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Abstract We focus on the problem of efficient learning of
dependency trees. Once grown, they can be used as a spe-
cial case of a Bayesian network, for PDF approximation,
and for many other uses. Given the data, a well-known al-
gorithm can fit an optimal tree in time that is quadratic in
the number of attributes and linear in the number of records.
We show how to modify it to exploit partial knowledge about
edge weights. Experimental results show running time that
is near-constant in the number of records, without significant
loss in accuracy of the generated trees.
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1 Introduction

Bayesian networks are a popular class of very general mod-
els. They are widely used for data modeling, for inference,
and for PDF approximation. They are also appealing from
the cognitive aspect as their structure can often be visualized
and easily understood. However, because of their expres-
siveness, they are hard to fit from data, requiring search in
a super-exponential space of possible graph structures. De-
spite recent advances (Friedman et al., 1999; Goldenberg &
Moore, 2004), learning network structure from big data sets
demands huge computational resources.

Our approach restricts the search space to a more tract-
able one by considering only a simpler sub-class of graphical
models. Specifically, we focus on trees. For trees, the well-
known Chow and Liu (1968) algorithm can find optimal so-
lutions in polynomial time. As an added feature, the trees can
be described more simply to human users. Below, we show
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how to modify the known algorithm so it runs in time that
is sub-linear in the input size, using a user-specified amount
of memory. Empirical evidence shows run time which is lin-
ear in the number of attributes, and constant in the input size.
The constant depends only on intrinsic properties of the data.
This allows processing of very large data sets. We also ex-
amine and quantify the possible loss of accuracy and show
it is negligible for most practical purposes.

More precisely, dependency trees are belief networks that
satisfy the additional constraint that each node has at most
one parent. It has been shown (Chow & Liu, 1968) that find-
ing the tree that maximizes the data likelihood can be per-
formed as follows. First, construct a full graph where each
node corresponds to an attribute in the input data. Next, as-
sign edge weights; these are derived from the mutual infor-
mation values of the corresponding attribute pairs. Finally,
run a minimum1 spanning tree algorithm on the weighted
graph. The output tree is the desired one.

Besides being a “lighter” version of Bayesian networks,
dependency trees are also interesting in their own right. They
form a complete representation (Meila, 1999b). Addition-
ally, they can act as initializers for search, as mixture compo-
nents (Meila, 1999b), or as components in classifiers (Fried-
man et al., 1998).

Once the weight matrix is constructed, executing a min-
imum spanning tree (MST) algorithm is fast. The time-con-
suming part is the population of the weight matrix, which
takes time quadratic in the number of attributes and linear in
the number of records. This becomes expensive when con-
sidering datasets with hundreds of thousands of records and
hundreds of attributes.

To overcome this problem, we propose a new way of in-
terleaving the spanning tree construction with the operations
needed to compute the mutual information coefficients. We
develop a new spanning-tree algorithm, based solely on Tar-
jan’s (1983) red-edge rule. This algorithm is capable of us-
ing partial knowledge about edge weights and of signaling

1 To be precise, we will use it as a maximum spanning tree algo-
rithm. The two are interchangeable, requiring just a reversal of the edge
weight comparison operator. Historically, minimum has been far more
popular a name.
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the need for more accurate information regarding a particu-
lar edge. The partial information we maintain is in the form
of probabilistic confidence intervals on the edge weights; an
interval is derived by looking at a sub-sample of the data
for a particular attribute pair. Whenever the algorithm sig-
nals that a currently-known interval is too wide, we inspect
more data records in order to shrink it. Once the interval is
small enough, we may be able to prove that the correspond-
ing edge is not a part of the tree. Whenever such an edge can
be eliminated without looking at the full data set, the work
associated with the remainder of the data is saved. This is
where performance is gained.

We have implemented the algorithm for numeric and cat-
egorical data and tested it on real and synthetic data sets
containing hundreds of attributes and millions of records.
We show experimental results of up to 5,000-fold speed im-
provements over the traditional algorithm. The resulting trees
are, in most cases, of near identical quality to the ones grown
by the naive algorithm.

Use of probabilistic bounds to direct structure-search ap-
pears in Maron and Moore (1994) for classification and in
Moore and Lee (1994) for model selection. In a sequence
of papers, Domingos et al. have demonstrated the usefulness
of this technique for decision trees (Domingos & Hulten,
2000), K-means clustering (Domingos & Hulten, 2001a),
and EM for mixtures of Gaussians (Domingos & Hulten,
2001b). In the context of dependency trees, Meila (1999a)
discusses the discrete case that frequently comes up in text-
mining applications, where the attributes are sparse in the
sense that only a small fraction of them are true for any
record. In this case it is possible to exploit the sparseness
and accelerate the Chow-Liu algorithm.

Throughout the chapter we use the following notation.
The number of data records is R, the number of attributes
M. When x is an attribute, xi is the value it takes for the
i-th record. We denote by ρxy the correlation coefficient be-
tween attributes x and y, and omit the subscript when it is
clear from the context. Hx is the entropy of an attribute or an
attribute set x.

