
Automated Substring Hole Analysis

IBM Haifa Research Lab, Haifa, Israel

{adler, farchi, klausner, dpelleg, ornar, morans, ur, aviad}@il.ibm.com

Abstract

Code coverage is a common measure for

quantitatively assessing the quality of software testing.
Code coverage indicates the fraction of code that is
actually executed by tests in a test suite. While code
coverage has been around since the 60's there has
been little work on how to effectively analyze code
coverage data measured in system tests. Raw data of
this magnitude, containing millions of data records, is
often impossible for a human user to comprehend and
analyze. Even drill-down capabilities that enable
looking at different granularities starting with
directories and going through files to lines of source
code are not enough.

Substring hole analysis is a novel method for
viewing the coverage of huge data sets. We have
implemented a tool that enables automatic substring
hole analysis. We used this tool to analyze coverage
data of several large and complex IBM software
systems. The tool identified coverage holes that
suggested interesting scenarios that were untested.

1. Introduction

Code coverage may be presented at several
granularities. An example is starting with directories,
then going through files, then functions, and finally
source code statements. At each level we can have
color-coded representations of the coverage. Presenting
coverage data according to the hierarchical structure of
the source code enables drilling down from directories
to lines of code. However, the missing coverage is
frequently not classified according to the
predetermined hierarchy. For example, the code
relating to execution on specific hardware platforms, to
error paths, or to the handling of specific data types
may cut across multiple elements of the hierarchy. We
have seen cases where error paths that constitute more
than twenty percent of the source code were not tested
at all. However, this fact was not obvious from the
coverage report of the system tests because the error
handling code was evenly spread throughout the code.

In addition, searching through the predetermined
hierarchy is often tedious as the hierarchy might not
divide the coverage tasks evenly.

Substring hole analysis aggregates and presents
coverage information based on semantic similarities
between source code elements, such as function names,
rather than on the hierarchical structure of the source
code. Semantic similarities between source code
elements are determined by analyzing the names of the
elements and identifying substrings that are common to
multiple names. Test coverage information is
aggregated and presented per substring rather than per
source code element. Because the names given to
software source code elements are usually indicative of
their semantic meaning, source code elements with
similar names are often associated with a common
topic or context. As such, aggregating and presenting
coverage information per substring provides the user
with insight on aspects of the source code that lack
coverage.

Reporting holes (i.e., coverage information per
substrings) is challenging. There are many possible
substrings, but they are often meaningless.
Furthermore, users are typically willing to examine
only a few results, so effective ranking of holes is
crucial. However, different factors influence the risk
that a hole represents. Examples include the number of
coverage tasks in a hole and the percentage of coverage
of a hole. These are similar to the support and
confidence measures that are used in creating
association rules [2]. These are multiple dimensions
that the tool collapses into a linear order.

We ran substring hole analysis on several large IBM
systems. The tool outperformed manual inspection by
domain experts. While substring hole analysis is
subjective by nature, our tool provides useful results
and even suggests areas that lack coverage that the
domain experts overlook. The tool is part of our
coverage analysis tool FoCuS [1].

2. Definitions and tool description

A coverage task is identified by a string. A
coverage task is covered if the code segment that it
represents is executed.

Yoram Adler, Eitan Farchi, Moshe Klausner, Dan Pelleg,
Orna Raz, Moran Shochat, Shmuel Ur, Aviad Zlotnick

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

The input to the substring hole analysis tool is a
set of coverage tasks presented as character strings and
the number of times that each task was covered. The
coverage tasks are usually names of functions. For
initial reports, it is sufficient to have a binary counter
for each task indicating whether it was covered. An
example of a single coverage task is
“Exception.firm.io, 0”.

A hole is defined by a given string. A hole is the set
of coverage tasks for which it is a substring.

The output of the substring hole analysis tool is a
ranked set of holes along with coverage data for each
hole. For example, if a line of output in the coverage
report for functions is “Exception, 912, 907”, it means
that there are 912 functions whose names contain the
“Exception” substring, 907 of which were not covered.

