
Advanced Code Coverage Analysis Using Substring Holes

Yoram Adler Eitan Farchi Moshe Klausner Dan Pelleg Orna Raz
Moran Shochat Shmuel Ur Aviad Zlotnick

IBM Haifa Research Lab, Israel
[adler,farchi,klausner,dpelleg,ornar,morans,ur,aviad]@il.ibm.com

ABSTRACT
Code coverage is a common aid in the testing process. It
is generally used for marking the source code segments that
were executed and, more importantly, those that were not
executed.

Many code coverage tools exist, supporting a variety of
languages and operating systems. Unfortunately, these tools
provide little or no assistance when code coverage data is
voluminous. Such quantities are typical of system tests and
even for earlier testing phases. Drill-down capabilities that
look at different granularities of the data, starting with di-
rectories and going through files to functions and lines of
source code, are insufficient. Such capabilities make the
assumption that the coverage issues themselves follow the
code hierarchy. We argue that this is not the case for much
of the uncovered code. Two notable examples are error han-
dling code and platform-specific constructs. Both tend to
be spread throughout the source in many files, even though
the related coverage, or lack thereof, is highly dependent.

To make the task more manageable, and therefore more
likely to be performed by users, we developed a hole analy-
sis algorithm and tool that is based on common substrings
in the names of functions. We tested its effectiveness using
two large IBM software systems. In both of them, we asked
domain experts to judge the results of several hole-ranking
heuristics. They found that 57%–87% of the 30 top-ranked
holes identified by the effective heuristics are relevant. More-
over, these holes are often unexpected. This is especially
impressive because substring hole analysis relies only on the
names of functions, whereas domain experts have a broad
and deep understanding of the system.

We grounded our results in a theoretical framework that
states desirable mathematical properties of hole ranking heuris-
tics. The empirical results show that heuristics with these
properties tend to perform better, and do so more consis-
tently, than heuristics lacking them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$5.00.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Reliability

1. INTRODUCTION
Common code coverage analysis tools rely on the hier-

archical structure of the source code. For example, such
tools often support drilling down from directories through
files and functions to lines of source code. Missing coverage,
however, is frequently not aligned with the source code hier-
archy. Rather, it may be aligned with a certain functionality
that cuts across the predetermined hierarchy. One exam-
ple is error handling. Error handling code is often evenly
spread throughout the source code and typically represents
just a small part of the source code. Thus, even if the error
handling code is not covered at all, a hierarchical view of
code coverage might obscure this fact. In addition, search-
ing through the predetermined hierarchy is often tedious as
the hierarchy might not divide the coverage tasks evenly. A
coverage task consists of an identifier of the element to
cover, such as a function name. The set of all coverage tasks
indicates the full possible coverage. If all possible coverage
tasks are covered, we say that there is 100% coverage.

Substring hole analysis aggregates coverage data across
the structural code hierarchy. It looks for common sub-
strings among names of source code elements, typically func-
tion names. Substring hole analysis is based on the obser-
vation that developers typically give semantically meaning-
ful names to software source code elements. In addition,
there often exist coding conventions that enhance the se-
mantic commonality among names. Therefore, source code
elements with similar names are often associated with a com-
mon topic, context, or functionality.

In a nutshell and very informally, substring hole analysis
considers substrings as holes if they are common to multiple
element names with poor coverage. However, finding these
holes is challenging. First, identifying relevant substrings
is tricky. There are many possible substrings, but they are
often meaningless. Second, users are typically willing to
examine only a few results, so effective ranking of holes is
crucial. However, multiple factors influence the risk that a
hole represents. The main factors we have identified are the
number of coverage tasks in a hole and the percentage of
coverage of a hole. The substring hole analysis algorithm

and tool are challenged with collapsing these multiple di-
mensions into a linear order so a user can comprehend the
data. Aggregating and presenting coverage information per
substring provides the user with insight on aspects of the
source code that lack coverage.

Substring hole analysis may be viewed as a post-processing
stage that requires only generic coverage data. Therefore,
it is independent of the software’s programming language,
platform, and coverage data collection tool. The substring
hole analysis algorithm and tool discussed here is part of our
coverage analysis tool FoCuS [5]. Further background and
related work are presented in Section 2.

This paper provides the following main contributions:

• Novel algorithm and tool for substring hole analysis

• Methodology for effective code coverage analysis

• Mathematical framework for describing desired prop-
erties of hole-ranking heuristics

• Observations from running the tool on two IBM soft-
ware systems and especially from comparing the hole-
ranking heuristics

We empirically validate the effectiveness of our tool and
hole-ranking heuristics. We show that there are effective
ranking heuristics on two very different large IBM software
systems. The effectiveness of the heuristics was determined
by asking domain experts to judge which of the 30 top-
ranked holes of each heuristic were indeed holes. There was
generally an agreement among the experts, even across the
software systems, regarding the effective heuristics. More-
over, the effective heuristics suggested holes that the experts
were previously unaware of. We were able to empirically val-
idate the importance of the main problem dimensions that
we identified. Further, the effective heuristics hold the math-
ematical properties that we defined.

Section 3 describes the methodology we recommend for
effective code coverage analysis. Section 4 details our sub-
string hole analysis algorithm. The substring hole analysis
algorithm has three major stages: identifying holes, ranking
holes for display, and eliminating duplicate holes. This pa-
per concentrates on the second stage, ranking holes, which
is the most challenging stage. We compare different heuris-
tics that we implemented for ranking holes, both mathe-
matically and empirically. The mathematical framework we
developed is described in Section 5. Section 6 details the
empirical comparison of the heuristics. We conclude and
discuss future work in Section 7.

