Out-of-band Detection of Boot-Sequence Termination Events

Naama Parush

naamap@il.ibm.com

Dan Pelleg

dpelleg@il.ibm.com

Muli Ben-Yehuda Paula Ta-Shma

muli@il.ibm.com paula@il.ibm.com

IBM Haifa Research Lab

ABSTRACT

The popularization of both virtualization and CDP tech-
nologies mean that we can now watch disk accesses of sys-
tems from entities which are not controlled by the OS. This
is a rich source of information about the system’s inner work-
ings. In this paper, we explore one way of mining the stream
of data, to determine if the system had finished booting.
Systems which we detect as failing to boot (or taking too
long to boot) are flagged for further manual or automatic
remediation.

By performing this detection out-of-band, we gain a head
start on any detection scheme that runs within the OS, and
therefore must wait for the boot event to finish. Addition-
ally, our scheme is agnostic to file-system layout and to ker-
nel architecture. This opens up the possibility of monitor-
ing large pools of existing machines, with no need to modify
their software or even notify their owners. We show that
apart from the signaling of readiness for activity, we can po-
tentially also detect major changes in the file layout of the
system, which is a possible indication of intentional upgrades
or malicious activity.

We implemented our solution for the x86 architecture un-
der two different virtualization platforms, and tested it on
both Windows and Linux virtual machines. Under a vari-
ety of workloads and configurations, our detector managed
to successfully identify the boot termination event, in most
cases within 5 seconds of the event.

1. INTRODUCTION

What does it mean for an operating system to have fin-
ished booting? Is it the point in time where it has finished
powering up? Finished loading the kernel? Finished its ini-
tialization scripts? Started running services? Indeed, should
the user even care, assuming she can get her work done?
However you define it, it seems that identifying the end of
the boot sequence is an easy exercise given full access to
the machine—a carefully-placed startup script should do the
trick. But what if your access is limited? The premise of

Parts of this work (©ACM,(2009). Permission to make dig-
ital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

this paper is to pinpoint this particular timing information,
with the constraint that the OS itself cannot be modified —
furthermore, that its very identity may be unknown.

Why is this an interesting question? First and foremost,
the answer proves useful in a variety of scenarios where the
OS is virtualized and running under some sort of hypervi-
sor [6, 8]. In some of them, computation is in fact provided
as a service, where clients send sealed virtual machine images
to be hosted and run by the vendor (e.g., Amazon EC2 [1]).
The hosting service can assume nothing on the content of
the images, nor is it (contractually) allowed to modify them.
By solving the question we pose, the vendor can offer addi-
tional monitoring services to its clients, without requiring
additional work from them. It might also benefit the vendor
itself, if it extracts important statistics on the inner work-
ings of the hosted machines, and uses them to optimize its
own operations.

Second, this is applicable where there are large numbers
of machines that boot from storage devices that can be in-
dependently monitored. One such case is booting over the
network, for example by a diskless machine. Another is a
machine that is backed up by some CDP [3] mechanism,
which creates a data stream of its disk accesses that is sent
over the network.

If the boot-detection scheme is indeed oblivious to the OS,
it immediately follows that it can support varied makes and
models. So a single piece of detection code can be used to
monitor a whole range of machines, eliminating the need to
develop and support code for each and every possible OS and
level. And like in the virtualization scenario, this capability
can be retrofitted to large pools of installed machines. By
localizing the change to a single control point (be it the
storage device, the CDP drivers, or even a passive network
sniffer), such a change is made immensely more economical.

Third, an OS image may have been audited for compli-
ance with applicable regulations (the financial and health-
care sectors make good examples). Making even the slightest
change to these images might trigger another costly certifi-
cation cycle. Our approach eliminates the the need for such
changes.

Finally, in some cases it may be desirable to track the
system’s progress even before it has completed initialization.
This cannot be done with a simple flag-raising script. Our
approach — as described below — can provide a “progress
bar” that tracks the boot sequence at a fine level of detail.
Below we show how this kind of close monitoring can result
in detection of the presence of major changes to the file
layout of the system, possibly due to a major upgrade or

perhaps a malicious piece of software.

