
Out-of-Band Detection of Boot-Sequence Termination
Events

Naama Parush Dan Pelleg Muli Ben-Yehuda Paula Ta-Shma
IBM Haifa Research Lab

{naamap,dpelleg,muli,paula}@il.ibm.com

ABSTRACT
The popularization of both virtualization and CDP tech-
nologies mean that we can now watch disk accesses of sys-
tems from entities which are not controlled by the OS. This
is a rich source of information about the system’s inner work-
ings. In this paper, we explore one way of mining the stream
of data, to determine if the system had finished booting.
Systems which we detect as failing to boot (or taking too
long to boot) are flagged for further manual or automatic
remediation. By performing this detection out-of-band, we
gain a head start on any detection scheme that runs within
the OS, and therefore must wait for the boot event to finish.
Additionally, our scheme is agnostic to file-system layout
and to kernel architecture.

We implemented our solution for the x86 architecture un-
der two different virtualization platforms, and tested it on
both Windows and Linux virtual machines. Under a vari-
ety of workloads and configurations, our detector managed
to successfully identify the boot termination event, in most
cases within 5 seconds of the event.

Categories and Subject Descriptors: D.4.m.

General Terms: Algorithms.

Keywords: boot detection, out-of-band, virtualization.

1. INTRODUCTION
However you define it, it seems that identifying the end

of the boot sequence is an easy exercise given full access to
the machine—a carefully-placed startup script should do the
trick. But what if your access is limited? The premise of
this paper is to pinpoint this particular timing information,
with the constraint that the OS itself cannot be modified —
furthermore, that its very identity may be unknown.

Why is this an interesting question? First and foremost,
the answer proves useful in a variety of scenarios where the
OS is virtualized and running under some sort of hypervi-
sor [4, 5]. In some of them, computation is in fact provided
as a service, where clients send sealed virtual machine images
to be hosted and run by the vendor (e.g., Amazon EC2 [1]).
The hosting service can assume nothing on the content of
the images, nor is it (contractually) allowed to modify them.
By solving the question we pose, the vendor can offer addi-
tional monitoring services to its clients, without requiring
additional work from them.

Copyright is held by the author/owner(s).
ICAC’09, June 15–19, 2009, Barcelona, Spain.
ACM 978-1-60558-564-2/09/06.

Second, this is applicable where there are large numbers
of machines that boot from storage devices that can be in-
dependently monitored. One such case is booting over the
network, for example by a diskless machine. Another is a
machine that is backed up by some CDP [3] mechanism,
which creates a data stream of its disk accesses that is sent
over the network.

If the boot-detection scheme is indeed oblivious to the OS,
it immediately follows that it can support varied makes and
models of operating systems. So a single piece of detection
code can be used to monitor a whole range of machines,
eliminating the need to develop and support code for each
and every possible OS version. And like in the virtualization
scenario, this capability can be retrofitted to large pools
of installed machines. By localizing the change to a single
control point (be it the storage device, the backup drivers,
or even a passive network sniffer), such a change is made
immensely more economical.

Technologically, our key insight is that the boot sequence
is repetitive across instances. This is because it is nearly
spontaneous and does not rely on external inputs. We pro-
pose a method based on the interception of the I/O accesses,
either by an hypervisor, or by some other storage or network
layer. This allows us to observe the boot sequences from the
perspective of the disk. Essentially, we look for recurring
patterns in this stream. This has additional benefits, like
the ability to detect when new software has been installed
(in a way which modifies the boot sequence), or when the
system failed to boot correctly.

2. ARCHITECTURE
In order to achieve the goal of adapting to any system on

the fly, we introduce a training stage in which the particulars
of the VM’s boot sequence are inspected. This is where we
learn a sequence of disk blocks that characterizes its start-
up routine. We call this the reference set. After this set has
been established, detection may start. During detection,
the data read from the running system is compared to the
reference set. If the live data meets a matching criterion, we
declare that the boot sequence has terminated.

Training Process. We assume that different phases of
the boot procedure can be characterized by the homogeneity
of block numbers between different boot runs. For example,
first the kernel image will be read, in sequential order. Af-
terwards, the start-up procedure may commence, with some
variability in the block numbers. Finally, once the system
is running, the variability will be highest. Therefore, we di-
vide the block sequence into phases with differing levels of



homogeneity. When the block variation between different se-
quences increases significantly, we declare the boot sequence
terminated. Below, we elaborate on the technical details of
the process.