2. BACKGROUND AND RELATED WORK
Our experience in code coverage and functional coverage

[6] identifies the need to glean interesting information from
large amounts of data. We have also shown [3] how holes are
found in coverage data from functional coverage. Though
the motivation is similar for data from code coverage, the in-
put is different. In addition to information about coverage,
functional coverage models are usually a high-dimensional
cross product of attributes. On the other hand, code cover-
age data relies mainly on strings, typically function names.
The simple methodology of looking at all the tasks and see-
ing which are uncovered works only if the number of tasks
is manageable. In the software systems that we work with,

this is often not the case even as early as extensive unit tests,
and is certainly not the case during system tests. A differ-
ent methodology is needed in system tests, where there may
be millions of coverage tasks. One methodology of drilling
down code hierarchies, already exists. However, functional-
ity is not always distributed along this hierarchy. For exam-
ple, code that handles specific platforms may be distributed
over the entire application. Substring hole analysis provides
a means to gain additional coverage information out of the
long list of covered and uncovered tasks.

Substring hole analysis was done manually before we could
automate the process. The automation required a deep un-
derstanding in order to identify the relevant features and
come up with effective heuristics. This paper is about the
new feature that was added to FoCuS as a result of our
insight and heuristics. The paper concentrates on the al-
gorithm and heuristics, and provides both theoretical and
experimental results. We demonstrated the tool and its us-
age in previous work [1]. The novel automated analysis is
superior to the manual one in two major aspects. First, it
is much faster; instead of several expert hours, the analy-
sis now takes minutes. Second, the quality of the report is
higher and it is more complete. What was once ”an art” has
now became an engineering practice. Section 3 describes our
methodology and Section 4 provides the algorithm we use
for automated substring hole analysis.

Kim [7] looked at coverage results of very large systems
with about 20 million lines of code. However, the reports are
statistics on patterns of coverage and relationship to bugs,
not hierarchical drill down reports with coverage informa-
tion.

Our technique falls under the generic category of mining
code coverage data. Unfortunately we have not been able
to find previous work that falls under this category. Given
that looking at system level code coverage data is very hard
to do without efficient techniques, it is not surprising that
code coverage is rarely used in practice.

From a theoretical viewpoint, the problem can be cast in
the well-studied framework of rank aggregation. The rank
aggregation problem, originally posed in social choice theory,
seeks to reconcile opinions of multiple voters who cast votes
on a finite set of candidates. In our case, the candidates
are the holes, and the voters are either the different scoring
functions or the problem dimensions. In particular, we focus
on the rankings induced by the problem dimensions. These
dimensions are the number of coverage tasks in a hole and
the percentage of coverage of a hole. These are similar to the
support and confidence measures that are used in creating
association rules [2].

Formally, let there be n candidates, and let each “voter”
be a permutation σ of all of the candidates, such that σ(1)
is the top (most important) candidate, and σ(n) is the least
important. Given several such permutations, the goal of the
rank aggregation algorithm is to produce a reconciliation
permutation τ that is optimal in some sense with respect to
the input permutations. Several optimization criteria have
been proposed[4]. Among them are the Kendall distance
and Spearman’s Footrule. The Kendall distance seeks to
minimize the total number of pairwise swaps needed to con-
vert the input permutations into the output permutation.
Optimizing this measure is known to be NP-hard for four
or more voters. In our case, where there are only two vot-
ers, the set of solutions degenerates to include the two input

permutations, as well as any intermediate permutation in
the bubble-sort path between them. Therefore, the Kendall
distance is not useful for our problem. Spearman’s Footrule
seeks to minimize the absolute difference in ranks between
the input and output permutations. This formulation can
be solved in polynomial time, for any number of voters, by
reducing the problem to minimum weight maximal matching
in a bipartite graph. It can be shown that this is a factor-2
approximation to the Kendall optimal permutation. In ad-
dition, several heuristics have been proposed. One of the
most popular is Borda’s method. For each voter σ and can-
didate i, let Bσ(i) be the number of candidates ranked below
i. The Borda score for candidate i is the sum of the B(i)
over all of the voters. The candidates are then sorted by
their Borda scores. Our Ranks heuristic (Section 4.4.3) is a
generalization of the Borda score.

3. METHODOLOGY
The main goal of code coverage analysis is to increase the

probability of finding bugs by improving the coverage of the
system’s test suite. Using the raw code coverage data to
achieve this goal can be a difficult task, especially when the
size of the data is very large. In many cases, the newly
added tests improve the coverage but do not increase the
probability of detecting new bugs. Substring hole analysis
provides a list of uncovered holes that relate to a certain
functionality of the system (e.g., error handling). Therefore,
it helps in adding new tests or changing existing tests in a
way that increases the coverage of the most significant code
areas. To get the most out of substring hole analysis, we
found it useful to make multiple rounds of analysis.

1. In the first round, we recommend finding holes on the
program hierarchy. Consider the case where most of
the coverage tasks in a substring hole belong to an un-
covered node in the hierarchy. For example, we may
have a hole with 50 files, all of which belong to a sin-
gle uncovered directory. Such a hole is less informa-
tive than other holes because there is already informa-
tion about the directory in the hierarchical coverage
analysis. Now consider a substring hole that contains
tasks belonging to many different hierarchical nodes,
most of which are partially covered. This is an in-
teresting cross concern hole. In our experience, cross
concern holes identify holes in the coverage that can-
not be found with the standard hierarchical coverage
techniques and are, therefore, of added value. We rec-
ommend listing the hierarchy holes and then removing
the coverage tasks that correspond to these holes.