2 A Slow Minimum-Spanning Tree Algorithm

We begin by describing our MST algorithm. Although in
its given form it can be applied to any graph, it is asymp-
totically slower than established algorithms (as predicted in
Tarjan (1983) for all algorithms in its class). We then pro-
ceed to describe its use in the case where some edge weights
are known not exactly, but rather only to lie within a given
interval. In Section 4 we will show how this property of the
algorithm interacts with the data-scanning step to produce
an efficient dependency-tree algorithm.

In the following discussion we assume we are given a
complete graph with n nodes, and the task is to find a tree
connecting all of its nodes such that the total tree weight
(defined to be the sum of the weights of its edges) is min-

1. T � an arbitrary spanning set of n � 1 edges.
L � empty set.

2. While
�
L̄
���

n � 1 do:
Pick an arbitrary edge e � L̄ � T .
Let e � be the heaviest edge on the path in T be-
tween the endpoints of e.
If e is heavier than e � :

L � L 	�
 e �
otherwise:

T � T 	

 e ����
 e � �
L � L 	�
 e ���

3. Output T .

Fig. 1 The MIST algorithm. At each step of the iteration, T contains
the current “draft” tree. L contains the set of edges that have been
proven to not be in the MST and so L̄ contains the set of edges that
still have some chance of being in the MST. T never contains an edge
in L.

imized. This problem has been extremely well studied and
numerous efficient algorithms for it exist.

We start with a rule to eliminate edges from considera-
tion for the output tree. Following Tarjan (1983), we state
the so-called “red-edge” rule:

Theorem 1 The heaviest edge in any cycle in the graph is
not part of the minimum spanning tree.

Traditionally, MST algorithms use this rule in conjunc-
tion with a greedy “blue-edge” rule, which chooses edges
for inclusion in the tree. In contrast, we will repeatedly use
the red-edge rule until all but n � 1 edges have been elim-
inated. The proof that this results in a minimum-spanning
tree follows from Tarjan (1983).

Let E be the original set of edges. Denote by L the set
of edges that have already been eliminated, and let L̄ � E �
L. As a way to guide our search for edges to eliminate we
maintain the following invariant:

Invariant 1: At any point there is a spanning tree T , which
is composed of edges in L̄.

In each step, we arbitrarily choose some edge e in L̄ � T
and try to eliminate it using the red-edge rule. Recall that the
rule needs a cycle to act on. Let P be the path in T between
the endpoints of e. The cycle we will apply the red-edge rule
to will be composed of e and P. It is clear we only need
to compare e with the heaviest edge in P. If e is heavier, we
can eliminate it by the red-edge rule. However, if it is lighter,
then we can eliminate the tree edge by the same rule. If this
is indeed the case, we do so and add e to the tree to preserve
Invariant 1. The algorithm, which we call Minimum Incre-
mental Spanning Tree (MIST), is listed in Figure 1. Figures
2-5 illustrate how it may run on an example graph.

The MIST algorithm can be applied directly to a graph
where the edge weights are known exactly. And like many
other MST algorithms, it can also be used in the case where
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Fig. 2 Walkthrough of the MIST algorithm. The original graph (a). An arbitrary spanning tree is chosen (b). An arbitrary edge is chosen for
elimination (c). The tree path completes the edge to a cycle (d). (Continued)

Tree edge
Non−tree edge
Eliminated edge

(a) (b) (c) (d)

Fig. 3 Walkthrough of the MIST algorithm (cont’d). The edge is discovered to be the heaviest on the cycle and eliminated (a). Another edge is
chosen (b). On completing the cycle, some other edge in it is discovered to be heaviest (c). The tree edge is eliminated, and the non-tree edge
swapped in (d). (Continued)

(a) (b) (c) (d)

Fig. 4 Walkthrough of the MIST algorithm (cont’d). The updated tree (a). Another edge is chosen (b). The tree cycle is completed and the
non-tree edge eliminated (c). The next edge is chosen (d). (Continued)
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(a) (b) (c) (d)

Fig. 5 Walkthrough of the MIST algorithm (cont’d). The edge is eliminated (a). The last remaining non-tree edge is chosen (b) and swapped in
(c). The output tree (d).

just the relative order of the edge weights (as opposed to
the exact value) is given. Now imagine a different setting,
where edge weights are not given, and instead an oracle
exists, which knows the exact values of the edge weights.
When asked about the relative order of two edges, it may
either respond with the correct answer, or it may give an in-
conclusive answer. Furthermore, a constant fee is charged
for each query. In this setup, MIST is still suited for finding
a spanning tree while minimizing the number of queries is-
sued. In step 2, we go to the oracle to determine the order.
If the answer is conclusive, the algorithm proceeds as de-
scribed. Otherwise, it just ignores the “if” clause altogether
and iterates (possibly with a different edge e).

For the moment, this setting may seem contrived, but in
Section 4, we go back to the MIST algorithm and put it in a
context very similar to the one described here.

3 Probabilistic Bounds on Mutual Information

We now concentrate once again on the specific problem of
determining the mutual information between a pair of at-
tributes. We show how to compute it given the complete
data, and how to derive probabilistic confidence intervals for
it, given just a sample of the data.