This paper is about the technology needed for the detec-
tion of boot-sequence termination. Remediation and diag-
nosis is outside its focus. However, we can enumerate several
operational scenarios where this capability would be useful.
For example:

e Monitoring unattended servers (virtual or not) for cor-
rect operation. A failure to boot may, depending on
the operational policy, trigger a restart, or alert a hu-
man operator.

e Creating a checkpoint that captures a system ready-
to-run. This could be later used for (failure) recovery
and fast-boot purposes.

e If there are dependencies among hosts, one may wish
to delay starting some of them, according to some
known topological order. For example, in a whole-
site disaster-recovery scenario, an important DHCP or
file server will need to be up before other machines
are powered on. With our method, this kind of staged
start-up could be automated.

e Testing of upgrades, patches, and configuration changes,
especially ones that may cause a boot failure. For ex-
ample, kernel or boot-loader modifications.

Technologically, our key insight is that the boot sequence
is repetitive across instances. This is because it is nearly
spontaneous and does not rely on external inputs'. We pro-
pose a method based on the interception of the I/O accesses,
either by an hypervisor, or by some other storage or network
layer. This allows us to observe the boot sequences from the
perspective of the disk. Essentially, we look for recurring
patterns in this stream. This has additional benefits, like
the ability to detect when new software has been installed
(in a way which modifies the boot sequence), or when the
system failed to boot correctly.

In Section 2 we present an algorithm, based on statistical
tests, to find the recurring patterns. We evaluate its perfor-
mance in Section 3, discuss related work in Section 4, and
conclude in Section 5.

2. ARCHITECTURE AND IMPLEMENTA -
TION

In order to achieve the goal of adapting to any system on
the fly, we introduce a training stage in which the particulars
of the VM are inspected. This is where we learn a sequence
of disk blocks that characterizes its start-up routine®. We
call this the reference set. After this set has been established,
detection may start. During detection, the data read from
the running system is compared to the reference set. If the
live data meets a matching criterion, we declare the system
operational, for example, implying that a checkpoint may
be taken. Below, we first elaborate on the training process
and then provide details on the detection process and its
possible outcomes.

!Some non-repeating events do affect its operation, such as
DHCP server timing and randomization effects, but in our
scheme they only add minor noise.

In practice, the sequence consists of the just the first re-
spective block IDs from each continuous sequence read from
the disk.

2.1 Training process

We assume that different phases of the boot procedure
can be characterized by the homogeneity of block numbers
between different boot runs. For example, the blocks that
read the kernel image will always be read in order, before any
initialization scripts are executed. Afterwards, the start-up
procedure may commence, with some variability in the block
numbers. Finally, once the system is running, the variabil-
ity will be highest. Therefore, we divide the block sequence
into phases with differing levels of homogeneity. When the
block variation between different sequences increases signifi-
cantly, we declare the boot sequence terminated. Below, we
elaborate on the technical details of the process.

2.1.1 Dividing the training sequences into phases and
determining the time of boot termination

We want our method to be agnostic to file-system layout.
It immediately follows that the analysis is done at the block
level. Therefore we base our metric, described below, on just
the recurrences of the block indices. In other words, if some
random permutation were applied to the disk indices, the
metric would not change. Another guiding principle is that
after boot, the system is in a steady state, and each block
is accessed with some respective probability that is approxi-
mately constant over time. On the other hand, during boot,
which is a singular (albeit long) event, the variation, per
block, of access events, will be high. A well-known mea-
sure which conveniently captures variability is the Shannon
(or information) entropy. Given a random variable X, the
entropy H(z) is defined as —) P(z) - log,(P(z)). A low
entropy value signifies uniformity, and vice versa. Therefore
this metric is suitable for our purpose, as detailed below.