2. In the next round, substring hole analysis is run on the
remaining data. This typically reveals some holes that
are well known to the user. For example, holes that
are due to running on only a subset of the platforms
supported by the software. Coverage tasks that belong
to such “non-interesting”holes are then removed. This
is straightforward to do with FoCuS.

3. A final round of hole analysis is then done over the
remaining data. This often triggers less obvious holes
to surface.

The tool has various thresholds. We believe that the de-
fault parameter values work with the exception of one pa-

rameter. Section 4.3.1 discusses the tool parameters and
their recommended values.

4. HOLE ANALYSIS ALGORITHM
This section describes the substring hole analysis algo-

rithm in its entirety. Section 4.1 defines basic hole analysis
terms. Section 4.2 provides a high level description of the
algorithm. Section 4.3 provides further details about our
implementation. Section 4.4 describes the different ranking
heuristics that we support.

4.1 Definitions
A coverage task is identified by a string. A coverage

task is covered if the code segment that it represents is exe-
cuted. The input to the substring hole analysis algorithm is
a set of coverage tasks presented as character strings and the
number of times that each task was covered. The coverage
tasks are usually names of functions. For initial reports, it
is sufficient to have a Boolean value for each task indicating
whether it was covered. An example of a single coverage task
is “Exception.firm.io, 0”. A hole is a set of coverage tasks,
of which at least one is not covered, that have a common
substring. This substring identifies the hole.

The output of the substring hole analysis algorithm is a
ranked set of holes along with coverage data for each hole.
For example, if a line of output in the coverage report for
functions is “Exception, 912, 907”, it means that there are
912 functions whose names contain the Exception substring,
907 of which were not covered.

We use the following terms in our description of the rank-
ing heuristics (Section 4.4). Uncovered: number of not
covered tasks in the hole. Covered: number of covered
tasks in the hole. Total: Covered plus uncovered. Total
is the number of tasks in the hole. Length: length of the
common substring.

4.2 High Level Algorithm
Our algorithm has three major stages. The first stage

finds all the relevant holes that conform to the requirements
on the string length, on the hole’s size, and on the percent-
age of uncovered functions in a hole (See Section 4.3.1 below
for a description of these requirements). The names of the
tasks are analyzed and relevant substrings are determined.
Section 4.2.1 describes the current implementation of deter-
mining substrings. Each selected string corresponds to a set
of tasks whose names contain that string.

In the second stage, the strings are ordered according to
quality or concern about leaving the hole uncovered. There
are a number of ordering functions that were suggested but
in all of them the quality is a function of the size of the set
(larger is better), the percentage of uncovered tasks (larger
is better), and the properties of the string (some prefer long,
some short, and some delimited by capital letters). The re-
sult of this step is an ordered list of strings, each representing
a hole.

In the third stage, the holes are visited according to the
order determined in the second step. The tasks in every
hole are compared to those in the holes before it. If too
many of the tasks (depending on a threshold) are contained
in the previous holes then the hole is discarded; otherwise it
is added to the holes for display. Once the algorithm reaches
the desired number of holes for display, it is done.

When the algorithm completes, the relevant holes are dis-
played to the user. The display contains the names of each
hole and, depending on the user’s choice, may also show the
relevant tasks.

4.2.1 Identifying Holes
Identifying holes means defining which substrings to ex-

amine. Naively, all possible substrings would be considered.
However, we find it effective to prefer strings that have a se-
mantic meaning. This heuristic eliminates noise for the user
and improves the tool’s performance. Fortunately, most pro-
gramming styles make a distinction between words in names,
either by introducing a delimiter such as ’ ’, or by chang-
ing the letter case. The following rules define substrings to
consider:

1. Characters are classified as digits, delimiters, upper-
case letters, and lowercase letters.

2. Scanning a string from the left, a new substring starts
whenever the characters change class.

3. An exception to item 2 is that the last character of a
sequence of uppercase letters moves to the beginning
of the next substring if it starts with a lowercase letter.

Compared to the naive approach, this approach has the ad-
vantage of reducing computation time by avoiding overlap-
ping substrings. The tool also supports a single wildcard in
the substring. We found this useful for detecting holes in
operations that were uncovered by one component but not
by another. For example, “Cache*Callback” functions may
be covered, but“Disk*Callback”functions may be uncovered.
If “Disk”,“Cache”, and“Callback”by themselves are not holes
that will be ranked highly, two substrings are needed. Our
experiments did not show the need to use more than a single
wildcard.

4.3 Detailed Description
The actual implementation of our algorithm is slightly

different due to performance consideration. Section 4.3.1
provides details about the parameters of our algorithm im-
plementation, including their default values.