As shown in Reza (1994), the mutual information for two
jointly Gaussian2 numeric attributes X and Y is:

I � X ;Y ����� 1
2

ln � 1 � ρ2 �
where the correlation coefficient ρ � ρXY �

∑R
i � 1 ��� xi � x̄ ��� yi � ȳ ���

σ̂ 2
X σ̂ 2

Y

2 If the data is not Gaussian, we can make no claims. However, there
are several possible extensions to the dependency tree model which
are flexible enough to accommodate such data (Pelleg, 2004; Davies,
2002).

with x̄ � ȳ � σ̂ 2
X and σ̂ 2

Y being the sample means and variances
for attributes X and Y . In practice, we standardize the data in
a pre-processing step to have zero mean and unit variance.
This leaves xi

� yi as the only unknown.
Since the log function is monotonic, I � X ;Y � is also mono-

tonic in � ρ � . This is a sufficient condition for the use of � ρ �
as the edge weight in a MST algorithm. Consequently, the
sample correlation can be used in a straightforward manner
when the complete data is available. Now consider the case
where just a sample of the data has been observed.

Let x and y be two data attributes. We are trying to es-
timate ∑R

i � 1 xi
� yi given the partial sum ∑r

i � 1 xi
� yi for some

r � R. To derive a confidence interval, we use the Central
Limit Theorem.3 It states that given samples of the random
variable Z (where for our purposes Zi � xi

� yi), the sum ∑i Zi
can be approximated by a Normal distribution with mean
and variance closely related to the distribution mean and
variance. Furthermore, for large samples, the sample mean
and variance can be substituted for the unknown distribution
parameters. Note, in particular, that the central limit theo-
rem does not require us to make any assumption about the
Gaussianity of Z. We thus can derive a two-sided confidence
interval for ∑i Zi � ∑i xi

� yi with probability 1 � δ for some
user-specified δ , typically 1%. Given this interval, comput-
ing an interval for ρ is straightforward.

In the case of binary categorical data, we follow Meila
(1999b) and write:

I � X ;Y ��� HX � HY � HXY� 1
R
 � zlogz � NX �!� zlogz � N � NX �� zlogz � NY �!� zlogz � N � NY �� zlogz � NXY � � zlogz � NX � NXY �� zlogz � NY � NXY �� zlogz � R � NX � NY � NXY �� zlogz � R �#" (1)

3 One can use the weaker Hoeffding bound instead, and our imple-
mentation supports it as well, although it is generally much less useful.
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where zlogz � z � is shorthand for z log z, and Nz denotes
the number of times an attribute or a set of attributes are ob-
served all true. As before, NXY is the quantity we are deriving
a probabilistic estimate for, which we do from the counts in
a sample, and application of the CLT.

Now, observe that:

d � zlogz � y ���
dx

� dy log y
dx� dy

dx
logy � y � 1

y
� dy $ dx

�%� 1 � logy � dy
dx &

We take a derivative of I � X ;Y � with respect to the mea-
sured quantity NXY . The only terms in Equation 1 which do
not cancel out are the ones containing NXY :

d � I � X ;Y �'�
dNxy

�(� 1 � logNxy �!�)� 1 � log � Nx � Nxy ����*� 1 � log � Ny � Nxy ���� � 1 � log � R � Nx � Ny � Nxy �+�� logNxy � log � Nx � Nxy �� log � Ny � Nxy �� log � R � Nx � Ny � Nxy �,�� log
Nxy � R � Nx � Ny � Nxy �� Nx � Nxy ��� Ny � Nxy � & (2)

Let Nx̄ȳ be the number of records for which both at-
tributes were false, and similarly for Nxȳ and Nx̄y. Immedi-
ately we get:

Nxȳ � Nx � Nxy

Nx̄y � Ny � Nxy

Nx̄ȳ � R � Nx � Ny � Nxy &
Then, equality with zero in Equation 2 above is obtained
when:

NxyNx̄ȳ � NxȳNx̄y

or:

Nxy � NxȳNx̄y

Nx̄ȳ
(3)

Therefore, to determine minimum and maximum values
for I � X ;Y � at the interval, we evaluate it at the endpoints.
Additionally, we evaluate at the extreme point, if it hap-
pens to be included in the interval. To summarize, we de-
rive the upper (resp. lower) bounds by taking the maximum
(resp. minimum) over the set containing the endpoints de-
rived from the CLT, and optionally the extreme point from
Equation 3.

4 The Full Algorithm

As we argued, the MIST algorithm is capable of using par-
tial information about edge weights. We have also shown
how to derive confidence intervals on edge weights. We now
combine the two and give an efficient dependency-tree algo-
rithm.

We largely follow the MIST algorithm as listed in Fig-
ure 1. We initialize the tree T in the following heuristic way:
first we take a small sub-sample of the data, and derive point
estimates for the edge weights from it. Then feed the point
estimates to any MST algorithm and obtain a “draft” tree T .

When we come to compare edge weights, we generally
need to deal with two intervals. If they do not intersect, then
the points in one of them are all smaller in value than any
point in the other, in which case we can determine which
represents a heavier edge. We apply this logic to all com-
parisons, where the goal is to determine the heaviest path
edge e - and to compare it to the candidate e. If we are lucky
enough that all of these comparisons are conclusive, then
the amount of work we save is related to how much data
was used in computing the confidence intervals — the rest
of the data for the attribute-pair that is represented by the
eliminated edge can be ignored.

