
K-means with Large and Noisy Constraint Sets

Dan Pelleg and Dorit Baras

IBM Haifa Labs
dpelleg@il.ibm.com doritb@il.ibm.com

Abstract. We focus on the problem of clustering with soft instance-
level constraints. Recently, the CVQE algorithm was proposed in this
context. It modifies the objective function of traditional K-means to in-
clude penalties for violated constraints. CVQE was shown to efficiently
produce high-quality clustering of UCI data. In this work, we examine
the properties of CVQE and propose a modification that results in a
more intuitive objective function, with lower computational complex-
ity. We present our extensive experimentation, which provides insight
into CVQE and shows that our new variant can dramatically improve
clustering quality while reducing run time. We show its superiority in a
large-scale surveillance scenario with noisy constraints.

1 Introduction

Recently, a growing interest in utilizing side-information in clustering led to a
variety of new clustering techniques. The side information is used to encode a
tacit bias to counter that of the original clustering algorithm. In this sense, the
new algorithm can be thought of as supervised. But in contrast to traditional
supervision, the ground truth labels need not be explicitly present in the input.

Typically, the side information is in the form of pairwise instance-level con-
straints. Constraints of this type come in two flavors: a must-link (ML) con-
straint, to indicate that a pair of input points need to be in the same output
cluster, and a cannot-link (CL) constraint, to indicate the opposite. These types
of constraints were thoroughly investigated and have been shown to improve re-
sults in different application areas. Some of these areas include GPS lane finding
[1], video and image indexing [2, 3], robot navigation [4], image segmentation [5],
and text categorization [6, 7]. The constraints are considered to increase cluster
purity, decrease convergence time, and reduce error [8].

The method in which the constraints are acquired depends on the application
itself. For example, spatial or temporal proximity of observations may be used
to induce constraints, or user feedback on a clustering result may be used in an
active-learning or semi-supervised setting. In experimentation, it is also popular
to use the ground truth labels to induce constraints.

In general, existing methods fall into one of two categories: constraint-driven
and distance-driven. The first type tries to directly satisfy the constraints. There
are hard and soft versions of these, which vary in their ability to ignore some

2

constraints. The second type learns a distance metric from the constraints, and
it is later used in a constraint-agnostic clustering algorithm.

This work is motivated by a surveillance application. In this setting, a sen-
sor (e.g., a video camera), or a network of such sensors, is located in a public
area. The sensor can locate objects in a 2-D or 3-D space. It can also track
their movement over a short period of time. For example, if object locations
are recorded every minute, the sensor may also identify that the same object
that was at location P at time t, is at location P ′ at time t + 1. Noise in the
measurements may come in the form of false tracking due to objects or agents
leaving and entering the scene, occlusion, etc. The goal of the application is to
perform long-term tracking of objects. That is, cluster the observation points
such that each cluster corresponds to a single object. This naturally gives rise
to the constrained clustering problem with the following characteristics:

– The number of data points and constraints is large (thousands or more,
depending on the monitoring period and frequency).

– The constraints are mostly ML.
– The constraints are noisy.

This paper explores solutions to such problems. From the description above,
some required properties for such solutions emerge: scalability, efficiency, and
resilience to constraint noise. The latter immediately precludes hard satisfaction
algorithms. Of the soft variants, algorithms based on K-means are a natural fit
to the scalability requirement, since they are potentially linear in the number of
points, dimensions, constraints and clusters.

We also note the common practice of augmenting the constraint set by tran-
sitive and entailed constraints. That is, if the input includes the constraints
ML(a, b) and ML(b, c), then the transitive constraint ML(a, c) is added in pre-
processing. Similarly, the constraint set {ML(a, b), ML(d, e), CL(a, d)} will en-
tail the constraints {CL(a, e), CL(b, d), CL(b, e)}. This is a widely-used heuris-
tic[9], but unfortunately, it cannot be used in our scenario for two reasons. First,
the noise may introduce ML constraints between some members of different
clusters. When the number of constraints is large, the probability of such an
event is high, and the result would be the complete— and useless— clique in
the ML graph. Second, the size of the augmented set is huge. In one experiment
with around 20000 points and constraints, this kind of pre-processing generated
approximately half a million constraints.