To clarify what we mean by block indices, these are the
logical locations of the units of storage information, as seen
by the system under inspection (be it virtualized or not).
For example, if this is a virtual machine, and its storage
is backed by a file on the file system of the host machine,
then moving this file around the disk of the host, or relo-
cating it to a different disk or to remote storage, would not
change the block indices. In addition, we found it sufficient
to ignore the writes, and only consider the read accesses.
Therefore consider all the algorithms and experiments be-
low to be ignoring writes (even though they could work just
as well otherwise).

To implement our scheme, we partition all training se-
quences into windows. A window is a consecutive part of
the input stream, which has a fixed number of data points
(i-e., block numbers) in it. It can be thought of as mea-
suring system time. For example, “seconds 5 through 10
since system was started”. However, it does not exist on the
time axis, but rather on the input stream axis. Thus it may
contain the fifth through the tenth data items, in order of
arrival.

In each window, and for every block number, we calcu-
late the entropy of the counts of block occurrence across
all sequences. For example, assume the window size is six
and that we have observed three training sequences. For a
given window in the first sequence the block numbers, in
order, are: {A,B,A;A,BB}. For the same window in the
second and third sequences they are {A,B,B,A,B,B} and
{A,B,A B,A,B}, respectively. Block A appears three times
in the first sequence, twice in the second sequence, the three
times in the third. Therefore the count vector for block A is

(3,2,3). and the corresponding entropy is 1.56 (this is the
entropy of the vector (3/8,2/8,3/8)). Similarly, we compute
the entropy for block B. Then we take the average over all
block indices (two in this example).

The window size (number of blocks per window) is a given
parameter and our default value is the mean number of
blocks per second plus 1.5 standard deviations. Figure 1
illustrates the mean entropy per window for data collected
from 10 boot runs of a Linux VM. We see several phase tran-
sitions, where the most dramatic decrease at window 16 is
defined as the time of boot termination.

We cluster the mean entropy to determine the phase tran-
sitions. The break points are initially chosen randomly and
repeatedly improved by setting each partition break point
independently while “freezing” the others.

We perform independent clusterings for each number of
clusters in the range 2-5, and pick the partition with the
minimum intra-cluster, and maximum inter-cluster, stan-
dard deviation. Once the best partition is set, the cluster
representing the latest time period is removed (i.e., it encom-
passes the post-boot data points), and the remaining ones
determine the phases as described above. In practice, we
found results are best when the second and onwards phases
are merged into a single phase (so there are at most two
boot phases).

2.1.2 Learning the reference sequence according to
the phase transitions

The reference sequence consists of blocks that appeared
in at least a given percentage of the training sequences. The
parameter indicating the needed rate of sequences is by de-
fault set to 0.8. In other words, if at least 80% of the training
sequences include a specific block, then the block will be in-
cluded in the reference set. The reference set is learned for
each phase separately.

2.1.3 Learning the matching criteria for the refer-
ence sequence

To match a sequence to a reference set, we compare each
of their respective phases separately. For each phase, we
compute the matching ratio: the size of intersection between
the live sequence and the reference set, relative to the size
of the reference set. If this ratio exceeds the matching cri-
terion, then the live sequence is considered a match to the
reference. The matching criterion is set after the training is
completed. To compute it, we take the minimum over the
matching ratios of all pairs that include a training sequence
and a reference sequence. We then multiply the result by a
given parameter, typically set to 0.98. The matching ratio
is denoted by M, in Figure 2 below. A sequence matches
only if all of its phases match. Note that according to this
scheme, there is no significance to the order of block numbers
within a phase.

2.2 Detection process and possible outcomes

A sequence of read block numbers is given to the detection
process, and compared to the reference boot sequence.

The comparison process is done sequentially over all phases.

The blocks of the given sequence are compared to the blocks
of the reference phase until its matching criterion is reached
and the subsequent phase is tested. The detailed algorithm
(for a given phase) is shown in Figure 2. The possible out-
comes of the algorithm are:

Successful boot termination The boot sequence matched
the reference sequence.