1. Identify holes—find substrings and populate the ap-
propriate data structure. For all coverage tasks (tuples
of function name and coverage) DO:

(a) Get the next function name

(b) Break the name into semantic substrings

(c) Cull all substrings that are less than the minimal
length parameter and greater than the maximal
length parameter

(d) Add substrings with a single wildcard

(e) For each of the remaining substrings DO

i. Add a hole identified by the substring to a
collective data structure

ii. Scan all the coverage task strings and update
the covered and uncovered values of this hole

2. Rank holes

(a) Cull all holes whose total value (number of func-
tions in a hole) is less than the minimal size param-
eter or whose uncovered percentage is less than
the hole percentage parameter

(b) Cull all holes whose substring is a substring of
other holes and contain exactly the same coverage
tasks

(c) Cull all holes whose coverage tasks are contained
in another hole and have equal or larger coverage
percentage compared to the other hole

(d) Sort the holes according to the ranking heuristic
chosen by the user (Section 4.4 details the ranking
heuristics we compared in our experiments)

3. Eliminate duplicate holes

(a) Cull all holes that are different from the union of
all previous holes by less than the similarity per-
centage parameter. If B is the current hole and
Union is the union of previous holes, then the
difference |Bnc| − Union is the uncovered occur-
rences and the percentage is

100 · (|Bnc| − Union)/|Bnc|
4. Display the top holes by order to the user

4.3.1 Hole Analysis Parameters
Our hole analysis tool defines parameters that serve as

thresholds throughout the hole analysis process. In our ex-
periments, we use the default parameter values and change
only the ranking methods. In general, a user may choose to
change parameter values. Following is a short description of
these parameters.

• Minimal length and maximal length. Upper and lower
limits on the length of the substring that embodies the
hole. Usually the minimum is between four and six, as
lower than that may not be a meaningful name. If
the naming conventions include acronyms, it may be
the case that fewer characters are meaningful. In our
experiments, the lower limit is 4 and the upper limit
is 30.

• Minimal size. Minimal size of a hole, i.e., the number
of functions that contain this substring. In our exper-
iments this threshold is ten. Therefore, the tool does
not consider any substring that belongs to less than
ten functions.

• Hole percentage. Percentage of the uncovered func-
tions. We have different opinions and the number
chosen is between 70% and 95%. The lower the per-
centage, the more holes the tool displays. When the
overall coverage is high, the percentage of uncovered
functions should be low (70%) or there are likely to be
very few holes. When the overall coverage is low, it is
advisable to start with a high value (95%) for the per-
centage of uncovered functions. In our experiments,
the percentage of uncovered functions is 95% for the
dataset that has low coverage (BinaryManip) and 70%
for the dataset that has high coverage (Driver). In gen-
eral, one option is to set the percentage of uncovered
functions in a hole to be higher than the overall cov-
erage percentage. The rational behind this option is
to surface areas that are poorly covered compared to
the coverage of the environment. However, there are
merits to choosing relatively low numbers, as you get
larger holes, and to choosing relatively high numbers,

as you get ”purer”holes. There are different preference
in our team and among our users so we do not have
firm guidelines.

• Similarity percentage. Determines what holes will be
presented to the user. We have this parameter fixed
at 50. This means that holes are presented to the user
only if they contain more than 50% new uncovered
coverage tasks compared to the union of all holes that
were already chosen for display.

Holes that pass the above thresholds are sorted according to
one of the ranking methods described in Section 4.4.

4.4 Methods for Ranking Holes
Typically, users only consider the first few holes, so the

order of presentation is very important. This is non trivial:
Is a hole of 900 out of 1000 more important than 100 out
of 100? When “Exception” defines a hole of 500 out of 520
and “Exception.firm” defines a hole of 450 out of 450, which
of them do you show to the user (further, assume that the
string “Exception.soft”has coverage of 50 out of 70)?

The following parameters should be taken into account
when ranking holes:

• The number of tasks the hole represents

• The percentage of uncovered tasks

• The existence of similar holes

• Whether the hole cuts across the structured hierarchy
of the program

• The length of the substring that represents the hole

• Whether it is possible to detect semantically meaning-
ful substrings (see Section 4.2.1)

Different users seem to have different preferences. Therefore,
we have come up with a number of ranking heuristics. The
emphasis that these heuristics put on the different problem
dimensions varies. We describe each of these heuristics in the
subsequent section. In Sections 5 and 6 we compare these
heuristics mathematically and experimentally, respectively.

4.4.1 lgCov
The lgCov measure is based on the ratio between covered

and uncovered.

lgCov =

8><
>:

−∞ if Covered=0

∞ if Uncovered=0

log(covered/uncovered) Otherwise

The range of the lgCov score is −∞ ≤ lgCov ≤ ∞. As
lgCov approaches infinity/-infinity the coverage of the hole
is higher/lower, respectively. Intuitively, holes with large
negative lgCov are poorly covered, hence lgCov represents
the coverage of the hole. Notice that lgCov does not take
into account the size of the hole.

4.4.2 sqCov
The sqCov measure is based on a combined measure be-

tween the absolute number of uncovered tasks and the per-
centage of uncovered tasks in a hole.

sqCov = uncovered/
√

total

The range of the sqCov score is 0 ≤ sqCov ≤ ∞. We in-
tend to explain the rationale behind sqCov in future work.
Intuitively, sqCov takes into account both the size of the
hole and its coverage by multiplying uncovered (relates to
size) and uncovered/total (relates to the coverage). How-
ever, since uncovered is not limited while uncovered/total
is limited to [0, 1] sqCov ”favors” large holes (e.g., 1/

√
1 = 1

is smaller than 2/
√

3 = 1.15).

4.4.3 Ranks
The Ranks heuristic performs rank aggregation, inspired

by social choice theory, between Uncovered/Covered and
Uncovered (see Section 2 for a discussion of rank aggrega-
tion). This kind of treatment is scale-free, in the sense that
the actual values of the coverage counters are irrelevant—
only their relative order is important. This is a convenient
way to avoid using scale factors and to reduce the effect of
extreme outliers.

Think of Uncovered and Uncovered/Covered as distinct
”voters”, each ranking the holes. We now try to produce
some kind of merged ranking. The gold standard of such an
aggregation is optimization of the Kendall distance. But it
can be shown that in the case of two voters, the optimum
is achieved at either constituent ranking, as well as at any
point in the bubble-sort path between them. Therefore we
tried an adaptation of the popular Borda method. For two
rankings, r and s, this means sorting each element x by the
value of r(x)+s(x) (or, equivalently, by the negation of this,
depending on the desired direction of sort).

