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Abstract

In this paperweconsidertheproblemof computingthe
3D shapeof an unknown,arbitrarily-shapedscenefrom
multiplecolor photographstakenat knownbut arbitrarily-
distributedviewpoints. By studyingthe equivalenceclass
of all 3D shapesthat reproducethe input photographs,we
prove the existenceof a specialmemberof this class,the
maximalphoto-consistentshape, that (1) canbecomputed
from an arbitrary volumethat containsthe scene, and (2)
subsumesall other members of this class. We thengive a
provably-correct algorithm for computingthis shapeand
presentexperimentalresultsfrom applyingit to the recon-
structionof a real 3D scenefromseveral photographs.The
approachisspecificallydesignedto (1)build 3Dshapesthat
allow faithful reproductionof all inputphotographs,(2) re-
solvethecomplex interactionsbetweenocclusion,parallax,
shading, and their effectson arbitrary collectionsof pho-
tographsof a scene, and (3) follow a “least commitment”
approach to 3D shaperecovery.

1 Intr oduction

Little is currentlyknown abouthow thecombinationof
occlusion,shading,andparallaxin � arbitraryphotographs
of a sceneconstrainthe scene’s shape.The reasonis that
mostapproachesto shaperecovery have beenfollowing a
principle of mostcommitment: they employ asmany a pri-
ori assumptionsasneededto ensurethatshape-from-stereo,
shading,or occludingcontoursis well-posedwhenconsid-
eredin isolation. Examplesincludetheuseof smoothness
constraintsfor regularization[1], the useof small stereo
baselinesfor minimizing the effect of occlusions[2], and
the use of texture-lesssurfacesfor contour-basedrecon-
struction[3,4]. Unfortunately, sinceno shapeinformation
about the sceneis available when theseassumptionsare
made,it is impossibleto predicttheir effect on thefinal re-
construction.

In contrastto theseapproaches,we considerthe shape
recovery problem from a completely different perspec-
tive, following a leastcommitmentprinciple to recover 3D
shape:our goal is to extract asmuch informationaspos-

sible aboutthe scenefrom arbitrary photographswithout
makingany assumptionsaboutthe scene’s 3D shape,and
without relying on theexistenceof relevant featuresin the
input photographs.We achieve this by re-examining the
shaperecoveryproblemfrom first principlesandanswering
threequestions:

� How can we analyzethe family of photo-consistent
shapes, i.e., the shapesthat, whenassignedappropri-
atereflectancepropertiesandre-projectedinto all the
originalphotographs,reproducethosephotographs?

� Is it possibleto computea shapefrom this family and
if so,whatis thealgorithm?

� What is the relationshipof the computedshapeto all
otherphoto-consistentshapes?

Thekey observationusedin ourwork is thatthesequestions
becomeparticularly easyto answerwhen sceneradiance
belongsto a generalclassof radiancefunctionswe call lo-
cally computable. Thisclasscharacterizesscenesfor which
global illuminationeffectssuchasshadows, transparencies
andinter-reflectionscanbeignored,andis sufficiently gen-
eral to includesceneswith parameterizedradiancemodels.
Using this observation as a startingpoint, we show how
to computea shape,startingfrom anarbitraryvolumethat
boundsthescene,that is photo-consistentwith the � pho-
tographs.Weshow thatthecomputedshapeis preciselythe
shapedefinedby theocclusion,shading,andparallaxcues
andthat it canbe computedwithout detectingimagefea-
turesasanintermediatestep.Theonly requirementsarethat
(1) the camerasarecalibrated,(2) their positionis known
for all input photographs,and(3) sceneradiancefollows a
known, locally computableradiancefunction. Experimen-
tal resultsillustrating our method’s performancearegiven
for a geometrically-complex realscene.

One of the main difficulties in recovering shapefrom
multiple photographsof a 3D sceneis that radiance,self-
occlusion,as well as parallax all contribute to a photo-
graph’sultimatedependenceon viewpoint. A wealthof re-
searchon stereo[5], shape-from-shading[6–8] andshape-
from-contour[3,9–11] illustratesthe usual paradigmfor
dealingwith thisdifficulty—studyingasingle3D shapecue
underthe assumptionsthat (1) othersourcesof variability
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canbe safely ignored,and(2) the input photographscon-
tain featuresrelevant to that cue. Implicit in this work is
theview thatuntanglingparallax,self-occlusionandshad-
ing effectsin � arbitraryphotographsof a sceneleadsto a
problemthatis eitherunder-constrainedor intractable.Here
wechallengethisview by showing thatshaperecoveryfrom
� arbitraryphotographsof anunknown sceneis not only a
tractableproblembut hasa simplesolutionaswell.