Davidson et al. [10] propose using a black-box method to evaluate the use-
fulness of constraints. Two measurements are defined on constraint sets: infor-
mativeness and coherence. Informativeness represents the tacit bias, due to the
constraints, that is different from the algorithm’s own bias. Coherence is the dis-
parity between ML and CL pairs. These measures can be used to evaluate a given
constraint set. In a convincing experiment, an extremely small constraint set is
shown to dramatically enhance clustering results. Taking this idea further, the
authors suggest using the same measures to filter constraint sets before feeding
them to a constrained clustering algorithm. The benefit would be smaller and

3

cleaner sets, resulting in faster operation and increased accuracy. This approach
seems like a viable alternative to our scalable algorithms. We look forward to
the bridging of the gap between this idea and a working embodiment, enabling
us to directly compare the two approaches.

The remainder of this paper is organized as follows. In Section 2 we describe
the CVQE algorithm[4] on which we base our work, and examine its properties.
In Section 3 we propose LCVQE (for “linear-time CVQE”), our variant of CVQE,
and in Section 4 we present experimental results for UCI and tracking data.

2 The CVQE Algorithm

The unconstrained clustering problem is defined on instances Sii = 1, ...n and
a parameter K for the number of clusters. Le Cj be the centroid representing
cluster j. Denote by Qj the set of instances that are closest to Cj . The K-means
algorithm uses the following update rule: Cj = 1

|Qj |

∑

si∈Qj
si, where after every

centroid update, each instance is reassigned to the cluster of its closest centroid
(i.e., the groups Qj are recalculated). This update rule is derived from minimiza-

tion of the vector quantization error function, V QE = 1
2

∑K
j=1

∑

si∈Qj

(

Cj−si

)2
.

The Constrained Vector Quantization Error(CVQE) algorithm[4] generalizes
K-means to handle constraints. It does so by modifying the error function to
penalize violated constraints. In the original notation, there are r must-link and

s cannot-link constraints,
{(

s1(i), s2(i)
)}s+r

i=1
. Let Qj be the set of instances

assigned to the j-th cluster, and Cj be the centroid corresponding to the j-
th cluster. Define M(x) = {j |x ∈ Qj }, and let g(i) = M(s1(i)) and g′(i) =
M(s2(i)). Further, let h(i) be the cluster index whose centroid is closest to Ci.
As in Davidson et al. [4], in the case of violation, s2(i) is associated with the
violation. Finally, v(i) indicates whether the i-th constraint is violated. Namely,
for i = 1, ..., r, v(i) = 1 ↔ g(i) 6= g′(i) and for i = r + 1, ..., s + r, v(i) = 1 ↔
g(i) = g′(i), and v(i) = 0 in all other cases. The update rule is as follows:

Cj =
1

Nj

{

∑

si∈Qj

(si) +

r
∑

l=1,g(l)=j

v(l) · Cg′(l) (1)

+

s+r
∑

l=r+1,g(l)=j

v(l) · Ch(g′(l))

}

And Nj = |Qj | +
∑r+s

l=1,g(l)=j v(l). Intuitively, in violations of ML constraints,
one of the two affected centroids is move towards the other, wheres CL violations
move one of the points towards it next-closest centroid. Similarly t K-means,
after each iteration, each instance is reassigned to minimize the error function
(described below). Hence unlike K-means, Qj can contain instances where Cj is
not their closest centroid. This update rule minimizes the following error function
CV QE =

∑K
j=1 CV QEj , where

4

CV QEj =
1

2

∑

si∈Qj

Tj,1 +
1

2

r
∑

l=1,g(l)=j

Tj,2 +
1

2

r+s
∑

l=r+1,g(l)=j

Tj,3 (2)

where Tj,1 =
(

Cj − si

)2
, Tj,2 =

[

(

Cj − Cg′(l)

)2
· v(l)

]

, and

Tj,3 =
[

(

Cj − Ch(g′(l))

)2
· v(l)

]

.

In each step of the CVQE algorithm, each pair of instances that form a
constraint are assigned such that the CVQE error function is minimized. The
rest of the algorithm (initialization and termination) is the same as K-means.

We now discuss some properties of CVQE. First, the order of the points
in a constraint is significant. Consider a violated constraint generated by the
instances (s1(l), s2(l)) such that s1(l) ∈ Qg(l), s2(l) ∈ Qg′(l). Only Cg(l) is affected
by violation of this link, while Cg′(l) is not affected at all. This observation holds
in both the ML and CL cases.