Specifically, if there is a hole that ranks third on both
measures, then its combined score is equivalent to one that
ranks first on one measure and fifth on the other. We felt this
inappropriate and fixed the score to give preference to holes
that ranked very high on either measure. Consequently, the
contour lines of this function, when drawn on a plane, would
be curved, rather than straight. See Figure 1.

We also added a weight parameter to formalize the intu-
itive sentiment that one of the measures is considered more
important than the other.

Precisely, let the rank be an integer in the range [1, N]
where 1 is the “best” item and N is the “worst”. Let rnc(i)
be the rank of the ith element when the elements are sorted
by Uncovered in descending order, and let rratio(i) be the
rank of the ith element when the elements are sorted by
Uncovered/Covered in descending order. Then sort by

x(i) = a · rnc(i)
1/curv + rratio(i)

1/curv

where a > 0 and curv > 0 are the respective weight and
curvature parameters. Note that the smaller x(i) is, the
higher the concern of the hole.

4.4.4 Strawman
A naive heuristic can take into account only Uncovered.

Uncovered favors the hole with the highest number of uncov-
ered functions, regardless of the total number of functions
in the hole. We add this heuristic as a strawman in our
experiments.

5. A FORMAL ANALYSIS OF THE CON-
CERN ABOUT HOLES

A set of coverage tasks C is given and a coverage function
cov : C → {0, 1}, such that, ∀c ∈ C, cov(c) = 1 iff c is

X

Y

x1 + y1

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(a) Original Borda measure.

X

Y

2 · x + y

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(b) Weight added to emphasize one constituent.

X

Y

x
1
4 + y

1
4

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(c) Curvature added to emphasize top ranking in
either constituent.

X

Y

2 · x 1
4 + y

1
4

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(d) Curvature and weighing combined.

Figure 1: Contour lines for the modified Borda measure used for rank aggregation. For two constituent
orders, each element is placed on the plane by treating its two respective ranks as two dimensions. Under
this formulation, the contour lines show a set of pairs of ranks that will receive the same combined score.

covered. For a given subset A ⊆ C, define

Ac = {c ∈ A|cov(c) = 1}
and

Anc = {c ∈ A|cov(c) = 0}
. Clearly, the larger Anc is, the more concern one should
have about the test coverage of A.

In the following paragraphs we elaborate on the relative
ranking of coverage task subsets with respect to the concern
about their test coverage. The following definitions are used:

1. A set of coverage tasks, that have a common substring,
is called a hole if it contains at least one uncovered
coverage task.

2. The term concern is used to reflect our estimate of
the danger in leaving the hole uncovered.

3. Two or more holes are called disjoint holes if they
have no common coverage task.

4. Given two subsets A,B ⊆ C, we define the relation
A > B to mean that we are more concerned about A
than about B.

There are several commonsense observations regarding the
concern about a hole. For a given hole A, A ⊂ C:

1. Adding an uncovered coverage task c ∈ C to A in-
creases our concern about the hole.

2. Adding a covered task c ∈ C to A decreases our con-
cern.

3. A hole that can be constructed from several disjoint
holes, has a higher concern than its least concerning
constituent. In other words, if A = B ∪ C ∪ D and
B, C, D are disjoint, then the concern about A is higher
than at least one of the concerns about B, C, or D.

4. If A > B then B > A cannot hold (anti-symmetry).

These observations imply a binary anti-symmetric rela-
tion on holes >. Next, we give a more formal definition of
the observations above. These observations can serve as re-
strictions on the implementation of >. A discussion of the
anti-symmetry property is beyond the scope of this paper.

While it is hard to provide a complete definition of >,
these rules capture most of the common sense intuition stated
above:

1. If |A| = |B|, and |Anc| = |Bnc|, then A ∼ B, where ∼
denotes equal concern.

2. If |A| = |B|, and |Anc| > |Bnc|, then A > B.

3. If |A| > |B|, and |Anc| = |Bnc|, then A < B.

4. If there exist d > 1, such that |A| = d·|B|, and |Anc| =
d · |Bnc|, then A > B. Notes:

(a) Rule 4 is a weaker case of the third common sense
rule. It is derived from the special case in which
all the constituents have the same concern mea-
sure.

(b) Combining 2 and 4 results in

5. If there exist d > 1, such that |A| = d · |B|, and
|Anc| >= d · |Bnc|, then A > B.

We now define the binary relation > as the transitive clo-
sure of the above restrictions.

5.1 Quantifying the Concern about a Hole
For the coverage instance (C, c) where C is a set of cover-

age tasks and c :→ 0, 1 is the coverage function, a measure
of concern is a function m : 2C → R. By convention, for
a given hole H ⊆ C, m(H) is bigger when we have more
concern about the hole.

We next consider several possible measures and check if
they agree with the partial relation > defined above.

5.1.1 The Uncovered Tasks Concern Measure
A simple measure of concern is the number of uncovered

tasks in the hole, i.e., mnc(A) = |Anc|. This measure is
clearly consistent with rules 1, 2, and 4, but not with 3,
since the measure value does not change if the number of
covered tasks changes. Thus, the order induced by mnc

is inconsistent with >. This measure corresponds to the
Strawman heuristic in Section 4.4.4.