However, there is no guarantee that the intervals are sep-
arated and allow us to draw meaningful conclusions. If they
do not, then we have a situation similar to the inconclusive
oracle answers in Section 2. The price we need to pay here is
looking at more data to shrink the confidence intervals. We
do this by choosing one edge — either a tree-path edge or
the candidate edge — for “promotion”, and increasing the
sample size used to compute the sufficient statistics for it4.
After doing so we try to eliminate again (since we can do
this at no additional cost). If we fail to eliminate we iterate,
possibly choosing a different candidate edge (and the corre-
sponding tree path) this time.

The choice of which edge to promote is heuristic, and de-
pends on the expected success of resolution once the interval
has shrunk. This is estimated by first defining a cost measure
for a set of tree edges and a candidate edge. It is the sum of
the sizes of intersections of the tree edges with the candi-
date edge, plus the size of intersections between the worst
tree edge (as defined by the mid-points of the intervals) and
the other tree edges. We now go over the tree edges, in turn,
and for each one estimate the expected size of its interval,
if given more data. This estimate depends on the measured
variance in the observed data. We record the cost for each of
these speculative edges. The one associated with the lowest
cost is chosen, unless the expected difference from the cur-
rent cost is below a threshold. If this holds, we pick an edge
at random from the set of edges that define the boundary of
the union of the tree edges which intersects with the can-
didate edge. If this is impossible (for example, all of these
edges are already saturated), we choose some tree-path edge
at random.

4 Our implementation doubles the sample, up to a limit of 64 times
the original size.
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Another heuristic we employ goes as follows. Consider
the comparison of the path-heaviest edge to an estimate of
a candidate edge. The interval for the candidate edge may
be very small, and yet still intersect the interval that is the
heavy edge’s weight (this would happen if, for example, both
attribute-pairs have the same distribution). We may be able
to reduce the amount of work by pretending the interval is
narrower than it really is. We therefore trim the interval by a
constant, parameterized by the user as ε , before performing
the comparison. This use of δ and ε is analogous to their
use in “Probably Approximately Correct” analysis: on each
decision, with high probability � 1 � δ � we will make at worst
a small mistake � ε � .

Above, we stated that we can examine more data for any
given edge at will. The tacit assumption is that the data is
stored on random-access media. But in practice, many inter-
esting data sets cannot fit in RAM. We return to this point
below, and show how to implement the algorithm so it uses
only as much memory as the user specifies.

4.1 Algorithm Complexity

We now discuss the theoretical complexity of the proposed
algorithm. Refer to Figure 1. In theory, the first step can be
done by choosing edges at random. In practice, it is built by
sampling some number S of records from the input, and run-
ning a Chow-Liu algorithm on the sample. The complexity
of obtaining the sample is O � SM2 � . If M is very large then
this can dominate the run time. A possible countermeasure is
to choose S proportional to M . 2. However this is not always
possible: if M2 is in the order of R or greater, this will result
in a sample size smaller than one. Therefore the worst case
time here is O � M2 � . Finding the actual minimum spanning
tree on the sample can be done in time O � M2 � M logM �
by Prim’s algorithm using Fibonacci heaps (Cormen et al.,
1989).

Step 2 in Figure 1 requires O � M2 � successful elimina-
tion steps. Each step requires, aside from the work required
to read more data, finding a tree path between two nodes. In
the worst case, this can take O � M � work since the current
tree contains M � 1 edges. Therefore the cost for this step is
O � M3 � . It is possible that the cost of finding and updating
tree paths can be amortized (Tarjan, 1983). But more impor-
tantly, elimination of tree edges is a rare occurrence, so the
tree structure is generally static. Therefore tree paths can be
recorded and re-used instead of discovered. This is done in
the current implementation.

Below, we present empirical results showing that, for the
data sets in question, the worst case is an overestimate. In
particular, Figure 7 shows that for synthetic sets with M �
160, performance is still comfortably in the linear range.

4.2 Bounding Memory Usage

One advantage the original Chow and Liu algorithm has is
that it is easily executed with a single sequential scan of the

data file. Conversely, the algorithm as described above as-
sumes it is easy to examine any given datum, and might pro-
cess records out of order. Suppose, for example, that an edge
between two specific attributes is promoted several times,
and the first 10 � 000 records for it are read. Now, it is still
possible that another edge, containing just one of these at-
tributes, will be promoted in a future step, and the range of
records for this promotion will be, say, 1000 � 2000. That is,
the algorithm may need to revisit some data cells, and will
generally do this in an unpredictable way.

This kind of access pattern is generally expensive to do
if the data is on disk. Storing the whole set in RAM might
solve the problem, but that is not always feasible. Below, we
describe an access scheme that allows the data to reside in
a standard SQL database, and only retrieves data in contigu-
ous blocks of a single attribute. We have fully implemented
the ideas below, and the results in Section 5.2 were obtained
by running our implementation. Under reasonably weak as-
sumptions, access to the data through a database is fast. Ad-
ditionally, we make use of a local cache of data, and let the
user specify its size. The management policy for the cache
takes into account algorithm-specific information that is not
generally available to the database.

Our scheme can be thought of as an access layer through
which the described algorithm reads data. Whenever more
data for a given edge is required, the task of the access layer
is to provide two contiguous blocks, one from each of the
corresponding data columns (attributes).

