
H-0279 (H1003-006) March 9, 2010
Computer Science

IBM Research Report

Using Machine Learning Techniques to Enhance the
Performance of Automatic Backup and Recovery System

Dan Pelleg1, Eran Raichstein2, Amir Ronen1

1IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

2IBM Software Group
Building 30

Matam
Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Using Machine Learning Techniques to Enhance the
Performance of an Automatic Backup and Recovery

System

Dan Pelleg ∗ Eran Raichstein† Amir Ronen‡

ABSTRACT
A typical disaster recovery system will have mirrored storage at
a site that is geographically separate from the main operational
site. In many cases, communication between the local site and the
backup repository site is performed over a network which is inher-
ently slow, such as a WAN, or is highly strained, for example due
to a whole-site disaster recovery operation.

The goal of this work is to alleviate the performance impact of
the network in such a scenario, and to do so using machine learning
techniques. We focus on two main areas, prefetching and read-
ahead size determination. In both cases we significantly improve
the performance of the system.

Our main contributions are as follows: We introduce a theoret-
ical model of the system and the problem we are trying to solve
and bound the gain from prefetching techniques. We construct two
frequent pattern mining algorithms and use them for prefetching.
A framework for controlling and combining multiple prefetch al-
gorithms is presented as well. These algorithms, as well as various
simple prefetch algorithms, are compared on a simulation environ-
ment. We introduce a novel algorithm for determining the amount
of read ahead on such a system that is based on intuition from on-
line competitive analysis and on regression techniques. The signif-
icant positive impact of this algorithm is demonstrated on IBM’s
FastBack system.

Much of our improvements have been applied with little or no
modification of the current implementation’s internals. We there-
fore feel confident in stating that the techniques are general and are
likely to have applications elsewhere.

Categories and Subject Descriptors
D.4.2 [Storage Management]; D.4.5 [Reliability]: Backup proce-
dures; F.2 [ANALYSIS OF ALGORITHMS AND PROBLEM
∗IBM, Haifa Research Lab, Haifa University Campus, Mount
Carmel, Haifa, Israel. Email: dpelleg@il.ibm.com
†IBM Software Group, Building 30, Matam, Haifa, Israel. Email:
eranra@il.ibm.com
‡IBM, Haifa Research Lab, Haifa University Campus, Mount
Carmel, Haifa, Israel. Email: amirro@il.ibm.com

COMPLEXITY]; I.2.6 [Learning]

General Terms
Algorithms, Machine learning, Systems

Keywords
File and storage systems, Readahead, Prefetching

1. INTRODUCTION

1.1 Motivation
A typical disaster recovery system will have mirrored storage at a

site that is geographically separate from the main operational site.
In many cases, communication between the local (main) site and
the (remote) backup repository site is performed over a WAN. The
implication for both local data updates and recovery operations is
increased latency and reduced bandwidth. This can severely affect
performance, and precisely at a point that is critical to any organi-
zation’s business operation - the storage system.

This paper explores several methods to alleviate the problem us-
ing techniques from machine-learning and online analysis. The first
assumption we make is that anything beyond the storage controller
cannot be modified. That is, we can modify neither the layout of
disk blocks nor the file system, the cache sizes are constant, as is
the number of spindles, and the file formats are fixed1. The sec-
ond assumption precludes changes to the communication protocol.
This black-box approach might seem restrictive at first, but in fact
opens the door for applicability in a wide range of products and at
different levels of the storage hierarchy.

In particular, we base our work and findings on the FastBack™
software. This is a data protection and disaster recovery system that
is being successfully sold by IBM for the small medium business
market. With the proliferation of remote office installations and the
advent of 10Gbit Ethernet and other fast networks, performance —
especially restore performance — becomes an important part of this
suite. However, improving performance is not an isolated step, and
typically requires protocol re-design. This always comes at a sig-
nificant cost in development, testing, migration of existing reposi-
tories to new formats, and increased risk of introducing bugs. By
taking the black-box approach as described above, we were able to
make significant progress toward the goal, incurring only minimal
costs. The success also leads us to believe the same line of thinking
is likely generalizable to different problems in various application
areas.
1This precludes de-duplication, which changes the layout of disk
blocks. De-duplication has many merits, however it is orthogonal
to the work in this paper.

1.2 Description of the system and architecture
The basic FastBack backup process is block-based with con-

tinuous data protection and point-in-time recovery capabilities. It
builds on a shim that intercepts disk accesses (e.g. an MS-Windows
or Linux disk driver). Modified blocks are sent over the network to
a database on a remote server, known as a backup repository. The
repository stores the deltas with their corresponding timestamps in
a data structure that supports recovery to arbitrary points in the past.

The restore process supports two modes: instant restore (IR) and
mount. In instant restore, an obliterated disk image is streamed
from the repository to the local version in a way that allows the
local machine to function normally, well before the image is fully
retrieved. Again, a local shim intercepts accesses and traps reads
to missing disk blocks. The required block is retrieved from the
repository and written to the local disk, at which point the local
read request completes. This allows the user, after booting up the
system, to start performing useful work within minutes. The full
disk recovery process may still take a long time, as dictated by the
network speed and data volume, but once the “hot” part of the disk
is brought in, the recovery process is performed in the background.
When the network link is idle, the local driver makes an anticipa-
tory request to some disk block that is still missing. Then the next
block in increasing order of block number is fetched. The process
is depicted in Figure 1. It is important to stress that for various rea-
sons, access to the repository is not preemptive and no pipelining
is used.