5.1.2 The Ratio Concern Measure
Another simple, almost natural, measure of concern is the

ratio of uncovered tasks in the hole to the total number of
tasks in the hole, i.e., mr(A) = |Anc|/|A|. This measure
is clearly consistent with rules 1, 2, and 3, but not with 4,
since the measure value does not change if the ratio remains
unchanged. Thus, the order induced by mr is inconsistent
with >. This measure corresponds to the lgCov heuristic in
Section 4.4.1.

5.1.3 Using the Square Root Function to Decrease
the Importance of the Hole Size

Given a hole H ⊆ C, s.t. |Hnc| > 0, consider the confi-

dence measure msq(H) = |Hnc|√
|H| .

This measure is clearly consistent with rule 1. To check
if it agrees with >, we need to check what happens in the
following three cases:

1. A covered task is added to a hole,

2. An uncovered task is added to a hole, and

3. Both |H | and |Hnc| are multiplied by some d > 1.

In the first case we have B \ A = {x}, A,B ⊆ C and

x ∈ C and c(x) = 1. In this case msq(B) = |Bnc|√
|B| = |Anc|√

|A|+1

whereas msq(A) = |Anc|√
|A| . Clearly, msq(B) < msq(A), as

required.
In the second case we have B \ A = {x}, A, B ⊆ C and

x ∈ C and c(x) = 0. In this case msq(B) = |Bnc|√
|B| = |Bnc|+1√

|A|+1
.

We next show that msq(B) > msq(A) in agreement with
>. To this end we show that f(x) = x+1√

n+1
− x√

n
, x ∈ [0, n] is

positive. Indeed, f(0) = 1
n+1

> 0 and f(n) = n+1√
n+1

− n√
n

=√
n + 1−√

n > 0. In addition, f ′(x) = 1√
n+1

− 1√
n

< 0, thus

f ′(x) is a monotonic function in [0, n], and is thus positive
in [0, n].

The third requirement is also met. d√
d

> 1 for d > 1, so
d·|Hc|√

d·|H| = d√
d
· |Hc|√

|H| > |Hc|√
|H|

This measure, is, therefore, consistent with >. This mea-
sure corresponds to the sqCov heuristic in Section 4.4.2.

5.1.4 Rank Based Measure
Let S be a collection of Si s.t. Si ⊆ C.
For any A ∈ S, let rnc(A) be the rank of A when S is

sorted by |Si,nc| in descending order and let rratio(A) be the

rank of A when S is sorted by
|Si,nc|
|Si,c| in descending order.

Then sort S by x(A) = a · rnc(A)1/curv + rratio(A)1/curv,
where a > 0 and curv > 0 are pre-selected parameters.
Notice that the smaller x(i), the higher the concern of the
hole.

If |A| = |B| and |Anc| = |Bnc| then also |Ac| = |Bc|,
therefore this measure is clearly consistent with rule 1.

Since a > 0, rule 2 is satisfied, in the sense that if a
subset B such that |A| = |B|, and |Anc| > |Bnc| is added
to S then rnc(A) < rnc(B) and rratio(A) < rratio(B) hence
x(A) < x(B) and A’s concern is higher than B’s.

Rule 3 is satisfied, in the sense that if a subset B such that
|A| > |B|, and |Anc| = |Bnc| is added to S, then rnc(A) =
rnc(B) and rratio(A) > rratio(B), hence x(A) > x(B) and
A’s concern is smaller than B’s.

Rule 4 is satisfied, in the sense that if a subset B is added
to S and there exist d > 1, such that |A| = d · |B|, and
|Anc| = d · |Bnc|, then also |Ac| = |A| − |Anc| = d · |B| −
d · |Bnc| = d · (|B| − |Bnc|) = d · |Bc|. Therefore, rnc(A) <
rnc(B) and rratio(B) = rratio(A) hence x(A) < x(B) and
A’s concern is higher than B’s.

This measure corresponds to the Ranks heuristic in Sec-
tion 4.4.3.

6. EXPERIMENTS AND RESULTS
In this section, we empirically compare the effectiveness

of the ranking heuristics that we implemented. In Section
6.1 we provide details about the experimental settings. In
Section 6.2 we list the experimental results and provide an
analysis for these results.

6.1 Experimental Settings
We describe the two software systems that we ran in our

experiments and provide details about their coverage data
in Section 6.1.1. The experiments were run according to
our recommended methodology. The parameter values and
heuristics we ran are detailed in Section 6.1.2. The results
were determined with the assistance of domain experts. The

Total Covered Coverage Percentage
Directories 164 75 45.7
Files 852 401 47.1
Functions 50032 10268 20.5

Table 1: Code size and coverage for BinaryManip

Total Covered Coverage Percentage
Directories 23 22 95.7
Files 497 442 88.9
Functions 11417 8241 72.2

Table 2: Code size and coverage for Driver

experimental method is discussed in Section 6.1.3. Major
threats to the validity of our experiments are discussed in
section 6.1.4.

6.1.1 Data
We ran the collection of hole analysis heuristics listed be-

low on coverage data from two large IBM software systems.
Both systems have been used extensively by many users.
These systems are very different from one another. One
system, referred to as BinaryManip, is a tool that per-
forms various manipulations on code binaries. It is written
in C++ and, as Table 1 lists, has more than 50,000 func-
tions. The software is multi-platform. The test suite that
was used for measuring coverage executes only on a subset
of these platforms. The code coverage of this test suite is
low, as shown in Table 1. The second system, referred to as
Driver, is the kernel code of a high-end device driver. It is
written in C and, as Table 2 lists, has over 11,000 functions.
The test suite that was used for measuring coverage exe-
cutes on a simulator and has relatively high code coverage
as shown in Table 2.