Reconstructionby leastcommitmenthasseveraladvan-
tagesover existing methods. First, it allows us to delay
theapplicationregularizationtechniquesuntil thevery end
of the reconstructionprocess,when their implicationson
photo-consistency can be thoroughly resolved. This ap-
proachis similar in spirit to “stratification” approachesof
shaperecovery [12,13], in which 3D shapeis first recov-
eredmoduloanequivalenceclassof reconstructionsandis
thenrefinedwithin that classat subsequentstagesof pro-
cessing.Second,becausethereconstructedsceneis photo-
consistent,it ensuresthatits projectionswill closelyresem-
ble photographsof the true scene. This propertyis espe-
cially importantin computergraphics,virtual reality, and
tele-presenseapplications[2,11,14,15] wherethe photo-
realismof constructed3D modelsis of primaryimportance.
Third, it is theonly method,to ourknowledge,thatdoesnot
putany restrictionson thecamerapositionsfrom which the
photographscanbeacquired.

Our approachextendsand generalizesprevious work
by providing a detailedgeometricalanalysisof the family
of shapesthat arephoto-consistentwith � arbitrarypho-
tographs. This family definesthe shapeambiguity inher-
ent in theinput photographsandtells uspreciselywhat3D
shapeinformationaboutthe scenewe canextract without
imposinga priori assumptions,asidefrom asceneradiance
model.Ouranalysisthereforesharessimilarobjectiveswith
studiesof the ambiguitiesin structure-from-motionalgo-
rithms[16], eventhoughthegeometryandtechniquesem-
ployed hereare completelydifferent. Moreover, the spe-
cial geometricalpropertiesof this family give a way to ex-
tract this 3D shapeinformation using discretevolumetric
algorithm that iteratively “carves” space. In this respect,
our approachbearsstrongsimilarity to previous volume-
basedreconstructionmethods.Indeed,theresultspresented
here representa direct generalizationof silhouette-based
techniqueslike volume intersection[4,10] to the caseof
grayscaleandfull-color images,andextendvoxel coloring
[17] andplenopticdecomposition[18] to the caseof arbi-
trarycamerageometries.

Theremainderof thispaperis structuredasfollows.Sec-
tion 2 analyzesthe constraintsthat a set of photographs
placeon scenestructure,given a known model of scene
radiance. Based these constraints,a theory of photo-
consistency is developedthat providesa basisfor charac-
terizingthespaceof all reconstructionsof a scene.Section

(a) (b)

(c)

Figure1.Thescenevolumeandcameradistrib ution cov-
ered by our analysiscan both be completely arbitrary .
Examplesinclude (a) a 3D envir onment viewed fr om a
collection of camerasthat are arbitrarily dispersedin
fr eespace,and (b) a 3D object viewedby a singlecam-
era moving around it. (c) Viewing geometry.

3 usesthis theoryto derive thenotionof a maximalphoto-
consistentshapewhichprovidesthetightestpossiblebound
on the spaceof all photo-consistentscenereconstructions.
Section4 presentsour leastcommitmentapproachto scene
reconstructionandSection5 concludeswith experimental
resultson realimages.

2 Picture Constraints

Let � be a 3D scenedefinedby a finite, opaque,and
possiblydisconnectedvolumein space.We assumethat �
is viewedunderperspective projectionfrom � known po-
sitions ������	
	
	����
� in ������� (Figure1). The radianceof
a point � on the scene’s surfaceis a function rad������� that
mapsevery orientedray � throughthe point to the color
of light reflectedfrom � along � . We usethe term shape-
radiancescenedescriptionto denotethe scene� together
with an assignmentof a radiancefunction to every point
on its surface.Thisdescriptioncontainsall theinformation
neededto reproduceaphotographof thescenefor any cam-
eraposition. In general,sucha photographwill containa
potentiallyemptysetof backgroundpixelsthatarenot im-
agesof any scenepoint.