In contrast, the “mount” mode of operation exists to serve point-
in-time restoration. It is implemented by exposing a network share
from the repository to the client. Copies or tape dumps are then
performed by a local (and oblivious) application.

1.3 Our contribution
This work focuses on two major areas where machine learning

techniques can improve the performance of such a backup system
out-of-the-box. The first is the acceleration of the instant restore
process via prefetching techniques. In this part, the goal is to pre-
dict which blocks are to be requested by the system and bring them
beforehand from the repository. The problem resembles caching
problems but is different because the cache can be viewed as in-
finite2. The second direction we explore is to improve the effi-
ciency of accessing the repository by determining the amount of
read-ahead to be performed by the system. This algorithm is likely
to be applicable to other domains as well.

We start by defining a formal model that captures the essence of
our prefetching problem. We then show upper and lower bounds on
the gain that can be obtained using prefetch techniques. Next, we
develop algorithms for prefetching that are based on frequent se-
quence mining [6]. In particular, we focus on developing novel
variants of a notable algorithm called C-miner [8]. We show a
method for fast execution of such algorithms during run time. This
might be interesting in other contexts, as the applicability of such
algorithms to real-time systems has been questioned [9]. In order
to address various constraints detailed in Section 3.2, we developed
two novel variants of the training part of the algorithm. The first,
dubbed CM(∆), finds frequent delta sequences. The rules derived
from such sequences are not grounded to specific blocks and can be
re-utilized. The second, termed CM-OBF, represents a two-level
approach in which we derive meta rules using a frequent pattern-
mining algorithm and then use a basic algorithm to derive the actual
blocks to fetch.
2This is because once a block is fetched from the repository, sub-
sequent requests for the same block will be served from the local
disk.

In order to conduct experiments, we built a simulation envi-
ronment enabling the execution of traces and the examination of
prefetch algorithms. We describe some of the experiments that we
conducted in Section 3.3. Somewhat disappointingly, simple rules
of the form “given a block, fetch the next block if possible” yielded
the best or near best performance on many of our data sets. More-
over, room for improvement upon such rules seems narrow in many
cases. It is worth commenting that CM(∆) did outperform these
simple delta rules on some of the data sets. An interesting phe-
nomenon we observe is that low confidence prefetch algorithms
are likely to cause substantial performance degradation.

Next, we describe a framework of combining and controlling
prefetch algorithms. This framework is based on simple cost-benefit
analysis similar to [9]’s, combined with estimations of the miss
rate. Intuitively, when there are a lot of misses, we want to bring
only blocks that have a high probability of being accessed in the
near future. We demonstrate the usefulness of this framework in
Section 4.

The final part of the paper switches gears and discusses the prob-
lem of determining the amount of read-ahead according to some
estimated network parameters. We describe a novel algorithm that
is based on intuition from online analysis and on linear regression.
The algorithm has a significant impact on the system in environ-
ments characterized by a high latency-to-bandwidth ratio. Experi-
ments that demonstrate the impact of the algorithm on the FastBack
system are described in Section 5.

2. THE PREFETCH PROBLEM
In this section we formally describe the problem and our basic

notions. For simplicity, we discretize the time into units of fixed
length. A workload is a sequence of events L1, L2, . . . , Ln where
each event is either a block access event denoted Bj where j is the
required block or a process event denoted by P . We assume that
each process event, as well as access to a block that already resides
in the local memory, is executed in one time unit by the system.
The workload clock after event l is thus defined as l. This is the
time required to process the workload when all the blocks reside
in the local memory. We assume that each fetch operation requires
C units of time. These assumptions are for the simplicity of the
presentation only.

A system is composed of two resources that can work in paral-
lel: a CPU and a network. The system must process the workload
sequentially, i.e., event Lj+1 can only be started after events 1 . . . j
are completed.

For each time step, the system performs one of the following:

process only If Lj is a process event, the system can process it for
one time unit.

fetch only If Lj is an access event, the block Bj is not in the local
memory and the network is idle, the system can fetch the
required block from the repository. This enters the network
into a busy state for C units of time.

access If Lj is an access event and the block is already on the local
disk, the system will access it and spend one time unit.

process and prefetch If Lj is a process event and the network is
idle, the system can both process the event (which makes the
processor busy for one time unit) and fetch a block B that
it chooses (which enters the network into a busy state for C
units of time).

access and prefetch Similar to process and prefetch but Lj is an
access event and the block Bj is already on the local disk.

wait If Bj is an access event, the block is missing and the net-
work is busy, the system must wait and do nothing until the
network becomes idle.

At least intuitively, “process and prefetch” and “access and prefetch”
are the most desirable states, as both resources are utilized in par-
allel. Similarly, the wait state is the worse from the system’s point
of view3. The system’s time after processing event Lj is time accu-
mulated according to the description above. The slowdown of the
system given a workload containing j steps is given by the ratio be-
tween the workload time and the system time, i.e. by Tsys(L)

j
. This

is a natural quantification of the performance degradation resulting
from the fact that the blocks do not reside in the local memory, but
must be fetched from a remote repository.