6.1.2 Parameters and Heuristics
All the heuristics were run with the default algorithm pa-

rameter values detailed in Section 4.3.1, with an exception
for the uncovered functions parameter. The uncovered func-
tions parameter was set to 95% for BinaryManip and to 70%
for StroageDriver. This is a result of the overall code cov-
erage for these systems. When the code coverage is high
we need to decrease this parameter value in order to get a
decent number of holes. This parameter is ignored for the
Strawman heuristic, since that heuristic takes into account
only the number of uncovered tasks. The left column of
Table 4 details the ranking heuristics that we compare, in-
cluding the operation of each heuristic in case of equality.
For example, the ranking heuristic in the first row is lgCov.
Using lgCov, holes are sorted by lgCov in ascending order.
If the lgCov score is equal, holes are sorted by Total in de-
scending order. If Total is also equal, holes are sorted by
Length in descending order.

6.1.3 Method
We were fortunate to have domain experts evaluate the

ranking of the ranking heuristics. One domain expert evalu-
ated the rankings for BinaryManip and two domain experts
evaluated the rankings for Driver. For the evaluation, we
took the top 30 substrings (holes according to the heuristics)

BinaryManip: Substring Total Uncovered
::PartialCFG::ACyclicSimulator 19 19
::PartialCFG::ProgBased::PPC:: 100 100
::Pipeline::ProgBased::DFATest 61 61
::Pipeline::ProgBased::Example 23 23
Driver: Substring Total Uncovered
Bifyl 58 17
BuildSense 81 59
Device 222 52
DeviceImage 12 12

Table 3: Example of substrings given to the experts.
For each substring, our tool also provides a list of
covered and uncovered functions

from each of the ranking heuristics and created a merged list
sorted alphabetically. Table 3 shows a small example of in-
put that was given to the experts. The experts then marked
the substrings that, in their opinion, are significant holes
in this list. They also indicated the substrings they found
especially interesting. We then gave scores to each of the
ranking heuristics as follows. The initial score for all heuris-
tics is 0. For each substring that the expert marked as a
hole, if that substring appears among the top 30 holes of
the heuristic, the score of that heuristic increases by one.
Therefore, scores are in the range [0–30]. The higher the
score, the better the heuristic is according to that expert.

6.1.4 Threats to Validity
Our experiments included only two software systems and

three domain experts. Though these are real and complex
systems, clearly, this sample is not large enough to make our
results statistically valid. We leave the complete statistical
validation of the results for future work, after more data is
collected. However, we believe that these initial results pro-
vide a good indication that our technique is useful. Another
threat to the validity of the results might be the fact that
the experts were only asked to evaluate the top ranked holes
found by the tool. It is possible that significant holes were
missed by the tool or got a low rank and therefore were not
evaluated by the experts. Although we didn’t address this
threat directly in our experiments, it is worth mentioning
here that when we asked the experts to look at the raw cov-
erage data, they failed to find additional significant holes
due to the large size of the data.

6.2 Results and Analysis
Table 4 summarizes the scores that the ranking heuristics

got from each of the experts. The BinaryManip column pro-
vides the scores that result from the evaluation of the Bina-
ryManip expert. Similarly, the Driver1 and Driver2 columns
provide the scores that result from the evaluation of the first
and second Driver experts, respectively. Although we only
have two data sets, we believe that we can draw represen-
tative conclusions from the results on these data sets. This
is because these data sets are from very large software sys-
tems and because these systems are significantly different
from one another. It is especially encouraging to notice that
there is generally agreement among the experts regarding
the top performing heuristics, even across the two data sets.
This suggests that the results are indeed general. The agree-
ment between the two Driver experts is high. They gave the
same score for more than 80% of the holes. Therefore, there

Binary Driver1 Driver
Ranking Heuristic Manip

lgCov
lgCov → Total → Length 3 25 20
sqCov
sqCov → Total → Length 17 25 23
Ranks0.5a
Ranks → Length 3 24 19
curv = 0.5, a = 0.5
Ranks2a
Ranks → Length 12 25 22
curv = 0.5, a = 2
Uncovered
Uncovered → Length 16 26 23
Strawman
Uncovered → Length 14 14 10
(percentage ignored)

Table 4: Experts’ scores for ranking heuristics. The
maximal possible score is 30. The uncovered func-
tions parameter was 95% for BinaryManip and 70%
for Driver, with the exception of the Strawman, for
which it was zero.

was no need to further resolve their scores to get a better
agreement.

It is clear from these scores that the experts prefer large
holes. sqCov does well on both data sets. Surprisingly, Un-
covered performs similarly well on these data sets. However,
we see that Strawman consistently performs poorly. The dif-
ference between Uncovered and Strawman is that Uncovered
ranks only those holes that have at least a minimal cover-
age percentage as determined by the uncovered functions
parameter. Strawman, on the other hand, ranks all holes.
In other words, Uncovered takes into account not only the
absolute number of uncovered tasks in a hole but also, in-
directly, their percentage. This confirms our initial analysis
regarding the importance of these two dimensions for rank-
ing holes.

We also prefer sqCov to Uncovered because sqCov has
the mathematical properties we defined in Section 5 while
Uncovered does not. The experimental results provide an in-
dication that these mathematical properties are indeed rel-
evant and helpful. Heuristics that possess the desired prop-
erties perform better and do so in a more consistent manner
(i.e., perform well over multiple data sets) than those that
do not. For example, lgCov performs poorly on the Binary-
Manip data set and performs better but not as well as sqCov
on the Driver data set. This is explained by our theoretical
framework. LgCov does not hold the desired properties for
our problem domain.

