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Abstract 

 
Code coverage is a common measure for 

quantitatively assessing the quality of software testing. 
Code coverage indicates the fraction of code that is 
actually executed by tests in a test suite. While code 
coverage has been around since the 60's there has 
been little work on how to effectively analyze code 
coverage data measured in system tests. Raw data of 
this magnitude, containing millions of data records, is 
often impossible for a human user to comprehend and 
analyze.  Even drill-down capabilities that enable 
looking at different granularities starting with 
directories and going through files to lines of source 
code are not enough. 

Substring hole analysis is a novel method for 
viewing the coverage of huge data sets. We have 
implemented a tool that enables automatic substring 
hole analysis. We used this tool to analyze coverage 
data of several large and complex IBM software 
systems. The tool identified coverage holes that 
suggested interesting scenarios that were untested.  

  
 
1. Introduction 
 

Code coverage may be presented at several 
granularities. An example is starting with directories, 
then going through files, then functions, and finally 
source code statements. At each level we can have 
color-coded representations of the coverage. Presenting 
coverage data according to the hierarchical structure of 
the source code enables drilling down from directories 
to lines of code. However, the missing coverage is 
frequently not classified according to the 
predetermined hierarchy. For example, the code 
relating to execution on specific hardware platforms, to 
error paths, or to the handling of specific data types 
may cut across multiple elements of the hierarchy. We 
have seen cases where error paths that constitute more 
than twenty percent of the source code were not tested 
at all. However, this fact was not obvious from the 
coverage report of the system tests because the error 
handling code was evenly spread throughout the code. 

In addition, searching through the predetermined 
hierarchy is often tedious as the hierarchy might not 
divide the coverage tasks evenly. 

Substring hole analysis aggregates and presents 
coverage information based on semantic similarities 
between source code elements, such as function names, 
rather than on the hierarchical structure of the source 
code. Semantic similarities between source code 
elements are determined by analyzing the names of the 
elements and identifying substrings that are common to 
multiple names. Test coverage information is 
aggregated and presented per substring rather than per 
source code element. Because the names given to 
software source code elements are usually indicative of 
their semantic meaning, source code elements with 
similar names are often associated with a common 
topic or context. As such, aggregating and presenting 
coverage information per substring provides the user 
with insight on aspects of the source code that lack 
coverage.  

Reporting holes (i.e., coverage information per 
substrings) is challenging. There are many possible 
substrings, but they are often meaningless. 
Furthermore, users are typically willing to examine 
only a few results, so effective ranking of holes is 
crucial. However, different factors influence the risk 
that a hole represents. Examples include the number of 
coverage tasks in a hole and the percentage of coverage 
of a hole. These are similar to the support and 
confidence measures that are used in creating 
association rules [2]. These are multiple dimensions 
that the tool collapses into a linear order.  

We ran substring hole analysis on several large IBM 
systems. The tool outperformed manual inspection by 
domain experts. While substring hole analysis is 
subjective by nature, our tool provides useful results 
and even suggests areas that lack coverage that the 
domain experts overlook. The tool is part of our 
coverage analysis tool FoCuS [1]. 
 
2. Definitions and tool description 
 

A coverage task is identified by a string. A 
coverage task is covered if the code segment that it 
represents is executed. 
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The input to the substring hole analysis tool is a 
set of coverage tasks presented as character strings and 
the number of times that each task was covered. The 
coverage tasks are usually names of functions. For 
initial reports, it is sufficient to have a binary counter 
for each task indicating whether it was covered. An 
example of a single coverage task is 
“Exception.firm.io, 0”. 

A hole is defined by a given string. A hole is the set 
of coverage tasks for which it is a substring.    

The output of the substring hole analysis tool is a 
ranked set of holes along with coverage data for each 
hole. For example, if a line of output in the coverage 
report for functions is “Exception, 912, 907”, it means 
that there are 912 functions whose names contain the 
“Exception” substring, 907 of which were not covered. 

Suggesting holes consists of two main challenges. 
Section 2.1 provides details of how our tool deals with 
the first challenge of identifying holes. Section 2.2 
discusses the second challenge of prioritizing the 
identified holes for display. Section 2.3 briefly 
discusses tool parameters that influence the ranking 
schemes applied by the tool. 

 
2.1. Identifying holes 
 
Identifying holes means defining which substrings to 
examine. Naively, all possible substrings would be 
considered. However, we find it effective to prefer 
strings that have a semantic meaning. This heuristic 
eliminates much noise for the user and improves the 
tool’s performance. 
Fortunately, most programming styles make a 
distinction between words in names, either by 
introducing a delimiter such as '_', or by changing the 
letter case. The following rules define substrings to 
consider:  
1. Characters are classified as digits, delimiters, 

uppercase letters, and lowercase letters. 
2. Scanning an identifier from the left, a new 

substring starts whenever the characters change 
classes. 

3. An exception to #2 is that the last of a sequence of 
uppercase letters moves to the beginning of the 
next substring if it starts with a lowercase letter. 

This approach has an additional advantage of reducing 
computation time by avoiding overlapping substrings. 

The tool also supports defining holes using two, 
possibly disjoint, substrings. We found this useful in 
detecting holes in operations that were uncovered by 
one component but not by another. E.g., 
"Cache*Callback" functions may be covered, but 
"Disk*Callback" functions may be uncovered. If 

"Disk", "Cache", and "Callback" by themselves are not 
holes that will be ranked highly, two substrings are 
needed. Our experiments did not show a need for 
combining more than two substrings. 
 