Suggesting holes consists of two main challenges.
Section 2.1 provides details of how our tool deals with
the first challenge of identifying holes. Section 2.2
discusses the second challenge of prioritizing the
identified holes for display. Section 2.3 briefly
discusses tool parameters that influence the ranking
schemes applied by the tool.

2.1. Identifying holes

Identifying holes means defining which substrings to
examine. Naively, all possible substrings would be
considered. However, we find it effective to prefer
strings that have a semantic meaning. This heuristic
eliminates much noise for the user and improves the
tool’s performance.
Fortunately, most programming styles make a
distinction between words in names, either by
introducing a delimiter such as '_', or by changing the
letter case. The following rules define substrings to
consider:
1. Characters are classified as digits, delimiters,

uppercase letters, and lowercase letters.
2. Scanning an identifier from the left, a new

substring starts whenever the characters change
classes.

3. An exception to #2 is that the last of a sequence of
uppercase letters moves to the beginning of the
next substring if it starts with a lowercase letter.

This approach has an additional advantage of reducing
computation time by avoiding overlapping substrings.

The tool also supports defining holes using two,
possibly disjoint, substrings. We found this useful in
detecting holes in operations that were uncovered by
one component but not by another. E.g.,
"Cache*Callback" functions may be covered, but
"Disk*Callback" functions may be uncovered. If

"Disk", "Cache", and "Callback" by themselves are not
holes that will be ranked highly, two substrings are
needed. Our experiments did not show a need for
combining more than two substrings.

2.2. Ranking holes

Typically, users only consider the first few holes, so the
order of presentation is very important. This is not
trivial: Is a hole of 900 out of 1000 more important
than 100 out of 100? When “Exception” defines a hole
of 500 out of 520 and “Exception.firm” defines a hole
of 450 out of 450, which of them do you show to the
user (further, assume that the string “Exception.soft”
has coverage of 50 out of 70)?

There are a number of considerations to take into
account when ranking holes:
� The number of tasks the hole represents
� The percentage of uncovered tasks
� The existence of similar holes
� Whether the hole cuts across the structured

hierarchy of the program
� The length of the substring that represents the hole
� Whether it is possible to detect semantically

meaningful substrings (see discussion in Section 1)
We have come up with a number of ranking schemes,
implemented them all, and are currently studying and
evaluating them. We believe that there is no single
ranking scheme that is best. Our experience indicates
that different users have different preferences.

2.3. Setting parameters

The tool supports various hole ranking schemes. A
user may set minimum thresholds that influence the
ranking scheme. Alternatively, a user may choose not
to change the tool defaults. The user may set the upper
and lower limits on the length of the substring that
embodies the hole. Usually the minimum is between
four and six, as lower than that may not be a
meaningful name. The user may choose a minimum
size of a hole, i.e., the number of functions that contain
this substring. For example, if the user chooses 10, the
tool does not consider any substring that belongs to less
than ten functions. The last threshold is the percentage
of the uncovered functions. We have different opinions
and the number chosen is between 70% and 95%. The
lower the percentage the more holes the tool displays.
Holes that pass the thresholds are sorted according to
one of five sorting functions. For example, the tool’s
default sort is to sort first on the ratio between the
number of uncovered tasks per substring and the square
root of Total—the number of functions containing the

2

substring (sqCov), then, in case of equality, further sort
by Total; and finally, if still equal, sort by Length—the
length of the substring. In a nutshell, this ranking is
based on using a binomial distribution for the
significance of not covering the hole’s substring.

3. Summary

Substring hole analysis may be viewed as a post
processing stage that requires only generic coverage
data. Therefore, it is independent of the software’s
programming language, platform, and coverage data
collection tool. This is in contrast to aspect oriented
programming [�0] that weaves cross cutting concerns
based on the programming language.