It seems that Ranks could be made comparable to sqCov
by changing the weight given to the size of the hole. This
can easily be done by changing a. We plan to investigate
this further.

It is interesting that the deviation of scores is larger for
BinaryManip than for Driver. This can be explained by
the difference in the overall coverage percentage. Because
the overall coverage percentage for BinaryManip is much
lower than for Driver there are many more candidate sub-
strings. Naturally, the resulting overlap among the heuris-
tics is smaller.

We asked the experts to not only mark for each substring
whether it is a hole, but to indicate holes that are especially
interesting to them. Interesting in this context means that
the experts were unaware of this aspect of the system be-
ing poorly covered. This gave us a qualitative indication
for the usefulness and effectiveness of our hole analysis tool.
The tool is especially effective because it finds holes that do-
main experts are unaware of. Notice that the tool uses only
function names and coverage data. Domain experts have a
much wider and deeper knowledge and understanding of the
system, including knowledge about the system’s test suite.
Humans, however, are not good at analyzing large quanti-
ties of data. It is very interesting to note that all domain
experts indicated as interesting holes that were detected by
sqCov. This is an additional confirmation for the good per-
formance of sqCov. The number of interesting holes varies
among experts. This is to be expected, because it is highly
subjective and depends on the knowledge and understanding
of the system. The BinaryManip expert marked 19 holes as
interesting, one Driver expert marked 42 holes as interesting
and the other marked 30 as interesting.

7. CONCLUSIONS AND FUTURE WORK
Substring hole analysis is an effective way of viewing and

analyzing large quantities of code coverage data. We devel-
oped a hole analysis algorithm and tool, as well as a theo-
retical framework for comparing hole-ranking heuristics. We
ran experiments over two large IBM software systems that
are very different in nature from one another. For each of
these systems, we evaluated our ranking heuristics accord-
ing to input from domain experts. The domain experts agree
on the effective heuristic—sqCov. Other heuristics that have
the mathematical properties we defined and the capability
to weight the problem dimensions, such as Ranks, are also
effective. Furthermore, the heuristics provided information
about missing coverage of which the experts were previously
unaware of. Our theoretical framework supports the exper-
imental results. Heuristics with the desired mathematical
properties performed better and more consistently in prac-
tice. The experimental results also provide empirical confir-
mation regarding the main dimensions of the substring hole
analysis problem. These dimensions are the absolute size of
the hole and the coverage percentage in the hole. Our ex-
periments show that users prefer big holes, but the coverage
percentage must be taken into account as well.

We intend to implement the improvements suggested by
the experiments to our substring hole analysis tool. For ex-
ample, it seems possible to significantly reduce or even elim-
inate the users’ need to select an effective ranking heuristic.
The experiments reveal that we should be able to provide
an effective single ranking heuristic. By effective we mean
that it is flexible and able to provide a ranking of holes that
different users find useful.

This paper describes experiments from two pilot projects
for substring hole analysis. We are in the process of con-
ducting two additional pilot projects, one on a large Java
middleware product and one on a large firmware project.
The preliminary results are similar to our conclusions in this
paper.

Recently, we added another dimension to our reports us-
ing data automatically collected from version control. It is
intuitively obvious that a hole representing functions that
have been recently modified is more important than one

representing functions that have not been changed since the
previous version. This is due to the well-known correla-
tion between code changes and the likelihood of bugs [8].
Currently, we simply mark holes as representing changed or
unchanged code. However, we would like to factor in the
degree to which the code has been modified.

The theoretical framework we defined received initial em-
pirical confirmation from the experiments. We intend to
continue to develop this framework, including a possible
ranking based on the framework. In addition, the mathe-
matical properties of the framework rules need to be further
investigated and proven.

8. ACKNOWLEDGMENTS
We greatly thank Shachar Fienblit for fruitful discussions

of various aspects of hole analysis. We thank Shachar and
Ran Fashchik for their help in the experimental evaluation
of the hole analysis algorithm.

9. REFERENCES
[1] Y. Adler, E. Farchi, M. Klausner, D. Pelleg, O. Raz,

M. Shochat, S. Ur, and A. Zlotnick. Automated
substring hole analysis. In ICSE, NIER Track, 2009.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In J. B. Bocca,
M. Jarke, and C. Zaniolo, editors, VLDB’94,
Proceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago de
Chile, Chile, pages 487–499. Morgan Kaufmann, 1994.

[3] H. Azatchi, L. Fournier, E. Marcus, S. Ur, A. Ziv, and
K. Zohar. Advanced analysis techniques for
cross-product coverage. IEEE Trans. Computers,
55(11):1367–1379, 2006.

[4] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In WWW ’01:
Proceedings of the 10th international conference on
World Wide Web, pages 613–622, New York, NY, USA,
2001. ACM.

[5] Focus code and functional coverage tool.
http://www.alphaworks.ibm.com/tech/focus.

Accessed December 2008.

[6] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv.
User defined coverage - a tool supported methodology
for design verification. In DAC, pages 158–163, 1998.

[7] Y. W. Kim. Efficient use of code coverage in large-scale
software development. In CASCON ’03: Proceedings of
the 2003 conference of the Centre for Advanced Studies
on Collaborative research, pages 145–155. IBM Press,
2003.

[8] T. Zimmermann, N. Nagappan, and A. Zeller.
Predicting Bugs from History, chapter 4, pages 69–88.
Springer, March 2008.