Second, determining the assignment that minimizes the error function re-
quires O(K2) calculations for every constraint, which can be expensive when
dealing with large numbers of either constraints or clusters. It is also not possible
to prune out any possibility (other than the trivial s1(l) ∈ Qg′(l), s2(l) ∈ Qg(l))
from the calculation. To see this, consider Figure 1(a). The pair (x, y) is ML and
the current centroids are Ci, i = 1, ..., 6. The distances are shown in the figure.
Depending on the values of R, δ, and ε, points may be assigned to any of the
pairs (C1, C2), (C3, C4), or (C5, C6). Hence, all K2 options must be checked for
every constraint.

Another issue arises from the fact that the penalty for violated links depends
on the distance between the corresponding centroids, but the locations of the
instances are not taken into account. Consider the two clustering problems shown
in Figure 1(b). In both, the initial centroids are C1, C2. One problem includes
the ML (x1, y), while the other includes ML (x2, y).

Table 1 summarizes the available assignments in each case and the CVQE
value. Note that, regardless of d and f , both problems always have the same so-
lution, although our intuition says that violating (x1, y) is “worse” than violating
(x2, y). Furthermore, the corrective action in both cases is the same: move C1

along the line connecting it to C2, completely ignoring the relative orientation
of the offending instance.

Table 1. CVQE values for Figure 1(b)

Constraint y ∈ Q1, xi ∈ Q2 xi, y ∈ Q1 xi, y ∈ Q2

(x1, y) R2 + R2 + f2 R2 + d2 R2 + d2

(x2, y) R2 + R2 + f2 R2 + d2 R2 + d2

5

(a) (b)

Fig. 1. CVQE examples

3 The LCVQE Algorithm

Our modification of CVQE follows. The proposed algorithm minimizes a tar-
get function composed of the vector quantization error as well as a penalty
for violated constraints, in the style of CVQE. For each constraint assignment,
the LCVQE algorithm considers at most two naturally chosen clusters, hence
its complexity is independent of K. Informally, violated ML constraints update
each centroid toward the opposite instance, hence they are symmetric in instance
order. For violated CL constraints, the instance that is far from the cluster cen-
troid is determined and the closest centroid to that instance (other than the
current centroid) is moved towards it.

To formalize the algorithm, we define two new functions. Rj(l) returns the
instance among s1(l), s2(l) whose distance to Cj is larger. MM(s) returns the
centroid which is the closest to s, other than CM(s). The LCVQE update rule is
given by:

Cj =
1

Nj

{

∑

si∈Qj

si +
1

2

r
∑

l=1,g(l)=j

v(l) · s2(l) +
1

2

r
∑

l=1,g′(l)=j

v(l) · s1(l) (3)

+
s+r
∑

l=r+1,j=MM(RM(s1(l))(l))

v(l) · RM(s1(l))(l)

}

6

Nj = |Qj |+
1
2

∑r
l=1,g(l)=j v(l)+ 1

2

∑r
l=1,g′(l)=j v(l)+

∑s+r
l=r+1,j=MM(RM(s1(l))(l))

v(l).

This update rule minimizes the error function:

Ej =
1

2

∑

si∈Qj

Tj,1 +
1

2

r
∑

l=1,g(l)=j

Tj,2 +
1

2

r
∑

l=1,g′(l)=j

Tj,3

+
1

2

s+r
∑

l=r+1,j=MM(RM(s1(l))(l))

Tj,4

Here,

Tj,1 =
(

Cj − si

)2
Tj,2 =

[

1
2

(

Cj − s2(l)
)2

· v(l)
]

Tj,3 =
[

1
2

(

Cj − s1(l)
)2

· v(l)
]

Tj,4 =
[

(

Cj − RM(s1(l))(l))
)2

· v(l)
]

The corresponding pseudo-code is:

1. GMLVj = {} , GCLVj = {} , ∀j ∈ {1, ..., K}

2. Assign Qj by the closet-centroid rule.

3. For each must-link {s1(l), s2(l)}, such that Cj is the closest centroid to s1(l)
and Cn is the closest centroid to s2(l), compute the following quantities:

(a) 1
2

[

(s1(l) − Cj)
2

+ (s2(l) − Cn)
2
]

+ 1
4

[

(s1(l) − Cn)
2

+ (s2(l) − Cj)
2
]

(b) 1
2 (s1(l) − Cj)

2 + 1
2 (s2(l) − Cj)

2

(c) 1
2 (s1(l) − Cn)

2
+ 1

2 (s2(l) − Cn)
2

If (a) is minimal, GMLVj = GMLVj ∪ s2(l) and GMLVn = GMLVn ∪ s1(l),
assign s1 to Qj and s2 to Qn.
If (b) is minimal, assign s1 and s2 to Qj .
If (c) is minimal, assign s1 and s2 to Qn.