A major goal of this work is to predict which blocks will be
required and to prefetch them beforehand. A prefetch algorithm is
an algorithm that, at each step t of the process, decides whether to
fetch a block and if so, which one.

Notation For a prefetch algorithm A and a workload L we let
TA(L) denote the time taken for a system using algorithm A to
run L. We let NPF denote an algorithm that never prefetches any
block, i.e., an algorithm that fetches blocks only when they are re-
quested.

PROPOSITION 2.1. Fix a workloadL. Let us denote by TNPF (L),
the system time when prefetch is never done, and by TA(L), the sys-
tem time of an arbitrary prefetch algorithm A, then TNP F (L)

TA(L)
≤ 2.

Proof : Suppose L contains n1 process events or access events
for block which have already appeared in the workload, and n2

new blocks accesses. Thus, TNPF (L) = n1 +C ·n2. On the other
hand, no matter what A does, it will have to activate the processor
for n1 time units and to make n2 fetch request. At best, these will
happen in parallel. Hence, TA(L) ≥ max(n1, C · n2) and the
bound follows. 2

This bound has two important interpretations. On the negative side,
we cannot hope for too much from prefetching (although a time
reduction of 50% can be a lot). On the positive side, NPF is a 2-
approximation algorithm, i.e., no matter what the workload is, NPF
is not that far from the optimum.

In this work we focus only on algorithms that are conservative
in the sense that whenever they need a block, they will fetch it
once the network becomes idle. We leave the investigation of non-
conservative policies to future work.

2.1 Example
In order to make our notions more concrete, we consider the

workload in Figure 2.1. Consider two algorithms, NPF and an algo-
rithm called delta which, given access to a block Bj , once the net-
work becomes idle, it will try to prefetch Bj+1

4. In this example,
C is about 2. The overall time of NPF is the sum of the workload
events and the prefetch events. Thus, its slowdown will be about
c+2

2
, as each pair of access and process events in the workload is

translated into three serial events – prefetch, access, and process.
Consider the delta rule on this workload. Here, except for the first
block B17, all subsequent blocks will already reside in the local
3At least in the current architecture, the application is halted until
the requested block is fetched.
4A more accurate description of the algorithm can be found in Sec-
tion 3.

memory once they are needed. Thus, the slowdown of this algo-
rithm will be close to 1.0. Note however prefetching might also
cause the system to wait longer until it will be able to bring the
next required block. Thus, prefetch can also be harmful. When the
algorithm is conservative, the slowdown resulting from such a de-
lay is bounded by 2 · C, as the algorithm might delay the system
for C units of time at most.

3. PREFETCH ALGORITHMS
A prefetch algorithm can decide, at each time step in which the

network is idle, whether to bring a block from the repository and
which one. This section describes two classes of prefetch algo-
rithms. Basic algorithms that are easy to implement, and novel al-
gorithms which are based on C-miner [8] - an algorithm that mines
frequent block sequences. The final part of this section describes
some of our experiments.

3.1 Basic algorithms

3.1.1 Delta rules
Perhaps the most prominent phenomenon in the context of prefetch

is locality of reference (e.g. [14]), i.e., the tendency of subsequent
IO requests to reside in subsequent areas. A delta rule is simply
a rule of the form “when seeing block Bj , try to prefetch block
Bj+∆”. Such rules appear highly useful in our experiments. In
fact, on the traces that we examined, the success probability of the
rule Bj → Bj+1 was around 60%. In order to implement delta
rules, during training, we look for frequent delta values via a sim-
ple sliding window based algorithm. We then choose the best delta
value and use it in runtime. In runtime, we hold a queue of recent
blocks to be fetched. When the network is idle, we process them
in a last-in-first-out (LIFO) order. In addition, we experimented
with multiple delta values, but the performance was poorer. Many
single delta values yielded a similar performance. The experiments
reported here were conducted with ∆ = 1.

3.1.2 Order by frequency
A natural heuristic is, during train time, to order the blocks ac-

cording to their frequency measured over some training period.
Then, at run time, they are prefetched according to this order from
the most to the least frequent blocks. This algorithm is denoted
OBF.

3.1.3 No prefetch and OPT
The no-prefetch algorithm (NPF), described previously, never

prefetches any block, and keeps the network ready to fetch blocks
when they are needed. As mentioned, this algorithm is guaranteed
to be within a factor of two from any other algorithm. We use it as
a benchmark in our experiments.

Consider a workload L. We denote by OPT an algorithm that,
whenever the network is idle, fetches the next block in the work-
load. This hypothetical offline algorithm is clearly a lower bound
on any conservative prefetch algorithm.

In general, we view a prefetch algorithm as good if its perfor-
mance is between the NPF and OPT, and bad if its performance is
below the NPF.

3.1.4 Sequential fetching
A sequential rule simply brings the first block that has not yet

been fetched. This rule is very easy to implement and have negli-
gible time and space complexity. We abbreviate this algorithm as
SEQ.