Everyphotographof a 3D scenetakenfrom a known lo-
cationpartitionsthesetof all possibleshape-radiancescene
descriptionsinto two families,thosethatreproducethepho-
tographand thosethat do not. We characterizethis con-
straint for a given shapeanda given radianceassignment
by thenotionof photo-consistency:
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Definition 1 (Point Photo-Consistency)A point � that is visible
from � is photo-consistentwith thephotographat � if (1) � doesnot
project to a backgroundpixel, and (2) thecolor at � ’s projection
is equalto rad� �"!�#�%$ .
Definition 2 (Shape-RadiancePhoto-Consistency)A shape-
radiancescenedescription is photo-consistentwith the photo-
graph at � if all visible points are photo-consistentand every
non-backgroundpixel is theprojectionof a point in & .

Definition 3 (ShapePhoto-Consistency)A shape & is photo-
consistentwith the photographat � if there is an assignmentof
radiancefunctionsto thevisiblepointsof & thatmakestheresult-
ing shape-radiancedescriptionphoto-consistent.

Our goal is to providea concretecharacterizationof the
family of all scenesthatarephoto-consistentwith � input
photographs.We achieve this by makingexplicit the two
waysin which photo-consistency with � photographscan
constrainascene’sshape.

2.1 Background Constraints

Photo-consistency requiresthat no point of � projects
to a backgroundpixel. If a photographtakenat position �
containsidentifiablebackgroundpixels, this constraintre-
stricts � to a conedefinedby � andthephotograph’s non-
backgroundpixels.Given � suchphotographs,thesceneis
restrictedto thevisualhull, whichis thevolumeof intersec-
tion of their correspondingcones[4,10].

When no a priori information is available about the
scene’s radiance,the visual hull definesall the shapecon-
straintsin the input photographs.This is becausethereis
alwaysanassignmentof radiancefunctionsto thepointson
thesurfaceof thevisualhull thatmakestheresultingshape-
radiancedescriptionphoto-consistentwith the � inputpho-
tographs.1 Thevisualhull canthereforebethoughtof asa
“least commitmentreconstruction”of the 3D scene—any
further refinementof this volumemustnecessarilyrely on
additionalassumptionsaboutthescene’sshapeor radiance.

While visualhull reconstructionhasoftenbeenusedas
a methodfor recovering3D shapefrom photographs[10],
thepictureconstraintscapturedby thevisualhull only ex-
ploit informationfrom thebackgroundpixels in thesepho-
tographs.Unfortunately, theseconstraintsbecomeuseless
whenphotographscontainno backgroundpixels (i.e., the
visualhull degeneratesto ��� ) or whenbackgroundidenti-
fication cannotbe performedaccurately. Below we study
the pictureconstraintsprovidedby non-backgroundpixels
whenthescene’s radianceis restrictedto a specialclassof
radiancemodels. The resultingpictureconstraintswill in
generalleadto photo-consistentscenesthat arestrict sub-
setsof thevisualhull.

1For example,setrad��' ()�*,+ equalto thecolorat ) ’sprojection.

2.2 RadianceConstraints

Thecolorof light reflectedin differentdirectionsfrom a
singlescenepointusuallyexhibitsacertaindegreeof coher-
encefor physicalscenesthatarenot transparentor mirror-
like. Thiscoherenceprovidesadditionalpictureconstraints
that dependentirely on non-backgroundpixels. Here we
exploit this ideaby focusingon sceneswhoseradiancesat-
isfiesthefollowing criterion:

Consistency Check Criterion: An algorithm
consist -.��$ is available that takes as input at
least / 01032 colors ��46587:9%;%;:;%9<�=4�5>- , / vectors? 7 9=;%;:;%9 ? - , and the light source positions (non-
Lambertiancase),and decideswhetherit is possible
for asinglesurfacepoint to reflectlight of color �=4�5A@ in
direction

? @ simultaneouslyfor all BDCFE69%;:;%;=9G/ .