We have used our substring hole analysis tool to
analyze large quantities of coverage data from C, C++
and Java IBM software systems. The tool assisted users
in identifying missing test scenarios.
Elsewhere [�0] we discuss in detail the algorithms and
heuristics the tool uses, and provide both experimental
results and a mathematical framework for comparing
hole ranking heuristics.

4. References

[1] FoCuS Code and function coverage tool

 http://www.alphaworks.ibm.com/tech/focus.

[2] R. Agrawal and R. Srikant, "Fast Algorithms for Mining
Association Rules", Proc. of the 20th Int'l Conference on
Very Large Databases, Sep. 1994.

[3] Kiczales et al. "Aspect-Oriented Programming".
Proceedings of the European Conference on Object-Oriented
Programming, 1997, vol.1241. pp. 220–242.

[4] Yoram Adler, Eitan Farchi, Moshe Klausner, Dan Pelleg,
Orna Raz, Moran Shochat, Shmuel Ur and Aviad Zlotnick.
“Advanced Code Coverage Analysis Using Substring Holes”.
2009. Submitted.

A. Tool Demo

We demo the substring hole analysis tool on a large
IBM software system. The software is written in C++
and has 76,715 functions. The software is
multiplatform. The particular test suite that was used
for measuring coverage executes only on a subset of
these platforms.

Figure 1 shows the entry screen of the substring
hole analysis tool. In this screen the user sets
parameters that may influence the tool’s ranking of

holes (as discussed in Section 3 above). We used the
tool’s default parameters as Figure 1 shows. The
analysis is done on function names. The minimal length
of substrings to consider is four characters. The
maximal length of substrings to consider is thirty
characters. The tool should only show holes that are at
least 95% uncovered and contain at least ten coverage
tasks. In the report we want to see no headers and only
substrings.

Figure 1 Substring hole analysis entry screen

Figure 2 Substring holes on all data (over 70,000

functions)

We applied substring hole analysis in two stages.
First, we ran the tool on the entire data. Figure 2 shows
the holes that the tool outputs. This output contains the
expected holes, for substrings that are related to
platforms that were not tested such as zSeries and Spe.
In addition, the output contains holes that are related to

3

components that are not executed on the platforms that
were tested. An example is all the holes related to Asm.
Naturally, the coverage (function level) of the test suite
on the entire code base is very low: 10.5%. The second
stage in the analysis was to output holes that are based
only on data the user cares about. To achieve that we
applied constraints, a feature supported by the tool, on
the coverage data.

Figure 3 Constraints for eliminating data

Figure 3 shows some of the constraints we entered
into the tool. An example of a constraint is not allowing
coverage tasks that contain the string “zSeries” in the
function name. After applying the constraints, the data
contains 22,260 functions and the coverage over these
functions is 35.7%.

Figure 4 shows the results of running substring hole
analysis on the filtered data. An example of interesting
holes are items related to Ppc. Figure 5 shows a drill
down view on functions whose name contains ‘Ppc’
followed by any characters and then by ‘::~’. It turns
out that the software has code for every instruction in
the instruction sets it supports, such as the ppc
instruction set. However, the test suite only contains
tests for a small subset of these instructions, the ones
that are most interesting. Presumably, unit tests were
written to check all the other instructions. Finding the
hole suggests that it may be a good idea to add these
tests to the system test regression. Having these tests in
the regression may reduce the risk of problems related
to these instructions.

Another example of an interesting hole is Static,
Helper, and Linkage shown in Figure 4. The test suite
does not contain tests that cover the related component.

Notice that low coverage is typical during system
test. This is one of the factors that make it difficult to

get useful information from coverage data. Substring
hole analysis assists in identifying the interesting areas
to strengthen out of all the areas that are uncovered. In
general, we do not expect 100% coverage in system
test.

Figure 4 Substring holes on data with constraints (over
20,000 functions)

Figure 5 Drill down information for one hole Ppc*::~

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