3.2 Frequent pattern mining
The goal in frequent pattern mining is to look for sequences and

patterns that occur many times during training. Such patterns can
be exploited to derive useful rules. A survey can be found at [6].
A notable algorithm in the context of caching and prefetching is
C-miner [8]. The algorithm mines traces of streams of block ac-
cesses B1, . . . , Bn and looks for frequent subsequences of blocks.
These subsequences do not have to be consecutive. This property
is crucial since, workloads are typically composed of parallel ac-
tivities and thus subsequent accesses may have large windows be-
tween them. A naïve implementation of such an algorithm is expo-
nential. Fortunately, C-miner exploits the downward closure prop-
erty, where subsequences of frequent sequences are also frequent.
The algorithm starts from the set of frequent blocks and then mines
them in a DFS order. A sequence B1, . . . , Bn, B translates into a
rule of the form B1, . . . , Bn ⇒ B meaning that if the recent ac-
cesses included blocks B1, . . . , Bn, the system will expect to see
block B soon. The confidence of this rule is the ratio between the
number of occurrences of the whole sequence B1, . . . , Bn, B and
the left-hand side B1, . . . , Bn. A detailed description of the algo-
rithm can be found at [8].

While the C-miner algorithm sounds promising there are two
major problems that prevent it from being exploited by our appli-
cation.

1. Run time complexity The original paper does not describe
how to exploit the above rules in a real time system. A naïve
implementation is too costly, and hence such algorithms are
often considered impractical for real time systems (e.g., [9]).

2. Space complexity and rule usage Our architecture can be
thought of a system with an infinite cache as whenever a
block is brought from the server, it stays and the memory
and will not be asked again. Thus, unlike in caching, each
rule can be exploited only once. Thus, in order to have a
significant effect our system we will have to use hundreds of
thousands of rules. This is not feasible for our application
from various architectural and run time reasons5. We there-
fore strive for deriving a small number of rules that could be
utilized many times.

In the following subsections, we show how we overcame the above
limitations.

3.2.1 Reducing the run time complexity
In order to obtain a fast execution during run time we hold a

data structure in which rules are triggered by the next block that
activates them. Given access to block B, we take out all the rules
that are triggered by it and put them back in the data structures
according to their next blocks. Consider a rule B1, . . . , Bn → B.
If B1, . . . , Bj−1 are already matched, then the rule will be entered
into the table with a key Bj . Once Bj is matched, we will extract
the rule from its current place in the table and re-enter it with key
Bj+1

6. This is shown in Figure 3.2.1. The algorithm in the figure
is executed for each time step of the system. In our simulation
environment, this reduced the run time efficiency of the system by
orders of magnitude compared to a naïve approach.

5Even for caching, where rules are utilized over and over, [8] used
hundreds of thousands of rules in order to significantly affect the
system’s performance.
6We can also add a time-stamp to the rule and check that the last
access was recent enough.

Algorithm 1 Run time management of C-miner like algorithms
Input The current block B; A hash table where each rule R =
B1, . . . , Bn ⇒ B′ is hashed by the next block Bj and contains
the next index j
Output All rules which are satisfied; the next state of the data
structure.
Q← {}
Extract C = H[B] from the hash table
for all rules R = B1, . . . , Bn ⇒ B′ in C do

let j, p be the current index and probability of R
if j == n then

/* R is satisfied */
Add B′, p to Q
Insert R, 1 to H[B1] if rules are reused (see below)

else
Insert R, j + 1 to H[Bj+1]

end if
end for
Sort Q by the confidence p and return it

3.2.2 Reducing run time space complexity
As mentioned each original rule of C-miner can only be utilized

once in our setup. In order to make the usage of frequent pattern
mining feasible in our system we had to significantly reduce the
amount of data that the system has to store in order to exploit the
frequent patterns. In this section we develop two approaches to
overcome this problem. The first approach uses a small number of
generic delta rules that can be used for an unbounded number of
times. The second approach is a two-level approach where we fol-
low C-miner in a larger granularity, and then use a different rule for
the final decision regarding which block to prefetch. In our experi-
ments, the first approach seemed promising. The second approach
scored well in-sample but lesser out of sample. We are not yet sure
how to interpret this result.

The CMiner(∆) algorithm.
In order to allow reusing of rules our goal is to find generic pat-

terns of the form ∆1, . . . ,∆n ⇒ ∆. As a motivating example,
consider a database database that often scans the leaves of its B-
tree in reverse order. In such a case, an appearance of accesses
Bk, Bk−1, . . . , Bk−n is significant evidence that Bk−n−1 is soon
to be requested. In order to use such generic delta rules, we ground
each rule to the last block on the left-hand side. In our example,
the corresponding pattern is translated to a delta rule of the form
k, k − 1, . . . , 1 ⇒ −1, i.e. the grounding block is Bk−n. Thus,
when all the blocks Bk, Bk−1, . . . , Bk−n arrive, the rule will rec-
ommend to prefetch Bk−n−1. The same rule will apply for any
sequence of blocks conforming to the above pattern, i.e., to any
starting block Bk.

The main steps of the mining algorithm are depicted in Figure A.
We first find out the frequent delta values using a simple, one pass,
sliding window based algorithm. We then pass on the sequences
in a BFS order starting from the singletons. For the actual rule
derivation, we use only sequences with a length greater than one.
The code of the training algorithm is available in the appendix.

We separate between the number of occurrences of a rule and the
number of unique occurrences (occurrences that end in a unique
block number). Ideally we would like to find sequences that have
a high number of both types of occurrences. This is because in run
time, we want to exploit the rule to apply to many different block
sequences. Other desiderata include short length and a high level of

confidence. Our sorting criteria reflect all these properties. Unlike
in [8], we go over the subsequences in a BFS order. We also sort
each level before we start to mine it. This way, if we have to stop
due to time limitations, we have the most important sequences first
(short before long, most frequent first).