Givenashape� , theConsistency CheckCriteriongivesusa
waytoestablishthephoto-consistency of everypointon � ’s
surface. This criterion definesa generalclassof radiance
models,which we call locally computable, thatarecharac-
terizedby a locality property: the radianceat any point is
independentof theradianceof all otherpointsin thescene.
Theclassof locally-computableradiancemodelstherefore
restrictsour analysisto sceneswhereglobal illumination
effectssuchastransparency, inter-reflection,andshadows
canbe ignored. This classsubsumesLambertianradiance
( HJILK ) aswell asradiancemodelsthatcanbeexpressed
in closedform by a smallnumberof parameters.2

Whenana priori locally computableradiancemodelis
establishedfor aphysical3D scene,themodelprovidessuf-
ficient informationto determinewhethera givenshape� is
not photo-consistentwith a collectionof photographs.The
useof radiancemodelsthatarelocally consistentis impor-
tant in this context becausethenon-photo-consistency of a
shape� tells usa greatdealabouttheshapeof the under-
lying scene.This in turn imposesa very specialstructure
on the family of photo-consistentshapes.We usethe fol-
lowing two lemmasto make this structureexplicit. These
lemmasprovidetheanalyticaltoolsneededto describehow
the non-photo-consistency of a shape� affectsthe photo-
consistency of its subsets(Figure2):

Lemma 1 (Visibility Lemma) Let � be a point on & ’s surface,
Surf�M&N$ , andlet VisOP�Q�R$ bethecollectionof inputphotographsin
which & doesnot occlude� . If &TSPUV& is a shapethat alsohas�
on its surface, VisO �Q�R$TW VisOYX �Q�R$ .
Proof: Since& S is asubsetof & , no pointof & S canlie between�
andthecamerascorrespondingto VisO �Q�R$ . QED

2Specificexamplesinclude(1) usinga mobilecameramountedwith a
light sourceto capturephotographsof a scenewhosereflectancecanbe
expressedin closedform, and(2) usingmultiple camerasto capturepho-
tographsof anapproximatelyLambertiansceneunderarbitraryunknown
illumination(Figure1).
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(a) (b)

Figure2. (a) Illustration of the Visibility Lemma. (b) Il-
lustration of the Non-Photo-ConsistencyLemma. If � is
non-photo-consistentwith the photographsat � � ���
Z���� � ,
it is non-photo-consistentwith the entire set Vis[\�]�^� ,
which alsoincludes �:_ .

Lemma 2 (Non-Photo-ConsistencyLemma) If �a` Surf�M&N$ is
not photo-consistentwith a subsetof VisOP�Q�R$ , it is not photo-
consistentwith VisO �Q�R$ .

Intuitively, Lemmas1 and2 suggestthatbothvisibility
andnon-photo-consistencyexhibit acertainformof “mono-
tonicity:” the Visibility Lemmatells us that the collection
of photographsfrom whichasurfacepoint is visiblestrictly
expandsfor nestedsubsetsof � that contain the point
(Figure 2(a)). Analogously, the Non-Photo-Consistency
Lemma,which follows asa directconsequenceof thedef-
inition of photo-consistency, tells us that eachnew photo-
graphcanbe thoughtof asan additionalconstrainton the
photo-consistency of surfacepoints—themorephotographs
areavailable,themoredifficult it is for thosepointstomain-
tain their photo-consistency. Furthermore,oncea surface
point loosesits photo-consistency no new photographsof
thescenecanre-establishit.

Thekey consequenceof Lemmas1 and2 is givenby the
following theoremwhichshowsthatnon-photo-consistency
atapointrulesoutthephoto-consistency of anentirefamily
of shapes:

Theorem1 (SubsetTheorem) If �b` Surf�M&c$ is not photo-
consistent,nophoto-consistentsubsetof & contains� .

Proof: Let &dSeUf& be a shapethat contains� . Since � lies on
the surfaceof & , it mustalsolie on the surfaceof & S . From the
Visibility Lemmait followsthatVisOP�Q�R$TW VisOYX �Q�R$ . Thetheorem
now follows by applying the Non-Photo-Consistency Lemmato
& S andusingthelocality propertyof locally computableradiance
models.QED

We explore the ramificationsof the SubsetTheoremin
the next sectionwherewe provide an explicit characteri-
zationof the shapeambiguitiesinherentin the input pho-
tographs.

