticaltoolsneededo describenow
the non-photo-consisteyaof a shape) affectsthe photo-
consisteng of its subsetgFigure?):

Lemma 1 (Visibility Lemma) Let p be a point on V’s surface
Surf(V), andlet Visy (p) bethecollectionof input photaraphsin
which V doesnotoccludep. If V' C V is a shapethatalsohasp
onits surface Visy (p) C Visy: (p).

Proof: Since)’ is asubsebf V, nopointof ' canlie betweerp
andthecameragorrespondingo Visy (p). QED

2Specificexamplesinclude(1) usinga mobile cameramountedwith a
light sourceto capturephotographof a scenewhosereflectancecanbe
expressedn closedform, and(2) usingmultiple camerago capturepho-
tographsof anapproximatelyLambertiansceneunderarbitraryunknavn
illumination (Figurel).
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Figure2. (a)lllustration of the Visibility Lemma. (b) II-
lustration of the Non-Photo-Consistency.emma. If pis
non-photo-consistenwith the photographsat c; , ¢z, c3,
it is non-photo-consistentwith the entire set Visy (p),
which alsoincludescy.

Lemma 2 (Non-Photo-Consistency-emma) If p € Surf(V) is
not photo-consistenwvith a subsetof Visy(p), it is not photo-
consistentvith Visy (p).

Intuitively, Lemmasl and2 suggesthatboth visibility
andnon-photo-consisteaxhibit acertainform of “mono-
tonicity:” the Visibility Lemmatells usthatthe collection
of photograph$érom whichasurfacepointis visible strictly
expandsfor nestedsubsetsof V that contain the point
(Figure 2(a)). Analogously the Non-Photo-Consistegc
Lemma,which follows asa direct consequencef the def-
inition of photo-consisteng tells us thateachnew photo-
graphcanbe thoughtof asan additionalconstrainton the
photo-consistencof surfacepoints—themorephotographs
areavailable themoredifficult it is for thosepointsto main-
tain their photo-consistenc Furthermorepncea surface
point loosesits photo-consistencno new photographof
thescenecanre-establistit.

Thekey consequencef Lemmasl and2 is givenby the
following theorenmwhichshavsthatnonphoto-consistenc
atapointrulesoutthephoto-consistencof anentirefamily
of shapes:

Theorem1 (SubsetTheorem) If p € Surf(V) is not photo-
consistentno photo-consistergubsebf V containsp.

Proof: Let V' C V be a shapethat containsp. Sincep lies on
the surfaceof V, it mustalsolie on the surfaceof V'. Fromthe
Visibility Lemmait followsthatVisy (p) C Msy: (p). Thetheorem
now follows by applyingthe Non-Photo-Consistegd_emmato
V' andusingthe locality propertyof locally computableadiance
models.QED

We explore the ramificationsof the SubsefTheoremin
the next sectionwherewe provide an explicit characteri-
zation of the shapeambiguitiesinherentin the input pho-
tographs.

3 The Maximal Photo-ConsistentShape

The family of all shapeghat are photo-consistentvith
acollectionof N photographslefinesthe ambiguityinher

entin the problemof recovering3D shapdrom thosepho-

tographs.This is becausét is impossibleto decide,based
on thosephotographslone,which photo-consistershape
is the shapeof the true scene.Whenusing photographgo

recover the shapeof a 3D scenethis ambiguityraisestwo

guestions:

e Is it possibleto compute a shapethat is photo-
consistentwvith N photographsnd,if so,whatis the
algorithm?

e If aphoto-consistergahapecanbecomputedhow can
we relatethat shapeto all otherphoto-consisten8D
interpretation®f thescene?

Our answerto both questionsrestson the following the-
orem. Theorem?2 shows that for ary shapeV thereis
a unique photo-consistenshapethat subsumesall other
photo-consisterghapesn V (Figure3):

Theorem 2 (Maximal Photo-ConsistentShapeTheorem)

Let V be an arbitrary setandlet V* be the union of all photo-
consistensubsetof V. TheshapeV™ is photo-consistersind is
calledthe maximalphoto-consisterghape.