The local cache is divided into buffers of equal size. Each
contains a contiguous block of data from a given column.
Note that these may be smaller than the amount requested
for examination. In this case each request will require data
from multiple buffers for each of the two columns. If the
requested data is in the cache, we simply transfer it to the
main algorithm. Otherwise, we locate an appropriate buffer
to store the data, and make a database request for it. The
database request should be handled efficiently by any SQL
implementation. In practice, this is true if the buffers are big
enough and the data is indexed appropriately.

As with any cache, the case where all buffers are in use is
handled by an eviction policy. We normally evict the buffer
that has data which was accessed least recently. However,
we can optimize further. Note that given a particular edge,
data used for the edge is read in-order. In other words, each
data cell will only be accessed at most once per edge. There-
fore, for a specific cell and its associated column, there will
be at most � M � 1) accesses to it — one for each of the
other columns. Our cache exploits this fact by spontaneously
evicting buffers that have already been accessed � M � 1 �
times.

Below, we present empirical results exploring different
aspects of the caching scheme. In essence, they prove that
a fixed-size buffer cache provides a way to handle arbitrary
amounts of data, if it is stored appropriately in a standard
database. As an anecdote, we created a dependency-tree for
SDSS data consisting of 446 attributes and 200 � 000 records,
or around 700MB of raw data, using a buffer cache of 48



Dependency Trees in Sub-linear Time and Bounded Memory 7

MB. It took 19 minutes to complete on a 2 & 8 Ghz dual Intel
xeon which also hosted the database.

5 Experimental Results

In the following description of experiments, we vary differ-
ent parameters for the data and the algorithm. Unless other-
wise specified, these are the default values for the parame-
ters. We set δ to 1% and ε to 0 & 05 (on either side of the in-
terval, totaling 0 & 1). The initial sample size is fifty records.
There are 100 � 000 records and 100 attributes. The data is
real-valued. The data-generation process first generates a ran-
dom tree, then draws points for each node from a normal
distribution with the node’s parent’s value as the mean. In
addition, any data value is set to random noise with proba-
bility 0 & 15.

To construct the correlation matrix from the full data,
each of the R records needs to be considered for each of the/ M

2 0 attribute pairs. We evaluate the performance of our al-
gorithm by adding the number of records that were actually
scanned for all the attribute-pairs, and dividing the total by
R
/ M

2 0 . We call this number the “data usage” of our algorithm.
The closer it is to zero, the more efficient our sampling is,
while a value of one means the same amount of work as for
the full-data algorithm (possibly more, when considering the
overhead).

We first demonstrate the speed of our algorithm as com-
pared with the full O � RM2 � scan. Figure 6 shows that the
amount of data the algorithm examines is a constant that
does not depend on the size of the data set. This translates
to relative run-times of 0 & 7% (for the 37 � 500-record set) to
0 & 02% (for the 1 � 200 � 000-record set) as compared with the
full-data algorithm. The latter number translates to a 5 � 000-
fold speedup. Note that the reported usage is an average over
the number of attributes. However, this does not mean that
the same amount of data was inspected for every attribute-
pair — the algorithm determines how much effort to invest
in each edge separately. We return to this point below.

The running time is plotted against the number of data
attributes in Figure 7. A linear relation is clearly seen, mean-
ing that (at least for this particular data generation scheme)
the algorithm is successful in doing work that is proportional
to the number of tree edges.

Clearly speed has to be traded off. For our algorithm the
risk is making the wrong decision about which edges to in-
clude in the resulting tree. For many applications this is an
acceptable risk. However, there might be a simpler way to
grow estimate-based dependency trees, one that does not in-
volve complex red-edge rules. In particular, we can just run
the original algorithm on a small sample of the data, and use
the generated tree. It would certainly be fast, and the only
question is how well it performs.

To examine this effect we have generated data as above,
then ran a 30-fold cross-validation test for the trees our al-
gorithm generated. We also ran a sample-based algorithm
on each of the folds. This variant behaves just like the full-
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data algorithm, but instead examines just the fraction of it
that adds up to the total amount of data used by our algo-
rithm. Results for multiple data sets are in Figure 8. We see
that our algorithm outperforms the sample-based algorithm,
even though they are both using the same total amount of
data. The reason is that using the same amount of data for
all edges assumes all attribute-pairs have the same variance.
This is in contrast to our algorithm, which determines the
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Fig. 9 Relative log-likelihood vs. the sample-based algorithm, drawn
against the fraction of data scanned.

amount of data for each edge independently. Apparently, for
some edges this decision is very easy, requiring just a small
sample. These “savings” can be used to look at more data
for high-variance edges. The sample-based algorithm would
not put more effort into those high-variance edges, eventu-
ally making the wrong decision. In Figure 9 we show the
log-likelihood difference for a particular (randomly gener-
ated) set. Here, multiple runs with different δ and ε values
were performed, and the result is plotted against the frac-
tion of data used. The baseline (0) is the log-likelihood of
the tree grown by the original algorithm using the full data.
Again we see that MIST is better over a wide range of data
utilization ratios.