Dividing the training sequences into phases and

determining the time of boot termination. We want
our method to be agnostic to file-system layout. It imme-
diately follows that the analysis is done at the block level.
Therefore we base our metric, described below, on just the
recurrences of the block indices. In other words, if some
random permutation were applied to the disk indices, the
metric would not change. Another guiding principle is that
after boot, the system is in a steady state, and each block
is accessed with some respective probability that is approxi-
mately constant over time. On the other hand, during boot,
which is a singular (albeit long) event, the variation, per
block, of access events, will be high. A well-known mea-
sure which conveniently captures variability is the Shannon
(or information) entropy. Given a random variable X, the
entropy H(x) is defined as −

P

x
P (x) · log

2
(P (x)). A low

entropy value signifies uniformity, and vice versa. Therefore
this metric is suitable for our purpose, as detailed below.

To implement our scheme, we partition all training se-
quences into windows. A window is a consecutive part of
the input stream, which has a fixed number of data points
(i.e., block numbers) in it. In each window, and for ev-
ery block number, we calculate the entropy of the counts
of block occurrence across all sequences. For example, as-
sume the window size is six and that we have observed three
training sequences. For a given window in the first sequence
the block numbers, in order, are: {A,B,A,A,B,B}. For the
same window in the second and third sequences they are
{A,B,B,A,B,B} and {A,B,A,B,A,B}, respectively. Block A
appears three times in the first sequence, twice in the second
sequence, the three times in the third. Therefore the count
vector for block A is 〈3, 2, 3〉. and the corresponding entropy
is 1.56 (this is the entropy of the vector 〈3/8, 2/8, 3/8〉). Sim-
ilarly, we compute the entropy for block B. Then we take the
average over all block indices (two in this example).

3. EXPERIMENTS
We began by testing the boot detection algorithm on block

sequences gathered from a Linux (SLES-10) machine. Imme-
diately after booting, the VM ran one of the following work-
loads: iozone, libMicro, pChase[6], iperf, and webload — a
local web client rapidly accessing a collection of static pages
(the Apache documentation set) stored on a local Apache
server. A boot detector was trained and tested on sequences
from all the different loads, shuffled randomly.

We then repeated the tests on a Linux-based WebSphere
(WAS) virtual appliance under KVM. Here, the system had
three disks attached (for system, data, and applications).
We performed tests on data from just the system disk, as
well from all three disks. A third set of tests added back-
ground noise, in the form of another guest on the same phys-
ical host, running Microsoft Windows XP.

Lastly we tested Microsoft Windows XP under KVM. The
workloads included: idle, a CPU-intensive benchmark [2],
optionally preceded by a boot-time disk scan, and an idle
machine with a simultaneous VM on the same host, running
Linux and compiling a kernel source tree.

As shown in Figure 1, our algorithm successfully detected
boot termination in all sequences. The maximum error is

under 15 seconds, with the vast majority of the Linux-based
results measuring under 5 seconds of error. For Microsoft
Windows, the error is larger — most samples are within 10
seconds. We attribute much of that to the inherent inaccu-
racy of the ground-truth signal on this platform.

4. CONCLUSION
We presented an effective and generic method for out-of-

band detection of boot sequence termination. Our method
works by inspecting the data stream between a (virtual or
physical) machine and its (virtual or networked) storage. It
detects the point in time at which a machine finished per-
forming the routine start-up tasks, and signals this event.
Additionally, we can detect divergence from the regular se-
quence, either in addition or in place of the normal activity.

5. REFERENCES
[1] The Amazon Elastic Compute Cloud (Amazon EC2)

web site. http://aws.amazon.com/ec2.

[2] BYTEmark. http://www.byte.com/bmark/bdoc.htm.

[3] FilesX. http://www.filesx.com/.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP ’03: the

nineteenth ACM symposium on Operating systems

principles, pages 164–177, New York, NY, USA, 2003.
ACM Press.

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. KVM: the linux virtual machine monitor. In
OLS ’07: Ottawa Linux Symposium, pages 225–230,
July 2007.

[6] D. Pase. The pChase benchmark page.
http://www.pchase.org/.

Linux Windows XP WAS
−15

−10

−5

0

5

10

T
im

e 
di

ffe
re

nc
e

Figure 1: Summary of detection accuracy for various

workloads. The box edges show the first and third

quartile, and the middle line shows the median. The

“whiskers” show the range of the data. Sample sizes

are 156 for Linux, 146 for Windows XP, and 104 for

WAS.