Proof: (By contradiction)Supposé&’* is not photo-consisterand
let p beanon-photo-consistemointonits surface.Sincep € V*,
thereexists a photo-consistenshape,)’ C V*, thatalsohasp
onits surface. It follows from the SubsefTheoremthat)” is not
photo-consistenQED

Theorem?2 provides an explicit relation betweenthe
maximal photo-consistenshapeand all otherpossible3D
interpretationsof the scene: the theoremguaranteeshat
every suchinterpretationis a refinementof the maximal
photo-consistenshape. The maximal photo-consistent
shapethereforerepresents least-commitmenteconstruc-
tion of the scene.We describea volumetricalgorithmfor
computingthis shapen thenext section.

4 Least-CommitmentReconstruction

An importantfeatureof the maximal photo-consistent
shapesthatit canactuallypbecomputedisingasimple,dis-
cretealgorithmthat “carves” spacein a well-definedway.
Givenaninitial volumeV thatcontainghescenethealgo-
rithm proceeddy iteratively remaoving (i.e. “carving”) por
tions of thatvolumeuntil it becomesdenticalto the max-
imal photo-consisterghape,)*. Thealgorithmcanthere-
forebefully specifiedby answeringour questions(1) how
dowe selectheinitial volumeV, (2) how shouldwe repre-
sentthatvolumeto facilitate carving, (3) how do we cane
at eachiterationto guaranteeorvergenceto the maximal
photo-consisterghapeand(4) whendowe terminatecarv-
ing?

The choiceof the initial volumehasa considerablém-
pacton the outcomeof the reconstructiorprocesqFigure
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Figure 3. lllustration of the Maximal Photo-Consistent
ShapeTheorem. The sceneis viewed by four cameras
and consistsof ablack squarewhosesidesare “painted”
diffuse red, blue, orange, and green. The gray-shaded
regioncorrespondgo a shape)/ containingthe scene.In
this example,V* is a polygonal regionthat extendsbe-
yondthetrue sceneand whoseboundary isdefinedby the
polygonalsegmentsx, 3, v, andd. Whenthesesegments
are colored as shavn, V*'s projection is indistinguish-
ablefromthat of the true sceneand no photo-consistent
shapecan contain points outside )V*. The goal of the al-
gorithm in Section4isto computethis shapegiven)/, the
photographs,and the camerapositions. Note that V*'s
shapedependson the specificsceneradiance modeland
could be significantly differ ent for a similarly-colored,
non-diffuse sceneviewed fr om the samepositions.
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Figure4.Choosingtheinitial volumeV . If Vischoseno
simply excludea small circle around eachcamerain the
sceneof Figure 3, the maximal photo-consistentshape
becomesequal to V. This is becauseno point on V's
surfaceis visible by more than one cameraand, hence,
V is photo-consistent.

4). Neverthelessselectionof this volumeis beyond the
scopeof this paper;it will dependon the specific3D shape

recovery applicationandon informationaboutthe manner
in which theinput photographsvereacquired® Below we

consideragenerahlgorithmthat,given N photographand
anyinitial volumethatcontainsthe scenejs guaranteedo

find the (uniqgue)maximalphoto-consisterghapecontained
in thatvolume.

4.1 Reconstructionby SpaceCarving

Let V be an arbitrary finite volume that containsthe
scene. We represent) as a finite collection of voxels
v1,...,upn Whosesurface conformsto a radiancemodel
definedby a consisteng checkalgorithm consi st k().
Usingthis representatiorgeachcarvingiterationremovesa
singlevoxel from V.