Successful boot termination, long sequence The boot
sequence matched the reference sequence. However,
the “mismatch”; the rate of blocks from the tested se-
quence not present in the reference sequence, exceeded
a given threshold (by default set to 0.7). This value
is denoted as M in Figure 2. This case may indicate
that the boot consisted of an additional process such
as a disk scan. The user might consider retraining the
boot detector if this outcome repeats itself.

Timeout failure The boot sequence exceeded a maximum
boot duration threshold (for example, five minutes)
before reaching the matching criteria.

Unexpected death failure The sequence ended before reach-
ing the matching criteria. This likely indicates a crash.

Failure, boot sequence change The sequence did not reach
the matching criteria, and the “mismatch” exceeded
the mismatch threshold. This outcome is strong evi-
dence that the boot procedure has changed and should
invoke retraining of the boot detector. This could be
the result of a major OS upgrade or a big change in
the initialization scripts or their order.

2.3 Implementation

Our implementation is divided into an I/O interceptor,
which records the block numbers of each I/O access, and
a classification module, which processes this data. In an
early prototype, the interceptor recorded the data to a file,
and the learning and classification was done off-line with
MATLAB [4]. In a production version, the classifier is im-
plemented in Python in about 2500 lines of code. The com-
munication between the interceptor and the classifier is over
a socket. We implemented interceptors for both the Xen [6]
and KVM [8] hypervisors. In both cases the interceptor
patch was well under 100 lines of code.

2.4 Complexity and Timing

Let T be the number of training sequences and N the
maximal sequence length. During the training period, the
algorithm mostly calculates the mean window entropy. The
window entropy is calculated over each unique block number
in each window, i.e. there are at most IV different entropy
calculations. Each entropy calculation takes at most O(T)
time, therefore each training window takes O(T - N) calcu-
lations and the whole training stage takes O(N - T?). After
training is over, the reference set is created by scanning the
block numbers in all training sequences. Hence, this part
is bounded by O(N - T') calculations. During detection of a
live sequence, the algorithm compares the reference blocks
to the sequence blocks, i.e. O(N) calculations. Figures 3
and 4 illustrate the run time of a typical Linux VM boot
detection procedure, measured on a standard dual-core, 3.7
GHz Intel machine. We can see that detection overhead is
very low—well under 100 milliseconds in most cases. Also,
the detection time is nearly constant, regardless of the se-
quence length.

—_
T
-

- em m mmmEEE-

Mean entropy

I
wn
‘

10

15 20

Step Index

Figure 1: Window entropy over (system) time, as collected from 10 boot runs of a Linux VM.

3. EXPERIMENTS

Firstly, we tested the boot detection algorithm on block
sequences gathered from a Linux (SLES-10) machine. Im-
mediately after booting, the VM ran one of the following
workloads:

iozone[10] A popular I/O benchmark.
libMicro[15] A micro-benchmark on the memset call.
pChase[11] A CPU intensive benchmark.

iperf[16] A network benchmark run against the hypervisor
as the remote node.

webload A local web client rapidly accessing a collection
of static pages (the Apache documentation set) stored
on a local Apache server.

A boot detector was trained and tested on sequences from
all the different loads, shuffled randomly. For calibration, we
sampled the SSH port on the VM once a second. The first
point in time at which the port was accepting connections is
the one we treat as the ground truth for boot sequence ter-
mination. One may argue that this is a viable alternative to
our approach. However, it requires knowledge that (a) SSH
is installed on this VM; (b) SSH is a meaningful indicator
of the VM’s operation. Either of these breaks the black-box
assumption.

Secondly, we repeated the tests on a Linux-based Web-
Sphere (WAS) virtual appliance under KVM. Here, the sys-
tem had three disks attached (for system, data, and appli-
cations). We performed tests on data from just the system
disk, as well from all three disks. A third set of tests added
background noise, in the form of another guest on the same
physical host, running Microsoft Windows XP.