4. For each cannot-link {s1(l), s2(l)}, such that Cj is the closest centroid to s1(l)

and Cn is the closest centroid to s2(l), let Rn(l) = arg maxsi(l),i=1,2 (si(l) − Cn)
2
.

Let j = MM(Rn(l)), be the index of the centroid that is closest to Rn(l)
other than n. Compute the following quantities:

(a) 1
2 (s1(l) − Cj)

2 + 1
2 (s2(l) − Cj)

2 + 1
2

(

Rj(l) − CMM(Rj(l))

)2

(b) 1
2

[

(s1(l) − Cj)
2 + (s2(l) − Cn)2

]

If (a) is minimal, GCLVMM(Rj(l)) = GCLVMM(Rj(l)) ∪ Rj(l), assign s1 and
s2 to Qj .
If (b) is minimal, assign s1 to Qj and s2 to Qn.

5. Update Cj as follows:

Cj =
1

Nj

{

∑

si∈Qj

si +
1

2

∑

si∈GMLVj

si +
∑

si∈GCLVj

si

}

(4)

6. Repeat steps 1 − 5 till convergence.

7

Here Qj is the set of instances assigned to the jth cluster and Nj = |Qj | +
1
2 |GMLVj |+|GCLVj |. The convergence criterion can be near-quiescence of clus-
ter movement, cluster assignment, or total LCVQE (our implementation choice).

The LCVQE algorithm requires O(d) operations (for d dimensions) in each
step because only three1 possible assignments are checked, regardless of K.
Hence, this algorithm is faster and efficient for problems having large number of
constraints or clusters.

Another benefit of the algorithm is that the constraints are symmetric and
that the centroid that is updated depends on the exact setting of both instances
rather than the violating instance alone.

Finally, our algorithm does a better job of handling the example shown in
Figure 1(b). Table 2 summarizes the available assignments in each case and the
LCVQE values. Assume that the assignment in both problems is xi ∈ Q2, y ∈ Q1.
In the case of (x1, y), the centroid is updated as follows: C1 = (y + 1

2x1)/1.5.
In the case of (x2, y), the centroid is updated as follows: C1 = (y + 1

2x2)/1.5,
which is intuitively better (because the centroid is moving toward the mean of
the instances rather then toward the other centroid).

Table 2. CVQE values for Figure 1(b)

Must-link y ∈ Q1, xi ∈ Q2 xi, y ∈ Q1 xi, y ∈ Q2

(x1, y) (d2 + d2)/2 d2 d2

(x2, y) (d2 + d2)/2 d2 d2

4 Experiments

We first compare the performance of LCVQE and CVQE on UCI data. We
implemented both, as well as K-means, in C, and used a 3.6GHz Pentium 4
machine for testing. Times in the plots are all in seconds.

The data sets and their properties are described in Table 3. We drew random
data pairs to generate constraints. Noise was inserted with probability p = 1%
by changing the labels in a pair to labels drawn uniformly from the set of classes.
Afterwards, the labels were compared to generate either an ML or a CL con-
straint. In each case 25 ML and 25 CL constraints were generated.

We generated the augmented set of transitive and entailed constraints in
pre-processing, which did not contribute towards the measured run time of any
algorithm. To measure clustering performance, we used NMI[7]. Let H(·) denote
the Shannon entropy and I(X ; Y) the mutual information of variables X and

Y . Then NMI is defined as: I(C;K)
(H(C)+H(K))/2 , where C denotes the ground truth

labels and K is the output of some clustering algorithm.

1 The fourth option can be trivially shown to be redundant.

8

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE
LCVQE
Kmeans

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE
LCVQE

Kmeans

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE
LCVQE
Kmeans

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE
LCVQE

Kmeans

Fig. 2. Performance on UCI data, Wine and Iris

Figures 2 through 5 show NMI and run time values averaged over 100 runs.
Accuracy is increased dramatically for all values of K in the Iris and Glass
datasets, and is significantly better for most values of K for Ionosphere, Wine,
and Pima, and at par for E-coli and Breast. Note that for the Glass and Wine
datasets, CVQE is substantially worse than unconstrained K-means, a phe-
nomenon we did not observe for LCVQE.

For run times, the quadratic growth in K is clearly visible for CVQE, whereas
LCVQE (and, as expected, K-means), are linear in K. At the same time, there
are cases where LCVQE is slower, especially at the low end of K. We explore
this point below.

We also repeated the experiments, with p = 5% and p = 10%, both with 50
and 75 constraints. They are similar to the results ones seen above. We show
representative results for the Iris dataset in Figure 6.