3 The Maximal Photo-ConsistentShape

The family of all shapesthat arephoto-consistentwith
a collectionof � photographsdefinestheambiguityinher-

ent in theproblemof recovering3D shapefrom thosepho-
tographs.This is becauseit is impossibleto decide,based
on thosephotographsalone,which photo-consistentshape
is theshapeof the truescene.Whenusingphotographsto
recover theshapeof a 3D scene,this ambiguityraisestwo
questions:

� Is it possible to compute a shape that is photo-
consistentwith � photographsand,if so,what is the
algorithm?

� If a photo-consistentshapecanbecomputed,how can
we relatethat shapeto all otherphoto-consistent3D
interpretationsof thescene?

Our answerto both questionsrestson the following the-
orem. Theorem2 shows that for any shape � there is
a unique photo-consistentshapethat subsumesall other
photo-consistentshapesin � (Figure3):

Theorem2 (Maximal Photo-ConsistentShapeTheorem)
Let & be an arbitrary setand let &\g be the union of all photo-
consistentsubsetsof & . Theshape& g is photo-consistentand is
calledthemaximalphoto-consistentshape.

Proof: (By contradiction)Suppose& g is not photo-consistentand
let � beanon-photo-consistentpointon its surface.Since�h`h&\g ,
thereexists a photo-consistentshape,& S Ui&cg , that alsohas �
on its surface. It follows from theSubsetTheoremthat &TS is not
photo-consistent.QED

Theorem2 provides an explicit relation betweenthe
maximalphoto-consistentshapeandall otherpossible3D
interpretationsof the scene: the theoremguaranteesthat
every such interpretationis a refinementof the maximal
photo-consistentshape. The maximal photo-consistent
shapethereforerepresentsa least-commitmentreconstruc-
tion of the scene.We describea volumetricalgorithmfor
computingthisshapein thenext section.

4 Least-CommitmentReconstruction

An important featureof the maximal photo-consistent
shapeis thatit canactuallybecomputedusingasimple,dis-
cretealgorithmthat “carves” spacein a well-definedway.
Givenaninitial volume � thatcontainsthescene,thealgo-
rithm proceedsby iteratively removing (i.e. “carving”) por-
tionsof thatvolumeuntil it becomesidenticalto themax-
imal photo-consistentshape,�1j . Thealgorithmcanthere-
forebefully specifiedby answeringfour questions:(1) how
doweselecttheinitial volume � , (2) how shouldwerepre-
sentthatvolumeto facilitatecarving,(3) how do we carve
at eachiterationto guaranteeconvergenceto the maximal
photo-consistentshape,and(4) whendoweterminatecarv-
ing?

Thechoiceof the initial volumehasa considerableim-
pacton the outcomeof the reconstructionprocess(Figure

4



Figure 3. Illustration of the Maximal Photo-Consistent
ShapeTheorem. The sceneis viewed by four cameras
and consistsof a black squarewhosesidesare“painted”
diffuse red, blue, orange, and green. The gray-shaded
regioncorrespondsto a shape� containing the scene.In
this example, ��j is a polygonal region that extendsbe-
yondthetrue sceneandwhoseboundary isdefinedby the
polygonalsegmentskl�,mn�Go , and p . Whenthesesegments
are colored as shown, ��j ’s projection is indistinguish-
able fr om that of the true sceneand nophoto-consistent
shapecancontain points outside �1j . The goalof the al-
gorithm in Section4isto computethis shape,given � , the
photographs,and the camerapositions. Note that � j ’s
shapedependson the specificsceneradiancemodeland
could be significantly differ ent for a similarly-colored,
non-diffusesceneviewedfr om the samepositions.

Figure4.Choosingthe initial volume � . If � is chosento
simply excludea small circlearound eachcamerain the
sceneof Figure 3, the maximal photo-consistentshape
becomesequal to � . This is becauseno point on � ’s
surface is visible by more than onecameraand, hence,
� is photo-consistent.

4). Nevertheless,selectionof this volume is beyond the
scopeof this paper;it will dependon thespecific3D shape

recovery applicationandon informationaboutthe manner
in which the input photographswereacquired.3 Below we
considerageneralalgorithmthat,given � photographsand
any initial volumethatcontainsthescene,is guaranteedto
find the(unique)maximalphoto-consistentshapecontained
in thatvolume.