Thirdly, we also tested a Microsoft Windows XP guest
under KVM. The workloads included

e Idle.
e A CPU-intensive benchmark [2].

e A disk-scan during the boot sequence followed by the
CPU benchmark.

e An idle machine. At the same time, on the same host,
a different VM was running Linux which was compiling
a kernel source tree.

For this guest, ground-truth calibration was done by a
manually-installed startup script that fetched a (fictitious)
web page from the monitoring host.

Our algorithm successfully detected boot termination in
all sequences. See Figures 3 through 3 for detailed results,
and Figure 8 for a summary. The maximum error is under
15 seconds, with the vast majority of the Linux-based results
measuring under 5 seconds of error.For Microsoft Windows,
the error is larger — most samples are within 10 seconds.
We attribute much of that to the inherent inaccuracy of the
ground-truth signal on this platform. Recall that in this
case we rely on a user application (a web browser) start-
ing up and performing uncontrolled operations such as DNS
lookups and security-update checks before sending the con-
trol signal.

When we drill down into the data we find that the homo-
geneity of the training data can greatly skew the detection
event timing. In early experiments, we used data from a sin-
gle workload, repeated over multiple VM restarts, to both
train the detector and then be used as live sequences. For
example, in the Linux setup, for the “iozone” and “libMicro”
workloads, the signaling of the termination event can be de-
layed considerably by up to 46 seconds (The normal boot
sequence on this machine takes about 22 seconds.) At the
same time, the signaling is not at random times, but rather
highly concentrated within a range of about five seconds.
Since the block sequences in these experiments were very
similar even after the startup scripts finished running, the
algorithm detected a very long sequence as part of the boot
procedure. The same effect repeated in the WebSphere and
Microsoft Windows experiments.

This behavior is consistent with our definition of the boot
event as “some sequence that reliably follows a system startup
event”. It may be argued that this definition diverges from

Get Input B |

Input — Input U B
Match — |Input n REF|/|REF]|
Mismatch — |Input\ REF|/[Input|

Mismatch > M2 ?

Success Success,
long

Figure 2: Flow chart of the boot detection algorithm. The thresholds M; and M; are described in the text.

o
N

o
O
o

©
—

0.05

run time in seconds

O0 20 40

60 80 100
sequence index

Figure 3: Run time, as a function of the sequence index. The marker line denotes the creation of
the reference set (i.e., transition from training to learning.).

the point in time in which the OS finished setting up the
stage and sits back while the applications take over. Which
definition is best is an open question. In some scenarios,
such as fast-boot and failure recovery, we feel our definition
works best. In addition, we expect that in a real-life setup,
there will be enough heterogeneity in the samples to avoid
this phenomena. For example, several cloned VMs will prob-
ably be used to train a single classifier, and the plurality will
generate the needed variability.

4. RELATED WORK

Access patterns to block storage have been studied in
the past to improve the performance, reliability, and se-
curity of storage systems [5, 9]. This has typically been
considered at the storage subsystem level and can therefore
be considered as an out-of-band approach, similar to ours.
Work on semantically-smart disk systems provides an out-of-
band gray box approach where the disk subsystem uses prior
knowledge of file system and database designs in order to
reach conclusions about block level accesses [14, 13]. There
are two drawbacks to this approach. Firstly, working solu-
tions are difficult to maintain under file system or database
format changes, which can happen relatively frequently [13].
Secondly, the approach is file and operating system specific.
For example, the work on semantically-smart disk systems
assumes an FFS-like file system layout [14]. In contrast,
our approach treats the workload, encapsulated in a virtual
machine, as a black box and uses machine learning to under-
stand a particular semantic behavior of the virtual machine.
We showed how this approach generalizes to operating and
file systems with unrelated designs (specifically, Linux and
Windows).