The SubsetTheoremleadsdirectly to a methodfor se-
lecting the voxel to carvwe away from V' at eachiteration.
Specifically the propositiontells us that if a voxel v on
the surfaceof V is not photo-consistenthe volumeV =
VY — {v} muststill containthe maximal photo-consistent
shape.Hence,if only non photo-consistentoxels arere-
movedat eachiteration,the carnvedvolumeis guaranteetb
convergeto the maximalphoto-consisterghape Theorder
in which non-photo-consistenbxelsareexaminedandre-
movedis notimportantfor guaranteeingorrectnessCon-
vergenceo thisshapeoccursvhennonon-photo-consistent
voxel can be found on the surfaceof the carved volume.
Theseconsiderationdead to the following algorithm for
computingthe maximalphoto-consisterghape:

SpaceCarving Algorithm
Stepl: Initialize V to asupersebf thescene.

Step2: Repeatthe following stepsuntil a non-photo-consistent
voxel v is foundon the surfaceof V:

a. Project v to all photographsin Msy(v). Let
coly, ..., col; bethecolorsatv’s projectionin each
photographandlet £y, .. ., &; betheopticalrayscon-
nectingw to the correspondingpticalcenters.

b. Determine the photo-consistenc of v
consi st x(cols,...,colj, &1,...,&5).

Step3: If no non-photo-consistentoxel is found, setV* =V
andterminate. Otherwise,setY = V — {v} andcontinue
with Step2.

using

Thekey stepin thespacecarvingalgorithmis thesearch
andvoxel consisteng checkingof Step2. The following
propositiongives an upperboundon the numberof voxel
photo-consistenc checksthat must be performedduring
spacecarving:

SExamplesincludedefiningV to be equalto the visual hull or, in the
caseof acameramoving throughanervironment, 3 minusatubealong
thecameras path.
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Figure 5. Visiting voxelsin order of visibility. Sweep-
ing a planein the dir ection of increasing(decreasing)x
coordinate ensuresthat a voxel p will be visited before
every voxel g that it occludesfor all camerasto the left

(right) of p.

Proposition1 The total numberof required photo-consistency
chedks is boundedby N * M whee N is the numberof input
photgraphsand M is the numberof voxelsin theinitial (i.e., un-
carved)volume

Proof: Since(1) the photo-consisterycof a voxel v thatremains
on V’s surface for several carving iterations can changeonly
when Msy (v) changesdueto V's carving, and (2) Visy (v) ex-
pandsmonotonicallyasV is caned(Visibility Lemma) thephoto-
consisteng of v mustbechecledatmostV times.QED

4.2 Multi-P assVisibility Computation

In orderto implementthe SpaceCarvingAlgorithm, the
following threeoperationsperformedn Step2 of thealgo-
rithm, mustbe supported(1) determineSurf(V), (2) com-
puteVisy, (v) for eachvoxel v € V, and(3) checkto seeif
v is photo-consistentBecausecarving a single voxel can
affectglobalvisibility, it is essentiato beableto keeptrack
of visibility informationin awaythatmaybeefficiently up-
dated.

To reducevisibility computationswe proposea multi-
passalgorithmfor spacecarving.A passconsistof sweep-
ing a planethroughthe scenevolumeandtestingthe photo-
consisteng of voxels on that plane. The advantageof the
plane sweepapproachis that voxel are always visited in
a visibility-compatibleorder—if voxel v occludesy’, then
v Will necessarilybe visited beforev’. This propertyis
achieved by consideringonly the cameraghat are on one
sideof theplanein eachpassasshowvn in Figure5.