With regard to log-likelihood, we are aware that it does
not directly reflect differences in tree structures. However, it
is a good indicator for the modeling power of a given tree.
For example, consider the trees in Figure 10. The probability
function of tree (a) is:

P � X �,� P � D �C � P � C �B � P � A �B � P � B �
while tree (b) represents:

P � X �,� P � C �B � P � D �B � P � B �A � P � A � &
In other words, even thought the structures are different, the
log-likelihood differences is only affected by the differences
between P � D �B � and P � C �B � , and if these two conditional
probabilities happen to be the same, so is the log-likelihood.

Keep in mind that the sample-based algorithm has been
given an unfair advantage, compared with MIST: it knows
exactly how much data it needs to look at. This parameter
is implicitly passed to it from our algorithm, and represents
an important piece of information about the data. Without it,
there would need to be a preliminary stage to determine the
sample size. The alternative is to use a fixed amount (spec-
ified either as a fraction or as an absolute count), which is
likely to be too much or too little. Another option is to iter-
ate over increasing data sizes (for example, double the sam-
ple size in each iteration). The problem with this approach
is that it still leaves open the question of how to determine if
the size is big enough.

A

B

C

D

(a)

C

A

D

B

(b)

Fig. 10 Two dependency trees

Output: A data-record as a vector 
 X 1 0 2435353 X 1 n �
1 26� of attributes.

– X 1 0 2 is a value drawn from N 1 0 7 1 2 .
– X 1 10i 2 is a value drawn from N 1 X 1 10 1 i � 1 28297 1 2 .
– X 1 10k : j 2 for j ;< 0 is drawn from N 1 X 1 10k : j �

1 297 j 2 .
Fig. 11 The data-generation algorithm

X = 11 >'?@?@?
X = 0 > X = 1 >�?@?@? ?@?@? X = 9 >

X = 10 > ?@?@? X = 13 >
Fig. 12 Structure of the generated data for 14 attributes.

5.1 Sensitivity Analysis

We now examine the effect the user-supplied parameters ε
and δ have on performance. Unless otherwise specified, here
are the default values for the parameters. We set δ to 1% and
ε to 0. The initial sample size is 5 � 000 records. There are
100 � 000 records and 100 attributes. The data is real-valued.
The data-generation process for the synthetic sets is as in
Figure 11. The correct dependency-tree for this process is
shown in Figure 12. In the categorical case, the network is
identical, but parent-child relationships are as follows. The
root is true with probability 0 & 5. For the other nodes, the
probability of them being true given that their parent is true
is 0 & 5 � c for some constant c, and the probability of them be-
ing true given that their parent is false is 0 & 5 � c. By setting
the “coupling” parameter c to 0 we get a completely ran-
dom data, while a value of 0 & 5 generates a highly-structured,
noiseless data set.

Our next experiment examines the sensitivity of our al-
gorithm to noisy data. Data was generated in the usual way,
except that some fraction of the records had completely ran-
dom values in all attributes. As shown in Figure 13, when
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ε is 0, data-usage is kept below 15% of maximum, similar
to the performance with noiseless data, as long as the noise
level is below 30%. With ε set to 0 & 01, this is true for all
noise levels up to 80%.

Recall that the δ parameter controls how loose the con-
fidence intervals are. The bigger it is, the higher the chance
that a wrong decision about a tree-edge inclusion or exclu-
sion will be made. Figure 14 shows the effect of δ on the
running time. When ε is 0, it appears that higher values of
δ do not improve the running time significantly, while in-
creasing the chance of deviation from the output of the full
algorithm. However, when ε was set to 0 & 05, an improve-
ment in running-time can be traded for some decrease in the
quality of the output (Figure 15). For this case none of the
30 runs in any of the 10 values for δ resulted in the same
identical tree as with the full algorithm.

We continue to examine the effect the ε parameter has on
performance. Recall that it controls a heuristic that may de-
crease the edge usage, but may also lead to the wrong edges
being included in the tree. See Figure 16 for the effect on
running time (or, equivalently, on the number of data cells
scanned). We see that changes in ε can dramatically improve
performance, down from 70% to about 10% on this data-set,
with a sharp drop in the 0 & 002 — 0 & 004 range. The inter-
esting question is, how badly is the output quality affected
by this heuristic. To answer this we have plotted the data
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Fig. 15 Difference in log-likelihood (average per record) of the gener-
ated trees, as a function of δ and ε . Baseline log-likelihoods were in
the order of 3 3 5 A 106.
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This is data from the same experiments as plotted in Figure 16.

from the same experiments, but now with the X (not Y ) axis
being the relative log-likelihood of the output (Figure 17).
The worst log-likelihood ratio is about 0 & 05, and it seems
that with careful selection of ε it is possible to enjoy most
of the time savings while sacrificing very little accuracy. For
this particular data set this “sweet-spot” approximately cor-
responds to ε � 0 & 0028.
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5.2 Buffer Cache Performance

As mentioned above, non-sequential data access can degrade
performance. The buffer cache was designed to alleviate the
problem, and below we quantify the extent to which it suc-
ceeds. In the tests below, the SQL back-end was a Postgresql
7 & 3 & 4 server on the same machine, using local disk for stor-
age. The data tables were verticalized, and an index created
on the “row” and “column” values. The Postgresql “CLUS-
TER” command was used to arrange the table on disk in
index order.