An out-of-band black box approach to mining block cor-
relations is found in C-Miner [9]. These correlations can be
used to improve storage subsystem performance, therefore
the purpose is different from ours. Since the main applica-
tion is pre-fetching, errors in prediction will at most result in
performance degradation. In contrast, our detection is for a
specific event and errors will therefore result in badly-timed

checkpoints. This implies that the prediction rules in our
application need to be far more strict in comparison.

Some continuous data protection products allow applica-
tions to mark time points suitable for recovery. This support
is typically tied to specific application (e.g., a mail server).
It hinges on an API through which quiescence is requested,
signaled, and then relinquished. Other work has attempted
offline algorithms for choosing the best time point for revert-
ing the storage state [17, 18].

Chronus [18] is a tool for automating the diagnosis of con-
figuration errors caused by a state change. Applications run
on VMs and periodic snapshots are taken of their storage
state. When an error is encountered, Chronus automates
the search for the time it was introduced. It uses a bi-
nary search among storage snapshots, while rebooting the
VM and restarting the application on each one. Each such
restart requires file system and application recovery, e.g.,
running fsck. While they suggest that a journalling file sys-
tem will improve performance, it does not avoid the need
for recovery altogether.

Assuming many recovery points are available, Sweeper [17]
determines a recovery point that will provide a clean copy
of application data. Ideally, a relatively clean copy reduces
or eliminates the time spent on file system and application
recovery. In contrast, by taking a memory checkpoint of
the VM running the application, we avoid the need for file
system and application recovery, operating system boot and
application restart. Using an online algorithm, we consider
what is the most meaningful time to take the checkpoint up
front.

For computer systems, machine learning has been ap-
plied primarily in the domains of security and performance
management, both outside the scope of this paper. Ma-
chine learning was also identified as a key component of
autonomic computing [7]. But machine learning requires
a steady stream of real-life data. To obtain it, one needs
to either hook into existing implementations, which is not
generalizable, or look at historical logs, which lacks timeli-
ness. This is where virtualization can complement machine

10 ¢

e After training
O During training
o
€107t
§ & O @O0 L))
p L
£
<102 ©
2
o
10

1400 1600 1800 2000 2200 2400 2600 2800
sequence length

Figure 4: Run time, as a function of the sequence length (in blocks). Note the Y axis
is on a logarithmic scale. This is data from the same 100 sequences used to generate
Figure 3.

80

70 1

60 1

50 1

40 1

30 1

20 1

10

£)4 -3.5 -3 -2.5 -2

Figure 5: Histogram of detection errors, in seconds, for Linux. A normal boot sequence
without DHCP delays takes about 22 seconds.

—q5 -10 -5 0 5 10 15

Figure 6: Histogram of detection errors, in seconds, for Windows. A normal boot
sequence without DHCP delays takes about 35 seconds

£)8 -6 -4 -2 0 2 4 6 8

Figure 7: Histogram of detection errors, in seconds, for WAS. A normal boot sequence
without DHCP delays takes about 60 seconds

101

Time difference
o

peeeed] [}

—15t ‘

e

Linux

Windows XP

WAS

Figure 8: Summary of detection accuracy for various workloads. The box edges show
the first and third quartile, and the middle line shows the median (for Linux, it aligns
with the top border). The “whiskers” show the range of the data. Sample sizes are 156
for Linux, 146 for Windows XP, and 104 for WAS.

learning, by making available multiple data streams through
various hypervisor APIs. Techniques from machine learning
can then be used to analyze the data. This is the premise
of the Vigilant [12] project, under which this work was per-
formed.

5. CONCLUSION

We presented an effective and generic method for out-of-
band detection of boot sequence termination. Our method
works by inspecting the data stream between a (virtual or
physical) machine and its (virtual or networked) storage. It
detects the point in time at which a machine finished per-
forming the routine start-up tasks, and signals this event.
Additionally, we can detect divergence from the regular start-
up sequence, either in addition or in place of the normal
activity.