Specifically considertwo pointsp = (p,,py,p,) and
q = (g=, 4y, ¢-), suchthatp occludesy from acamerecen-
teredatc. p therefordies onaline segmentwith endpoints

q andc. One of the following inequalitiesmusttherefore
hold:

G <=p;<=gq; fori=uxy, orz (2)
c >=p; >=¢q; fori=uwm,y, orz (2)

Theseinequalitiessuggesthe following orderfor visiting
voxels: considevoxelsin orderof increasinge coordinate,
i.e., for a seriesof planesz = z1,z = x3,...,2 = x,
with z; increasing.For a givenplanez = z;, considerall
cameragcenteredat ¢ suchthate, < z;. Eg. (1), ensures
thatpointswill be visitedin orderof occlusion(i.e., p be-
fore ¢ with respecto ary camerac). By Eq. (2), thesame
holdstruewhentheplaneis sweptin orderof deceasingz
coordinate.

Obsenre that sweepingplanesin increasingor decreas-
ing = orderdoesnot treatthe casewherec, = p, = ¢,.
This problemmaybesolvedby addinganadditionalsweep
throughthe volumein either one of the positive or nega-
tive y or z direction. A moreseriousobjectionis thatthis
approactconsidersonly alimited setof camerasatatime.
Consequentlyit is possiblethata voxel will not be caned
eventhoughit is notphoto-consistentThis problemmaybe
amelioratedby sweepingthe spacein multiple directions,
i.e.,in increasing/decreasing y, andz directions,to min-
imize the chancethat a non-photo-consistentoxel is not
detected Alternatively, a moresophisticatediatastructure
could be usedto keeptrack of the camerasonsideredor
eachvoxel.

5 Experimental Results

We ranthe SpaceCarvingAlgorithm on severalimages
of a woodensculptureto evaluatethe performanceof the
multi-passalgorithm. The imageswere acquiredby plac-
ing the objecton a calibratedpan-tilt headandrotating it
in front of a camera.To facilitatethe carvingprocessthe
imageswere also thresholdedo remove backgroundpix-
els. While this stepis not strictly necessaryit is useful
to eliminatespuriousbackground-coloregoxels scattered
throughouthescenevolume.

A Lambertian model was used for the Consisteng
CheckCriterion, i.e., it wasassumedhat a voxel projects
to pixelsof thesamecolorin everyimage.In particular we
thresholdedhe standarddeviation of the image pixels to
determinewhetheror not a voxel shouldbe carved. A high
threshold 18%averageRGB componengerror)wasusedto
compensatéor changesn illumination dueto objectrota-
tion. Consequentlysomefine detailswerelostin thefinal
reconstruction.The initial volume,V, waschosento be a
solidcubecontaininghesculpture Figure6 shavsselected
inputimagesandnew views of the reconstruction)*. As
canbe seenfrom theseimagesthereconstructiorcaptures
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Figure 6. Reconstructionof a wood sculpture. One of 21 input imagesis shown (a), along with views of the reconstruction

from similar (b) and overhead (c) views.

the shapeof the sculpturequite accurately althoughfine
detailslike thewood grainareblurred. With the exception
of afew strayvoxels,the reconstructions very smooth,in

spite of the fact that no smoothnessiaswas usedby the
algorithm. Thereconstructionwhich requiredatotal of 24
sweepghroughthevolume,contains22000voxels. It took
8 minutesto compute)* on a Silicon Graphicdndy work-

station.

6 Concluding Remarks

The useof photo-consistencasa criterionfor recover-
ing 3D shapebringsabouta qualitative changen the way
in which shaperecovery algorithmsare designedand an-
alyzed. We have shawn thatit allows usto (1) build 3D
shapesthat allow faithful reproductionof all input pho-
tographs(2) resohe the complex interactionsbetweenoc-
clusion,parallax,shadingandtheir effectson arbitrarycol-
lectionsof photograph®f a sceneand(3) follow a “least
commitment’approachio 3D shapaecorvery.

Current researchdirections include (1) the use of
surface-basedhethodsor shaperecovery, (2) useof a pri-
ori shapeconstraintdo refinethemaximalphoto-consistent
shape(3) analysisof thetopologicalstructureof thefamily
of photo-consisteréhapesand(4) developmenf optimal
spacecarvingalgorithms.
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