4.1 Reconstructionby SpaceCarving

Let � be an arbitrary finite volume that containsthe
scene. We represent� as a finite collection of voxelsq ����	
	
	�� q�r whosesurfaceconformsto a radiancemodel
definedby a consistency checkalgorithmconsist st�u� .
Usingthis representation,eachcarvingiterationremovesa
singlevoxel from � .

The SubsetTheoremleadsdirectly to a methodfor se-
lecting the voxel to carve away from � at eachiteration.
Specifically, the propositiontells us that if a voxel q on
the surfaceof � is not photo-consistent,the volume �vI
�w�yx q"z must still containthe maximal photo-consistent
shape.Hence,if only non photo-consistentvoxels arere-
movedateachiteration,thecarvedvolumeis guaranteedto
convergeto themaximalphoto-consistentshape.Theorder
in which non-photo-consistentvoxelsareexaminedandre-
movedis not importantfor guaranteeingcorrectness.Con-
vergenceto thisshapeoccurswhennonon-photo-consistent
voxel can be found on the surfaceof the carved volume.
Theseconsiderationslead to the following algorithm for
computingthemaximalphoto-consistentshape:

SpaceCarving Algorithm

Step1: Initialize & to asupersetof thescene.

Step2: Repeatthe following stepsuntil a non-photo-consistent
voxel { is foundon thesurfaceof & :

a. Project { to all photographs in VisOP�M{�$ . Let
��465 7 9:;%;%;=9|�=4�5 } be the colorsat { ’s projectionin each
photographandlet

? 7=9%;:;%;%9 ? } betheopticalrayscon-
necting{ to thecorrespondingopticalcenters.

b. Determine the photo-consistency of { using
consist - �M�=4�5 7 9%;=;%;:9|�=4�5Q}~9 ? 7 9%;:;=;%9 ? }
$ .

Step3: If no non-photo-consistentvoxel is found, set & g C�&
andterminate.Otherwise,set &�Cf&��V�
{ � andcontinue
with Step2.

Thekey stepin thespacecarvingalgorithmis thesearch
andvoxel consistency checkingof Step2. The following
propositiongivesan upperboundon the numberof voxel
photo-consistency checksthat must be performedduring
spacecarving:

3Examplesincludedefining � to beequalto the visualhull or, in the
caseof acameramoving throughanenvironment, �P� minusa tubealong
thecamera’s path.
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Figure 5. Visiting voxels in order of visibility . Sweep-
ing a plane in the dir ection of increasing(decreasing)�
coordinate ensuresthat a voxel � will be visited before
every voxel � that it occludes,for all camerasto the left
(right) of � .

Proposition1 The total numberof required photo-consistency
checks is boundedby 2���� where 2 is the numberof input
photographsand � is thenumberof voxelsin theinitial (i.e., un-
carved)volume.

Proof: Since(1) thephoto-consistency of a voxel { that remains
on & ’s surface for several carving iterations can changeonly
when VisO��M{�$ changesdue to & ’s carving, and (2) VisOd�M{�$ ex-
pandsmonotonicallyas & is carved(Visibility Lemma),thephoto-
consistency of { mustbecheckedat most 2 times.QED

4.2 Multi-P assVisibility Computation

In orderto implementtheSpaceCarvingAlgorithm, the
following threeoperations,performedin Step2 of thealgo-
rithm, mustbesupported:(1) determineSurf����� , (2) com-
puteVis[ � q � for eachvoxel q�� � , and(3) checkto seeifq is photo-consistent.Becausecarvinga singlevoxel can
affectglobalvisibility, it is essentialto beableto keeptrack
of visibility informationin awaythatmaybeefficiently up-
dated.

To reducevisibility computations,we proposea multi-
passalgorithmfor spacecarving.A passconsistsof sweep-
ing aplanethroughthescenevolumeandtestingthephoto-
consistency of voxelson that plane. The advantageof the
planesweepapproachis that voxel are always visited in
a visibility-compatibleorder—if voxel q occludesqY� , thenq will necessarilybe visited before qY� . This property is
achieved by consideringonly the camerasthat areon one
sideof theplanein eachpass,asshown in Figure5.