Remember that the total size of the buffer pool is spec-
ified by the user. An issue we left open is the number of
buffers in the pool. Many buffers offer more flexibility in
allocation. But as the size of each buffer decreases, the over-
head associated with buffer management increases. Figure 18
shows results on synthetic data with 40 � 000 records and a
one-megabyte buffer pool. For this experiment, the pool was
deliberately chosen to be too small. Within its operating range
it performs well enough to mask any measurable effect, as
shown below. For this experiment, we varied the number of
buffers, and measured the accesses to data that was previ-
ously fetched. In other words, we counted the number times
in which the disk had to “go back” in the data order. We
see that if the number of buffers is very low, performance
plummets. This is because buffers are evicted very quickly,
and are very rarely re-used. But if the number of buffers is
at least approximately as large as M, then the non-sequential
access cost is no worse than four times the amount of work
required to read the full data. Considering this experiment,
and taking into account variations most likely to occur in
real data, we recommend using 10 � M buffers.

Under less extreme conditions, the database-backed vari-
ant behaves similarly to the original memory-backed im-
plementation. In Figure 19 we measure performance versus
the total pool size. Here, we used synthetic data sets with
0 & 5 million records and 100 attributes, we varied the buffer
size between 1 and 10 megabytes. This compares to the to-
tal data size of 400 megabytes. The pool was divided into
1000 buffers. We see that about 1% of the data was accessed
through the cache. This agrees with the results shown earlier
for the memory-based implementation. In all of the exper-
iments, we measured the amount of data accessed in non-
sequential manner, and found it to be zero. We can also see
that data usage slowly grows with the cache size. This is be-
cause data is always read and used if it is already in a buffer.
In theory, the algorithm could stop reading data records as
soon as it eliminates an edge. In practice, the processing
of records following this point until the end of the buffer is
“wasted”. The waste is potentially bigger in larger buffers.

Lastly, we wanted to verify that the database-backed vari-
ant does not change the fundamental characteristics of the
original version. In particular, that the run time, holding all
other factors constants, is near-constant in the number of
records. Our experiments in this regard show mixed results.

First, when inspecting the total number of data cells ac-
cessed by the program, (Figure 20), we see near-constant
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Fig. 19 Amount of data read, in data cells. The data has 100 attributes,
and the buffer pool size consists of 2 megabytes divided among 1000
buffers.

behaviour regardless of the number of records. The constant
itself is higher than it is for the memory-based version (Fig-
ure 6), for the reasons explained above. This supports our
scalability claim.

However, if we plot the actual run-time for the program
(Figure 21), we see a clear linear dependence. This is sur-
prising also because in the memory-based implementation,
the run time was very tightly coupled with the data cell count.
But here, we see divergence, as one is near-constant, and the
other linear. We suspect an implementation or instrumenta-
tion problem with our code, but so far were unable to pin
it down. Another possible factor might be related to Post-
gresql. Unfortunately, the total time it takes to run such ex-
periments, including popluating the SQL tables, is so long
that we are unable to conduct more thorough exeperiments.

5.3 Real Data

To test our algorithm on real-life data, we used data sets
from various public repositories (Blake & Merz, 1998; Het-
tich & Bay, 1999), as well as analyzed data derived from
astronomical observations taken in the Sloan Digital Sky
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Survey (SDSS, 1998). On each data set we ran a 30-fold
cross-validation test as described above. For each training
fold, we ran our algorithm, followed by a sample-based al-
gorithm that uses as much data as our algorithm did. Then
the log-likelihoods of both trees were computed for the test
fold. Table 1 shows whether the 99% confidence interval for
the log-likelihood difference indicates that either of the algo-
rithms outperforms the other. In seven cases the MIST-based
algorithm was better, while the sample-based version won in
four, and there was one tie. Remember that the sample-based
algorithm takes advantage of the “data usage” quantity com-
puted by our algorithm. Without it, it would be weaker or
slower, depending on how conservative the sample size was.

We then turned the SDSS data into a second-order data
set to provide an example of data with many attributes and
many records. We first discretized all of the attributes. Then
we added all pairwise conjunctions of these attributes. There
were 23 original attributes X1 &�&'& X23 to which were added/ 23

2 0 additional attributes Ai B j where Ai B j � Xi C X j.
After doing that for all attributes and removing attributes

which take on constant values we were left with 148 at-
tributes and the original 2 & 4 million records. The naive al-

gorithm constructs a tree for this set in 6 & 6 hours, while the
fast algorithm (with default settings) takes about 21 minutes,
meaning a speedup of 19. The tree generated by the fast al-
gorithm weights 99 & 89% of the naive tree, and the difference
in log-likelihoods is 1 & 26 D 105, or about 0 & 05 per record.

As far as run time is concerned, we measured it to be
closely related to the number of value pairs visited. In other
words, the edge usage value for an accelerated run is almost
the same as the fraction of its run-time, to the run over the
full data. As can be seen Table 1, many of these fractions are
very small, making exact measurements impossible. Where
it could be measured, this observation holds both for our
synthetic and real data runs.

6 Red vs. Blue Rule

Our algorithm is based on the “red edge” rule. As mentioned
above, it is also possible to base MST algorithms on the
“blue edge” rule. A natural question to ask is: will the blue
edge rule be beneficial in a framework that utilizes proba-
bilistic intervals on edge weights?