During run time, we need to handle the activation of new rules
since these are not triggered by specific blocks. To accomplish this,
we use a small window of recent accesses W1,
. . . ,Wl. Given the current block B, we scan this window to get a
list of deltas W −W1, . . . ,W −Wl. We have an additional hash
table containing the rules hashed by their ∆1 values. For each delta
in the window, we go over its list of triggered rules (if any) and add
them to the table of active rules. We then apply the procedure in
Figure 3.2.1.

A two-level approach.
As noted earlier, a major problem with using C-miner in our sys-

tem is that each rule can only be exploited once. A natural way of
circumventing this is to use more coarse grained units as a basis for
the patterns. The algorithm described in this section used C-miner-
like rules that are composed of mega-blocks, each comprised of a
range of blocks. The simplest alternative is that each block Bj is
mapped to a mega-blockMbj/mc. Such rules can be learned by the
original C-miner algorithm. To improve the accuracy of such rules,
we attach to each rule of the formM1, . . . ,Mn →M , a frequency
table of size up to

√
m, describing the most frequent blocks. In

run time, we fetch the blocks by their order of frequency. This way,
each rule applies to up tom blocks and is described by a

√
m table.

The confidence assigned to each rule is the C-miner confidence of
M times the frequency of the block in M . If the block is not in
the table, we assign it a probability of (1−

∑
pi)

m−|T | where pi is the fre-
quency of each block in the table, and |T | is the table size. We call
this algorithm CM-OBF.

3.3 Simulations of prefetching algorithms
In order to experiment with the various prefetch algorithms, we

wrote a simulator that models the system. The simulator allows
the execution of traces, measures slowdowns, takes statistics, etc.
For our experiments, we used traces from various sources. These
include the OLTP traces of financial transactions (see [10]), logs
generated from an SQL IO stress tool, and logs generated from
find-in-files activity. From these traces we mainly report our find-
ings on the OLTP Financial1 which is a common benchmark. The
reported phenomena appeared to be similar on the other traces as
well. The OLTP benchmark contains about 20 disks. In some of
our experiments we superficially joined them by embedding each
disk in a separate address space. We also describe some exper-
iments on single disks. To make the traces more challenging, we
ran them with an acceleration factor of four, meaning that each 4ms
in the original trace equals 1ms in the accelerated trace.

Figure 3 describes the performance of the various algorithms on
the OLTP benchmark on all disks together. The left sub-figure de-
scribes simulations with a 10Mbps network. The right sub-figure
describes experiments with a 1Mbps network. In both cases, a la-
tency of 2.5ms was considered. While these rates might seem a bit
slow, when an actual disaster occurs (e.g. a virus attack), the net-
work is likely to be highly utilized. As can be seen, the ranking and
relation between the various algorithms are pretty stable.

At the first minutes, almost no data is available locally, and the
system is busy serving misses most the time. Thus, the possibility
for prefetching is scarce. After a long time, the system mostly ac-
cesses data which have already been accessed. Thus, we view the
sampling point of 30 minutes (the third point) as the most represen-

tative.
In both cases the delta rule is somewhere in the middle between

the NPF algorithm (which is a 2-approximation) and the hypotheti-
cal optimal off-line algorithm. Note that the delta rule is only 30%
above this optimal bound in the 10Mbps and very close to it in the
1Mbps case. Given that there is significant inherent unpredictabil-
ity in the blobk level access data, the potential room for improve-
ment seems limited, at least in these parameters. It is worth noting
that OBF here is in sample. Out-of-sample results yielded much
poorer performance. As can be seen, a bad prefetch algorithm can
be very harmful. This is demonstrated by the SEQ algorithm which,
on most of our data sets, considerably slows down the system com-
paring to NPF.

Figure 4 shows the slowdown after 30 minutes using various
algorithms on the SQL-stressor logs. In particular, our two lead-
ing algorithms – delta and cm(δ) – are very close in their perfor-
mance. When we run on the data disk alone, cm(δ) had some ad-
vantages. The same phenomena was repeated in OLTP, where both
algorithms had similar performances in most of the separate disks,
but there were some disks where the advantage for one of the al-
gorithms was significant. It might be worthwhile to combine both
algorithms based on training data, yet, it is not clear that the cost of
doing so is practical for a real-time system.

4. A FRAMEWORK CONTROLLING
AND COMBINING PREFETCH
ALGORITHMS

In this section we briefly present a framework for deciding whether
or not to bring a block from the network or not and for combin-
ing prefetch algorithms. While this framework is clearly over-
simplistic, we found it very helpful. As stated, we focus on conser-
vative algorithms, i.e., algorithms that immediately handle misses.
Consider an unknown workload L. Suppose we predict that a block
Bj will belong to L with probability P (Bj). We also estimate
the probability of having a miss during the next C time units by
γ (spread uniformly across this time segment). Suppose the algo-
rithm has two options, to prefetch Bj or do nothing with the net-
work for the next C time units. With first option, the algorithm’s
expected time reduces by P (Bj) (TA(L)− TA(L \ {Bj})) due
to the fact that one job is removed from the workload. On the
other hand, it also increases by an expected time of γ · C/2 since
if Bj is not the next block to be requested, the next miss might
be delayed until Bj is fetched completely. The actual value of
TA(L) − TA(L \ {Bj} depends on the unknown workload and
the algorithm. In principle, it varies between 0 (at least if algorithm
is monotone in the number of missing blocks) to C (for conserva-
tive algorithms). We thus estimate this change by C/2. In light of
the above, the following convenient threshold rule almost suggests
itself:

DEFINITION 4.1. (greedy prefetch rule) Given blocks B1,
. . . , Bn with probability estimations P1, . . . , Pn and an estimation
γ for the miss probability above, let B denote the block with the
highest probability P . Then

1. If P > γ, prefetch B

2. Otherwise, do not prefetch any block

Several variants of the above rule are possible. In particular, in
our application we let a user-defined parameter w∞ denote the im-
portance that the user assigns to bringing any block (as we have a
constraint that all blocks must also be brought to the local memory

at some time). Repeating the cost-benefit analysis above, we bring
B if and only if:

P ≥ γ − w∞
1− w∞

.

In particular, w∞ serves as a threshold on the network utility, i.e. if
γ < w∞ we always prefetch B.

It remains to describe how we estimate γ andP . For γ we use the
following crude heuristic. We use an exponential moving average
to estimate the average time T̂ between two consecutive misses.
When t time units have passed from the last miss, estimate γ by

C

2T̂−t
and truncate the estimation to [0, 1] if necessary. The es-

timation of the probability p that the block will soon be required
is learned in train time and is different from algorithm to algo-
rithm. Algorithms for frequent pattern mining have built in con-
fidence measures described in Section 3.2. For delta rules, we use
a window of fixed length of 100 accesses to measure the empirical
probability of a delta rule. It is worth noting that the correlation
between the appearance in 100 and 200 access window size was
around 90%. For OBF we used the frequency of a block as a basis
for the estimation. Given a window of size w, and a frequency of
f , we get an estimation of 1−(1−f)w. For SEQ we took a similar
uniform estimation. When f is small, e−f ≈ 1 − f ; therefore, in
SEQ we use an approximation of w

b
where b is the total number of

blocks in the system.
In experiments, despite over-simplicity of the method, the above

control algorithm appeared very useful. In particular it brought all
prefetch algorithms at least to the level of NPF. The effect of this
rule on the performance in two prefetch algorithms can be seen in
Table 1. The table presents the slowdown of two algorithms after
30 minutes, with and without the control algorithm. The delta rule,
which has a steady high confidence, is hardly affected. On the other
hand, the CM-OBF algorithm, whose confidence is much lower,
improves significantly as it is hardly allowed to prefetch blocks.
Only when the miss rate of the system drops under the given thresh-
old w0 (set here to 0.1), is the algorithm allowed to bring blocks.
The last property is important since the system is eventually re-
quired to bring all the blocks from the repository.

Delta CM-OBF
controlled 5.15 6.77

uncontrolled 5.11 7.47

Table 1: Effects of prefetch control on the slowdown

5. CNF: AN ADAPTIVE ALGORITHM FOR
DETERMINING THE AMOUNT OF DATA
PER EACH NETWORK ACCESS

Thus far we assumed that each request from the network takes
a fixed amount of time and brings a fixed amount of data. This
assumption facilitated the understanding of the prefetch problem.
Yet, in reality, it might be highly desirable to read several blocks in
single requests. Moreover, the network characteristics may change
over time and one might like to adjust for it. This section considers
the problem determining the number of consecutive blocks that are
to be fetched at each access to the repository. It applies to both
mount and instant restore processes of the FastBack system.

In many environments, in particular those in which the reposi-
tory and the backed-up server are geographically remote, the ac-
cess time to the repository can be approximated by the sum of two

factors. The first is latency which stems from the protocol, the net-
work parameters, the seek time of the disks, and so forth. This
latency may be stochastic but is independent of the amount of data
requested. The second component is the network time, which is
roughly linear in the amount of data. We summarize this by the
following equation:

T (n) ≈ T1 + c2 · n

where T1 denotes the latency, c2 is the time to bring one unit of
data (16K in our case), and n denotes the amount of data. We
would like a rigorous method for determining n. When n is too
small and the data blocks are continuous, the system may lose a
lot of latency. When n is too large, the system will be damaged
if the data blocks are not exploited. The main idea of the CNF
algorithm is to equalize both components. We bring the following
proposition without a proof.

PROPOSITION 5.1. (CNF Theorem) Consider a system where
T1 and c2 are fixed. Setting n = T1/c2 is 2-competitive, meaning
that, for any workload, the total communication time of the algo-
rithm is never worse than twice the optimal total communication
time.

Intuitively, the cost of each request is never more than doubled.
On the other hand, when the latency is high (relatively to c2), the
algorithm will bring a lot of data in each single request with a minor
degradation of the cost.

We would like to implement this paradigm within our system.
There are several challenges involved. The parameters above might
vary over time and are not known. In order to estimate them adap-
tively we used a sliding window and a rolling linear regression.
This way, each update operation required only a small number of
floating point operations making the computation highly efficient.
From time to time, if needed by the regression, we sample either
small values of n or values that are twice the average in our win-
dow. In this way, the amortized cost of the sampling is very low.
For protection against environments in which the above model is
not a good approximation or the above parameters vary too rapidly,
we added various protections against poor estimation. Finally, we
smooth the actual value of n recommended by our algorithm. This
is important, in particular when multiple IR or mount processes run
in parallel and may affect one another7.