2.2. Ranking holes 
 
Typically, users only consider the first few holes, so the 
order of presentation is very important. This is not 
trivial: Is a hole of 900 out of 1000 more important 
than 100 out of 100?  When “Exception” defines a hole 
of 500 out of 520 and “Exception.firm” defines a hole 
of 450 out of 450, which of them do you show to the 
user (further, assume that the string “Exception.soft” 
has coverage of 50 out of 70)? 

There are a number of considerations to take into 
account when ranking holes: 
� The number of tasks the hole represents  
� The percentage of uncovered tasks  
� The existence of similar holes 
� Whether the hole cuts across the structured 

hierarchy of the program 
� The length of the substring that represents the hole 
� Whether it is possible to detect semantically 

meaningful substrings (see discussion in Section 1) 
We have come up with a number of ranking schemes, 
implemented them all, and are currently studying and 
evaluating them. We believe that there is no single 
ranking scheme that is best. Our experience indicates 
that different users have different preferences. 
 
2.3. Setting parameters 
 

The tool supports various hole ranking schemes. A 
user may set minimum thresholds that influence the 
ranking scheme. Alternatively, a user may choose not 
to change the tool defaults. The user may set the upper 
and lower limits on the length of the substring that 
embodies the hole. Usually the minimum is between 
four and six, as lower than that may not be a 
meaningful name. The user may choose a minimum 
size of a hole, i.e., the number of functions that contain 
this substring. For example, if the user chooses 10, the 
tool does not consider any substring that belongs to less 
than ten functions. The last threshold is the percentage 
of the uncovered functions. We have different opinions 
and the number chosen is between 70% and 95%.  The 
lower the percentage the more holes the tool displays. 
Holes that pass the thresholds are sorted according to 
one of five sorting functions.  For example, the tool’s 
default sort is to sort first on the ratio between the 
number of uncovered tasks per substring and the square 
root of Total—the number of functions containing the 
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substring (sqCov), then, in case of equality, further sort 
by Total; and finally, if still equal, sort by Length—the 
length of the substring. In a nutshell, this ranking is 
based on using a binomial distribution for the 
significance of not covering the hole’s substring. 
 
3. Summary 
 

Substring hole analysis may be viewed as a post 
processing stage that requires only generic coverage 
data. Therefore, it is independent of the software’s 
programming language, platform, and coverage data 
collection tool. This is in contrast to aspect oriented 
programming [�0] that weaves cross cutting concerns 
based on the programming language.    

We have used our substring hole analysis tool to 
analyze large quantities of coverage data from C, C++ 
and Java IBM software systems. The tool assisted users 
in identifying missing test scenarios. 
Elsewhere [�0] we discuss in detail the algorithms and 
heuristics the tool uses, and provide both experimental 
results and a mathematical framework for comparing 
hole ranking heuristics. 
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A. Tool Demo 
 

We demo the substring hole analysis tool on a large 
IBM software system. The software is written in C++ 
and has 76,715 functions. The software is 
multiplatform. The particular test suite that was used 
for measuring coverage executes only on a subset of 
these platforms.  

Figure 1 shows the entry screen of the substring 
hole analysis tool. In this screen the user sets 
parameters that may influence the tool’s ranking of 

holes (as discussed in Section 3 above). We used the 
tool’s default parameters as Figure 1 shows. The 
analysis is done on function names. The minimal length 
of substrings to consider is four characters. The 
maximal length of substrings to consider is thirty 
characters. The tool should only show holes that are at 
least 95% uncovered and contain at least ten coverage 
tasks. In the report we want to see no headers and only 
substrings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Substring hole analysis entry screen  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Substring holes on all data (over 70,000 

functions) 
 

We applied substring hole analysis in two stages. 
First, we ran the tool on the entire data. Figure 2 shows 
the holes that the tool outputs. This output contains the 
expected holes, for substrings that are related to 
platforms that were not tested such as zSeries and Spe. 
In addition, the output contains holes that are related to 
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components that are not executed on the platforms that 
were tested. An example is all the holes related to Asm. 
Naturally, the coverage (function level) of the test suite 
on the entire code base is very low: 10.5%. The second 
stage in the analysis was to output holes that are based 
only on data the user cares about. To achieve that we 
applied constraints, a feature supported by the tool, on 
the coverage data.  

 
 
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Constraints for eliminating data 
 

Figure 3 shows some of the constraints we entered 
into the tool. An example of a constraint is not allowing 
coverage tasks that contain the string “zSeries” in the 
function name. After applying the constraints, the data 
contains 22,260 functions and the coverage over these 
functions is 35.7%.  

Figure 4 shows the results of running substring hole 
analysis on the filtered data. An example of interesting 
holes are items related to Ppc. Figure 5 shows a drill 
down view on functions whose name contains ‘Ppc’ 
followed by any characters and then by ‘::~’. It turns 
out that the software has code for every instruction in 
the instruction sets it supports, such as the ppc 
instruction set. However, the test suite only contains 
tests for a small subset of these instructions, the ones 
that are most interesting. Presumably, unit tests were 
written to check all the other instructions. Finding the 
hole suggests that it may be a good idea to add these 
tests to the system test regression. Having these tests in 
the regression may reduce the risk of problems related 
to these instructions.  

Another example of an interesting hole is Static, 
Helper, and Linkage shown in Figure 4. The test suite 
does not contain tests that cover the related component. 

Notice that low coverage is typical during system 
test. This is one of the factors that make it difficult to 

get useful information from coverage data. Substring 
hole analysis assists in identifying the interesting areas 
to strengthen out of all the areas that are uncovered. In 
general, we do not expect 100% coverage in system 
test.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Substring holes on data with constraints (over 
20,000 functions) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Drill down information for one hole Ppc*::~ 
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