Before attempting to answer, we review the difference
between the rules. The red rule operates on a cycle in the
graph; the heaviest edge on the cycle can be eliminated.5

See Figure 22. In contrast, the blue rule operates on a cut in
the graph. A cut is defined by a subset of the nodes, and con-
sists of the edges that have exactly one endpoint in the set.
The lightest edge in a cut can be proven to be in the MST.6
Therefore it is an inclusion rule. See Figure 23. The blue
rule is used exclusively in the popular Prim and Kruskal al-
gorithms. There are also algorithms that combine both rules.

Returning to the question of using the blue rule in a
Chow-Liu framework, we believe it will not be beneficial,
for the following reason. The number of edges in a cut can
be much larger than in a cycle: up to O � M2 � . To calculate
the expected number of edges in a random cut, denote the
number of nodes on one side of the cut by i. We assume the
probability of a cut is uniform over i. All cuts of this size
have the same number of edges i � � M � i � , therefore the ex-
pected value is:

1
M � 1

M . 1

∑
i � 1

i � � M � i �
� 1

M � 1

E
M

M . 1

∑
i � 1

i � M . 1

∑
i � 1

i2 F
� 1

M � 1 G M M � M � 1 �
2

� M � M � 1 ��� 2M � 2 � 1 �
6 H� G M2

2
� M � 2M � 1 �

6 H� M2 � M
6

5 The cycle must not contain any red edges.
6 The cut can not contain any blue edges.
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Fig. 22 The Red Edge rule.

Fig. 23 The Blue Edge rule.

That is, O � M2 � . Consider that for a cycle, the maximal
number of edges is M � 1. Therefore cuts require knowledge
of more edge weights, which in our case usually translates
to reading of more data. This is exactly what we are trying
to avoid.

7 Error Analysis

The use of probabilistic bounds means that there is a risk of
making a wrong decision. We now quantify this risk. For the
purpose of the analysis, we treat the tree built by the Chow-
Liu algorithm, when given exact edge weights, as optimal.
We consider every deviation from this tree as an error.7 For
simplicity we assume that the edge weights are all unique
and so is the optimal weight. We call the edges that form
the optimal tree “optimal edges”. We also ignore the δ op-
timization (i.e., assume it is set to zero). The event that we
are interested in is that the tree output by the modified MIST
algorithm is identical to the optimal tree.

Consider a MIST run which ends in the optimal tree. It
starts with an arbitrary tree, and eliminates and swaps edges
as in Section 4. We make two observations. One, it is suffi-
cient to consider just steps in which an edge is eliminated.
This is true because there is no risk of making a mistake by
deferring the decision due to insufficient data. Two, in all the
elimination steps, edges that are not in the optimal tree are
eliminated.

Now, follow the sequence of execution; each elimination
step corresponds to one of the following scenarios:

1. Eliminate a non-optimal and non-tree edge because it is
heavier than a tree edge.

7 A less strict error analysis would consider the expected weight
difference between the generated and optimal trees. Conceivably, one
could make some assumptions on edge weight distribution to perform
this kind of analysis.

2. Swap an optimal and a non-optimal edge because the op-
timal edge is lighter. The non-optimal edge swapped out
from the current tree is then eliminated.

In both cases, a non-optimal edge is eliminated because
a weight comparison determines it is heavier than an optimal
edge. We calculate the probability of arriving at the opposite
decision erroneously. Let A be the true weight of the opti-
mal edge (meaning the value used by the original Chow-Liu
algorithm), and let a be the corresponding confidence inter-
val. Similarly, let B be the true value for the non-optimal
edge and b its interval. See Figure 24.

In our case, B I A. A mistake happens by having a and b
such that the edge associated with a is eliminated. Since the
algorithm defers all decisions based on overlapping inter-
vals, the only configuration allowing this is where min � a �JI
max � b � (see Figure 24(d)). Given that B I A, this cannot
hold if both a and b contain their respective true values. The
probability of each interval not containing the true value is
at most ε , and the probability of not making either mistake
is at most � 1 � ε � 2. Therefore the probability of making the
wrong decision is at most 1 �K� 1 � ε � 2 � ε � 2 � ε � . Note that
this bound is loose, since not every failure to include the
exact value in the intervals results in full inversion of the
intervals.

As explained above, this kind of decision is made exactly
once per eliminated edge. Their number is just the total num-
ber of edges which are not tree edges, or

/ M
2 0 �L� M � 1 �M�� M � 1 � 2. We now have a bound on the probability of failure

in a single test, and we know the number of tests. We can
hence derive a lower bound on the probability of making no
mistakes: N ε � 2 � ε � 2 O4P M . 1 Q 2 �  

ε � 2 � ε �#" 2 R P M . 1 Q 2 .
8 Conclusion

We have presented an algorithm that applies a “probably ap-
proximately correct” approach to dependency-tree construc-
tion for real-valued and categorical data. Experiments in data
sets with up to millions of records and hundreds of attributes
show it is capable of processing massive data sets in time
that is constant in the number of records, with just a minor
loss in output quality.

While we derived formulas for both numeric and cat-
egorical data, we currently do not allow both types of at-
tributes to be present in a single network. We address this
issue in a forthcoming paper.
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