The assumption we make on the system are weak enough
to enable deployment in a wide variety of installations, in-
cluding virtual machines, diskless clients, CDP clients, and
more. In each of these scenarios, the detection functional-
ity is retrofitted without affecting or notifying the existing
OS. This has important operational and economical impli-
cations.

Once a system is detected as failing to boot, possible re-
mediation actions may include restarts, virus-scanning (if
a significant change in file access is detected), or manual
inspection. Conversely, a correctly-booted system can be
checkpointed. Later, when the virtual machine needs to be
restarted for whatever reason, the VM can be resumed from
the checkpoint and immediately put to work, rather than
booted cold.

Our method has been implemented and tested on both
Windows and Linux virtual machines running a variety of
workloads, and shown to be quite accurate. In most cases it
detected the boot-termination event within 5 seconds of the

event’s occurrence.

We believe that monitoring the disk access stream out-
of-band has potential much bigger than just boot-sequence
detection. Some of our planned future work includes mining
data from systems post-boot to obtain various kinds of op-
erational advantages. As this capability is becoming more
common, the potential benefits become too large to ignore.

6. REFERENCES

[1] The Amazon Elastic Compute Cloud (Amazon EC2)
web site. http://aws.amazon.com/ec2.

] BYTEmark. http://www.byte.com/bmark/bdoc.htm.

[3] FilesX. http://www.filesx.com/.

] MATLAB. http://www.mathworks.com/.
] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, L. N.

Bairavasundaram, T. E. Denehy, F. I. Popovici,

V. Prabhakaran, and M. Sivathanu.

Semantically-smart disk systems: past, present, and

future. SIGMETRICS Performance Evaluation

Review, 33(4):29-35, 2006.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: the nineteenth ACM symposium on
Operating systems principles, pages 164-177, New
York, NY, USA, 2003. ACM Press.

[7] J. O. Kephart. Research challenges of autonomic
computing. In ICSE ’05: the 27th international
conference on software engineering, pages 1522, New
York, NY, USA, 2005. ACM Press.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. KVM: the linux virtual machine monitor.
In OLS ’07: Ottawa Linuz Symposium, pages 225-230,
July 2007.

[9]

[10]

[11]

[12]

[13]

[14]

Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou.
C-miner: Mining block correlations in storage systems.
In FAST ’04: The 8rd USENIX Symposium on File
and Storage Technologies, pages 173-186, 2004.

W. Norcutt. The iozone filesystem benchmark.
http://www.iozone.org/.

D. Pase. The pChase benchmark page.
http://www.pchase.org/.

D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower,
and T. Adeshiyan. Vigilant: out-of-band detection of
failures in virtual machines. SIGOPS Oper. Syst. Rev.,
42(1):26-31, 2008.

M. Sivathanu, L. N. Bairavasundaram, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Database-aware semantically-smart storage. In
FAST’05: the 4th conference on USENIX Conference
on File and Storage Technologies, page 18, Berkeley,
CA, USA, 2005.

M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H.

10

[15]
[16]

[17]

18]

Arpaci-Dusseau. Semantically-smart disk systems. In
FAST ’03: the 2nd USENIX Conference on File and
Storage Technologies, pages 73-88, Berkeley, CA,
USA, 2003.

B. Smaalders and P. Harman. libMicro. http:
//www.opensolaris.org/os/project/libmicro/.

A. Tirumala and J. Ferguson. Iperf.
http://dast.nlanr.net/Projects/Iperf/.

A. Verma, K. Voruganti, R. Routray, and R. Jain.
Sweeper: an efficient disaster recovery point
identification mechanism. In FAST’08: the 6th
USENIX Conference on File and Storage
Technologies, pages 1-16, Berkeley, CA, USA, 2008.
A. Whitaker, R. S. Cox, and S. D. Gribble.
Configuration debugging as search: finding the needle
in the haystack. In OSDI’04: the 6th conference on
Symposium on Opearting Systems Design &
Implementation, Berkeley, CA, USA, 2004.