Recall that, for each constraint, LCVQE searches over a space that includes
just two centroids, whereas CVQE performs the search over all K centroids. This
reduction in search space movement has the potential to make each change in
centroids smaller. To test this hypothesis, we measured the average number of
iterations to convergence for both versions, as well as the total centroid move-
ment per iteration. (See Table 4). Additionally, we counted the average number

9

Table 3. Data sets used in the experiments

Name Points Dimensions Classes

Iris 150 4 3
Breast 682 9 2
Wine 178 13 3
E-coli 336 8 8
Pima 768 8 2
Glass 214 9 7
Ionosphere 351 33 2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE
LCVQE
Kmeans

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE
LCVQE
Kmeans

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE
LCVQE
Kmeans

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE
LCVQE
Kmeans

Fig. 3. Performance on UCI data, Breast cancer and E-coli

10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE
LCVQE
Kmeans

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE
LCVQE
Kmeans

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE
LCVQE
Kmeans

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE
LCVQE
Kmeans

Fig. 4. Performance on UCI data, Pima and Glass

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 2 4 6 8 10 12 14 16 18 20

tim
e

K

CVQE
LCVQE
Kmeans

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE
LCVQE
Kmeans

Fig. 5. Performance on UCI data, Ionosphere.

11

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE

LCVQE

Kmeans
 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 2 4 6 8 10 12 14 16 18 20

NM
I

K

CVQE

LCVQE

Kmeans

Fig. 6. Performance on Iris, 75 constraints, p = 1% (left) and p = 10% (right).

Table 4. Low-level performance measures for k = 10.

Name Iterations Movement Clusters
LCVQE CVQE LCVQE CVQE LCVQE CVQE

Iris 9.8±0.2 4.4±0 2.9±0 2.4±0 2.7±0 1.7±0

Breast 20.2±0.1 20.6±0.1 6.4±0 6.1±0 8.5±0 8.3±0

Wine 14.5±0.2 15.3±0.1 258.5±1.7 157.4±1.2 3.6±0 2.61±0

E-coli 14.9±0.1 12.9±0.1 0.46±0 0.47±0 6.1±0 5.8±0

Pima 27.6±0 29±0 77.7±0 72.3±0 7.9±0 7.7±0

Glass 11.1±0.2 3.3±0 23.4±0.2 28.4±0.2 2.3±0 1.1±0

Ionosphere 16.1±0.2 14.8±0.1 3.5±0 3.6±0 9.8±0 9.8±0

of unique labels output by each algorithm2. We see that LCVQE does tend to
iterate longer than CVQE, which explains the longer run times for low values
of K. We also see that CVQE is fairly likely to orphan many of the centroids,
resulting in solutions with inherently poor quality.

We also examined the dependence of run time on the size of the input. Here
we added to the mix the MPC-Kmeans algorithm[11], which is an efficient
hybrid of the distance-learning and constraint-satisfaction approaches3. We first
varied the number of constraints. The data used was 100 random lines from
the “cover type” UCI data set (54 dimensions, 7 classes), re-drawn at every
run. Constraint noise was added as above. See Figure 7. While the exact values
are not comparable (MPC-Kmeans is implemented in Java), the trends are
valid. We see that the K-means variants are linear in the number of constraints,
whereas MPC-Kmeans is super-linear. Here, too, the entailed constraints were

2 Both algorithms were configured to not delete empty centroids. Even if they exist,
the final assignment may or may not make use of them, resulting in cases with less
than K unique labels in the output.

3 In terms of NMI, it outperforms LCVQE on the small UCI datasets.

12

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000

tim
e

points

CVQE
LCVQE

MPC-Kmeans

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

tim
e

constraints

CVQE
LCVQE

MPC-Kmeans

Fig. 7. Run time vs. number of constraints and points, k = 5. Results are averages
over 30 runs.

generated by the wrapper script, and MPC-Kmeans was instructed not to run
its own entailment code.

All algorithms are linear in the number of points (data not shown). But in our
motivating example, the number of constraints is generally linear in the number
of points. We therefore conducted another experiment with the cover type data,
this time generating as many constraints as there are data points. (See Figure 7).
Again we see the super-linear behavior of MPC-Kmeans, making it unsuitable
for large-scale inputs.