The dramatic effect of the algorithm on the system is depicted in
Figure 5. The figure shows the actual FastBack system performing
a data scan of a mounted backed-up client directory. The x-axis
denotes the latency (in milliseconds) which is added to the system.
The y-axis denotes the total time of the scan. The left sub-figure
shows the case of scanning large files. For instance, when 5ms are
added to each request, the system is more then twice as fast with
the algorithm. The speed-up is almost 4 when the latency is 10ms.
Moreover, when CNF is used, the system’s performance is hardly
affected by the added latency. In the fragmented data case, the algo-
rithm significantly outperformed the system when the latency was
zero. The experiments were conducted between two machines con-
nected via a 1Gbps LAN. In addition, on our simulator, simulations
of instant restore with 10GBps network and latency of 2ms brought
the slowdown of most prefetch algorithms to negligible levels.

It is worth noting that the above algorithm can be extended to
non-linear cost models.

7We leave further investigation of such parallelism to future re-
search.

6. RELATED WORK
In this paper we studied two main topics, prefetching and read-

ahead determination in the novel context of backup and recovery
systems. While we are not aware of any similar study, both issues
were explored in other contexts.

Data prefetching was studied extensively in databases, compil-
ers, file systems, and many other domains ([2, 3, 7, 13, 11, 15, 12,
4, 5]). In most of these domains, the application can hint to the
prefetching algorithm about potential blocks. Our application is
block level and as such hints are not possible. Surveying the vast
literature on prefetching is beyond the scope of this paper.

The C-miner algorithm, which is highly related to our prefetch
techniques, is introduced in [8]. It is part of the growing literature
on frequent pattern mining, which is surveyed in [6].

It is well known that may workloads of interest exhibit some lo-
cality of reference properties and in particular sequentiality (e.g.
[5]). The STEP algorithm ([9]) treats a workload as a mix of paral-
lel activities, some are sequential by nature and some have random
access patters. The algorithm aims to discover those that have se-
quential characteristics to the loss from redundant prefetching of
the non-sequential ones. We believe that our CM(∆) algorithm
may have common characteristics and it would be interesting to
compare both algorithms. One advantage of our delta rules is that
they can discover significantly more general rules such as scans in
the opposite direction.

The CNF algorithm determines the amount of read ahead ac-
cording to its estimations of network characteristics. We are not
aware of similar algorithms. The Linux kernel has a read-ahead
mechanism that intercepts file requests and doubles the read-ahead
size per each subsequent request for blocks in the same file (see,
e.g. [1]). It seems possible to implement this algorithm using tech-
niques similar to CM(∆) for subsequent block tracking. We do
not know how such an algorithm will compare with the CNF but
believe that CNF will function significantly better in high latency
environments.

7. CONCLUSIONS
In this paper we explored the usage of machine learning tech-

niques in order to enhance the performance of automatic backup
and recovery systems. We focused on two main directions, prefetch-
ing techniques and network scheduling techniques.

On the theoretical front, we showed that the potential improve-
ment of prefetching techniques to our system is bounded and demon-
strated that simple delta rules are not too far from obtaining this
bound. We complemented this from a practical angle by devel-
oping novel variants of frequent data mining algorithms that are
highly efficient from run time and space perspectives.

From the perspective of exploiting the network, we developed a
novel algorithm that combines intuition from approximation algo-
rithms with machine learning techniques. In tests on a production
system, we demonstrated the dramatic impact of the algorithm on
environments characterized by high latency.

We believe that much of the above work could be applicable
elsewhere. The bound of the effect of prefetching on our system
stems from the fact that each block is brought only once from the
repository. Typically, systems have limited cache memory and this
bound does not hold. Our frequent mining algorithms are therefore
likely to have more impact on such environments. The CNF al-
gorithm may be applicable in any domain exhibiting some locality
of information and whose access time is approximately an affine
function of latency and bandwidth. Particular domains of interest
include caching, data migration, cloud provisioning, virtual image

management, and more.

Acknowledgment We thank Daniel Yellin and Chani Sacharen for
their insightful comments.

8. REFERENCES

[1] WU Fengguang, XI Hongsheng, and XU Chenfeng. On the
design of a new linux readahead framework. SIGOPS Oper.
Syst. Rev., 42(5):75–84, 2008.

[2] Carsten Gerlhof, , Carsten A. Gerlhof, and Alfons Kemper. A
multi-threaded architecture for prefetching in object bases. In
In Proc. of the Int. Conf. on Extending Database Technology,
pages 351–364. Springer-Verlag, 1994.

[3] Carsten A. Gerlhof and Alfons Kemper. Prefetch support
relations in object bases. In In Proc. of the Sixth Int.
Workshop on Persistent Object Systems, pages 115–126.
Springer and British Computer Society, 1994.

[4] Binny S. Gill, Luis Angel, and D. Bathen. Amp: Adaptive
multi-stream prefetching in a shared cache. In In
Proceedings of the Fifth USENIX Symposium on File and
Storage Technologies (FAST ï£¡07, pages 185–198, 2007.