Specifically, considertwo points �iI��]�"�����"�#���"��� and
��I���� � ��� � �=� � � , suchthat � occludes� from a cameracen-
teredat � . � thereforelies ona line segmentwith endpoints

� and � . Oneof the following inequalitiesmust therefore
hold:

�
�N�eIa�"�N�eI��
�f�D���.�NI��d�, D�T���.¡ (1)

�
�N¢eIa�"�N¢eI��
�f�D���.�NI��d�, D�T���.¡ (2)

Theseinequalitiessuggestthe following orderfor visiting
voxels:considervoxelsin orderof increasing� coordinate,
i.e., for a seriesof planes�fI£�D�~�,�fI¤� Z �
	
	�	
���wI£�"¥
with � � increasing.For a givenplane �VI�� � , considerall
camerascenteredat � suchthat �
�V��� � . Eq. (1), ensures
thatpointswill bevisited in orderof occlusion(i.e., � be-
fore � with respectto any camera� ). By Eq. (2), thesame
holdstruewhentheplaneis sweptin orderof decreasing�
coordinate.

Observe that sweepingplanesin increasingor decreas-
ing � orderdoesnot treatthe casewhere � � I�� � I¦� � .
Thisproblemmaybesolvedby addinganadditionalsweep
throughthe volume in eitheroneof the positive or nega-
tive   or ¡ direction. A moreseriousobjectionis that this
approachconsidersonly a limited setof camerasat a time.
Consequently, it is possiblethata voxel will not becarved
eventhoughit is notphoto-consistent.Thisproblemmaybe
amelioratedby sweepingthe spacein multiple directions,
i.e., in increasing/decreasing� ,   , and ¡ directions,to min-
imize the chancethat a non-photo-consistentvoxel is not
detected.Alternatively, a moresophisticateddatastructure
could be usedto keeptrack of the camerasconsideredfor
eachvoxel.

5 Experimental Results

We rantheSpaceCarvingAlgorithm on several images
of a woodensculptureto evaluatethe performanceof the
multi-passalgorithm. The imageswereacquiredby plac-
ing the objecton a calibratedpan-tilt headandrotating it
in front of a camera.To facilitatethe carvingprocess,the
imageswerealso thresholdedto remove backgroundpix-
els. While this step is not strictly necessary, it is useful
to eliminatespuriousbackground-coloredvoxels scattered
throughoutthescenevolume.

A Lambertian model was used for the Consistency
CheckCriterion, i.e., it wasassumedthat a voxel projects
to pixelsof thesamecolor in every image.In particular, we
thresholdedthe standarddeviation of the imagepixels to
determinewhetheror not a voxel shouldbecarved.A high
threshold(18%averageRGBcomponenterror)wasusedto
compensatefor changesin illumination dueto objectrota-
tion. Consequently, somefine detailswerelost in thefinal
reconstruction.The initial volume, � , waschosento be a
solidcubecontainingthesculpture.Figure6 showsselected
input imagesandnew views of thereconstruction,�1j . As
canbeseenfrom theseimages,thereconstructioncaptures
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(a) (b) (c)

Figure 6. Reconstructionof a wood sculpture. One of 21 input imagesis shown (a), along with viewsof the reconstruction
fr om similar (b) and overhead(c) views.

the shapeof the sculpturequite accurately, althoughfine
detailslike thewoodgrainareblurred. With theexception
of a few strayvoxels,thereconstructionis very smooth,in
spiteof the fact that no smoothnessbiaswasusedby the
algorithm.Thereconstruction,which requireda total of 24
sweepsthroughthevolume,contains22000voxels. It took
8 minutesto compute��j on a SiliconGraphicsIndy work-
station.

6 Concluding Remarks

Theuseof photo-consistency asa criterionfor recover-
ing 3D shapebringsabouta qualitative changein theway
in which shaperecovery algorithmsare designedandan-
alyzed. We have shown that it allows us to (1) build 3D
shapesthat allow faithful reproductionof all input pho-
tographs,(2) resolve thecomplex interactionsbetweenoc-
clusion,parallax,shading,andtheireffectsonarbitrarycol-
lectionsof photographsof a scene,and(3) follow a “least
commitment”approachto 3D shaperecovery.

Current researchdirections include (1) the use of
surface-basedmethodsfor shaperecovery, (2) useof a pri-
ori shapeconstraintsto refinethemaximalphoto-consistent
shape,(3) analysisof thetopologicalstructureof thefamily
of photo-consistentshapes,and(4) developmentof optimal
spacecarvingalgorithms.
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