Our final experiment tests performance on surveillance data from a realistic
arena. In it, ten uncontrolled agents move in a 2-D space and interact among
themselves and with the surroundings. Each minute, a snapshot is taken, and
the location and true identity of each agent are recorded. We generate raw data
that corresponds to the locations of agents, and ML constraints between each
agent’s location and its location at the previous time step. In a sense, this is
a version of the famous GPS lane finding data but with greater freedom of
movement for the agents. Noise was added as above. Here we did not augment
the constraint set (nor did MPC-Kmeans run its own augmentation routine).
Because of the long chains in the ML graph, the transitive closure becomes huge
and mostly uninformative. (See Figure 8). We observe that LCVQE produces
better or equivalent results to CVQE, while running much faster. In particular,
the performance of MPC-Kmeans degrades very quickly with the number of
constraints increases. We can speculate that this could be the effect of noise.
Another possible reason is the absence of the connected-component heuristic —
published work on MPC-Kmeans did not explore any of these scenarios.

5 Conclusion

Having emerged as a new technology a few short years ago, constraint cluster-
ing methods are now transitioning to the status of established practice. Con-
sequently, the question of constraint acquisition is increasing in importance.
Without automatic constraint generation, plugging in a constrained method in

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5000 10000 15000 20000 25000

tim
e

constraints

CVQE
LCVQE

Kmeans
MPC-Kmeans

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0 5000 10000 15000 20000 25000

NM
I

constraints

CVQE
LCVQE

Kmeans
MPC-Kmeans

Fig. 8. Performance on tracking data, k = 10.

place of a traditional unsupervised method is impossible. We hypothesize that,
in many realistic scenarios, the graphs of generated constraints will look very
different from the label-based constraint sets that are traditionally used to eval-
uate new algorithms. In particular, the graphs of ML constraints are likely to
contain long chains rather than (dense or sparse) cliques. An interesting avenue
of research is to explore the effect of graph structure and noise on the quali-
ties and desired properties of constrained clustering algorithms, in the spirit of
Davidson et al.[12]. We explore this issue in a forthcoming paper.

In this light, we discuss a real-world tracking scenario where data points
and constraints are plentiful and possibly noisy. This notion alone breaks the
consistency assumption central to many of the existing constrained clustering
algorithms, resulting in poor performance. We propose a scalable and robust
algorithm, based on the CVQE framework, capable of operating in this kind
of environment. We show extensive experimental results that shed light on the
relative performance of both algorithms and compare them to a distance-learning
algorithm.

Acknowledgments

We thank Ian Davidson for helpful comments and discussion.

References

1. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering
with background knowledge. In Brodley, C., Danyluk, A., eds.: Proceeding of the
17th International Conference on Machine Learning, San Francisco, CA, Morgan
Kaufmann (2001)

2. Lin, W.H., Hauptmann, A.: Structuring continuous video recordings of everyday
life using time-constrained clustering. In: IS&T/SPIE Symposium on Electronic
Imaging, San Jose, CA (January 2006)

14

3. Hertz, T., Shental, N., Bar-Hillel, A., Weinshall, D.: Enhancing image and video
retrieval: Learning via equivalence constraints. In: In Proc. of IEEE Conference
on Computer Vision and Pattern Recognition. (2003)

4. Davidson, I., Ravi, S.S.: Clustering with constraints: Feasibility issues and the
k-means algorithm. In: 5th SIAM Data Mining Conference. (2005)

5. Yu, S.X., Shi, J.: Grouping with directed relationships. Lecture Notes in Computer
Science 2134 (2001)

6. Cohn, D., Caruana, R., McCallum, A.: Semi-supervised clustering with user feed-
back. Technical report, Cornell University (2003) TR2003-1892.

7. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised
clustering. In Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W., eds.: Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Seattle, WA, ACM (August 2004) 59–68

8. Basu, S., Davidson, I.: Clustering with constraints: Theory and practice. On-
line Proceedings of a KDD tutorial (2006) http://www.ai.sri.com/∼basu/

kdd-tutorial-2006/.
9. Davidson, I., Ravi, S.S.: Identifying and generating easy sets of constraints for

clustering. In: AAAI, AAAI Press (2006)
10. Davidson, I., Wagstaff, K., Basu, S.: Measuring constraint-set utility for partitional

clustering algorithms. In Fürnkranz, J., Scheffer, T., Spiliopoulou, M., eds.: PKDD.
Volume 4213 of Lecture Notes in Computer Science., Springer (2006) 115–126

11. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In Brodley, C.E., ed.: ICML, ACM (2004)

12. Davidson, I., Ravi, S.S.: Intractability and clustering with constraints. In: ICML.
(2007)