[5] Binny S. Gill and Dharmendra S. Modha. Sarc: Sequential
prefetching in adaptive replacement cache. In In Proceedings
of USENIX 2005 Annual Technical Conference, page
293ï£¡308, 2005.

[6] D. Xin J. Han, H. Cheng and X. Yan. Frequent pattern
mining: Current status and future directions. In Data Mining
and Knowledge Discovery, 10th Anniversary Issue, pages
55–86, 2007.

[7] Hui Lei and Dan Duchamp. An analytical approach to file
prefetching. In In Proceedings of the USENIX 1997 Annual
Technical Conference, pages 275–288, 1997.

[8] Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan, and
Yuanyuan Zhou. C-miner: Mining block correlations in
storage systems. In In Proceedings of the 3rd USENIX
Symposium on File and Storage Technologies (FAST ï£¡04,
pages 173–186, 2004.

[9] Shuang Liang, Song Jiang, and Xiaodong Zhang. Step:
Sequentiality and thrashing detection based prefetching to
improve performance of networked storage servers. In
ICDCS ’07: Proceedings of the 27th International
Conference on Distributed Computing Systems, page 64,
Washington, DC, USA, 2007. IEEE Computer Society.

[10] OLTP traces. Available via
http://traces.cs.umass.edu/index.php/Storage/Storage.

[11] Mark Palmer. Fido: A cache that learns to fetch. In In
Proceedings of the 17th International Conference on Very
Large Data Bases, pages 255–264, 1991.

[12] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel
Stodolsky, and Jim Zelenka. Informed prefetching and
caching. In In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, pages 79–95. ACM Press,
1995.

[13] Carl Tait, Hui Lei, and Swamp Acharya. Intelligent file
hoarding for mobile computers, 1995.

[14] A. Inkeri Verkamo. Empirical results on locality in database
referencing. SIGMETRICS Perform. Eval. Rev., 13(2):49–58,
1985.

[15] H. Wedekind and George Zoerntlein. Prefetching in realtime
database applications. SIGMOD Rec., 15(2):215–226, 1986.

APPENDIX
A. FINDING FREQUENT DELTA

SEQUENCES DURING TRAINING
During training we first find the most frequent single delta val-

ues using a sliding window approach. This can be done in a single
pass on the data. We then sort the singletons according their impor-
tance (see figure) and apply the procedure in Figure A to each one.
We stop when either a time limit has passed, we have too many se-
quences, or the algorithm finishes scanning all the sequences it was
supposed to scan. Since the algorithm runs in a BFS order, the more
important sequences will be scanned first. The mining procedure is
based on a [8] modified to accommodate the fact that we look for
frequent delta sequences and not specific blocks. Let us briefly de-
scribe the procedure. For each frequent delta sequence ∆1, . . . ,∆n

we hold a collection of instances. When we mine it, we go over all
its instances. for each instance, and a block Bj which is not too
distant from the end of the instance, we check whether Bj and the
last block at the instance compose a frequent delta value ∆. If yes,
we increment the counter of ∆1, . . . ,∆n,∆ by one. After all the
instances are scanned, we take all these super-sequences which oc-
curred enough times and enter them into the queue of sequences to
be mined.

Algorithm 2 Mining a sequence S of deltas for frequent sub-
sequences

Input S, the sequence to be mined. The stream of blocks; The
set F of frequent delta values and their instances; window size
w
Output The frequent sub-sequences of S which have length
|S|+ 1
{Compute candidates for sub-sequences}
initiate a hash table C of candidate subsequences
initiate a hash table H in which i,∆ is one iff instance i can be
extended by ∆
initiate a hash table U for the unique sup
for all instances of S do

Let i be the index of the last block in the instance, Bi be the
block
for all blocks b in accesses (i+ 1, . . . , i+ w) do

∆← b−Bi

if (S,∆, i) /∈ H then
if (S,∆) ∈ C then
C[S,∆]← C[S,∆] + 1

else
C[S,∆]← 1

end if
add b to the unique sup table U of S,∆

else
let j denote the access index in the stream
H[S,∆, i]← j

end if
end for

end for
{Choose which candidate passed the criteria above}
Q← {}
for all (S,∆) ∈ C do

if C[S,∆], U [S,∆] are greater than the required minimums
then

add [S,∆] to Q
construct its suffix list from H

end if
end for
Sort Q according to p2 ·

√
|Sup| · |usup|/len

Tivoli Software

© 2009 IBM Corporation

1. Activate Instant Restore
2. Background Process
restores blocks gradually
3. Write IOs are performed as usual
4. Read IOs from un-recovered
areas create restore on demand
5. All other reads are performed as usual

FastBack
Server

Production
server

New Production
Disk

New Production
server

Typical Production
Disk

Instant Recovery

Figure 1: FastBack Architecture

Tivoli Software

© 2009 IBM Corporation�

Fetch 17

B17

Fetch 18

ProcessCPU

Network

B17 Process B18Workload Process …

B18 Process

NPF

Fetch 17

B17

Fetch 18

ProcessCPU

Network

B18 Process

Delta

Figure 2: Executing a workload

Figure 3: OLTP basic prefetch algorithms. (a) 10Mbps network (b) 1Mbps network

Figure 4: Prefetch algorithms on SQL stress test tool data (a) all disks (b) data disk

Figure 5: Effects of CNF on the actual system. (a) Scanning large files. (b) Highly fragmented data.

