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Presenter
Presentation Notes
Thanks Andrew. The last decade has seen the maturation of research in SW verification to the point that it is now used in industrial practice in places like Microsoft and NEC – at NEC our research has led to a product that is routinely used to find bugs in projects with millions of lines of code – that’s the MLoCs in the title here, and even for multithreaded software. 
SW verification builds on the early work in Hoare logic that addressed proving properties of programs, on model checking one of the automated property checking techniques, and on the body of work done in concurrency analysis such as race detection. And to this we add our research that addressed the dual requirements of precision and scalability in modeling and analysis. The work I will be describing was done in collaboration with my past and current colleagues in NEC at Princeton and Japan.
Let’s jump right in...




Verification Research at NEC Labs 
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Layered approach 
Constraint solvers 
Verification and analysis methods 
Modeling techniques 

Application domains (so far) 
Software programs, multi-threaded programs 
Hardware/embedded/hybrid systems 
 

 

Modeling Techniques 
Abstraction/Refinement,  
Model transformations, 
Modular methodology 

Constraint Solvers 
SAT Solvers, SMT Solvers, 

LP Solvers, BDDs 

Verification Methods 
Model checking, BMC, 

Abstract Interpretation, 
Dataflow analysis 

HW SW System 

Presenter
Presentation Notes
The broad organization of my research is in three layers. The bottom layer comprises modern constraint solvers that perform the search for bugs or proofs. These are leveraged in various ways by different verification and analysis methods, some of which we saw today. The top most layer provides suitable modeling techniques for different application domains. Today I discussed the application of this framework to software, but I have also applied it to hardware, embedded and hybrid systems. 
Different application domains drive research in each of these layers. 
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API Usage Bugs 
    SLAM      [Ball & Rajamani 01] 
    Blast        [Henzinger et al. 02] 
    SatAbs    [Clarke et al. 04] 

F-Soft-CEGAR   [JIGG 05] 

Does not scale for finding 
memory-safety bugs 
• null pointer derefs 
• array buffer overflows 
• string usage bugs 
• uninitialized variables 

If concrete model is missing alias information 
CEGAR loop makes no progress 

Number of alias predicates blows up 
Harder to get proof 

Scalability Precision 

Symbolic Program Verification 

Concrete Model Abstract Model 
Proof 

Abstract 
Counterexample 

Spurious 
Counterexample 

Concrete (true) 
Counterexample 

Refined Model CEGAR  
Loop 

Precise memory & pointer models 
[AGGI+ 04, ISGG+ 05] 

Presenter
Presentation Notes
CEGAR with predicate abstractions was successfully used to find API usage bugs in device drivers by projects such as SLAM, Blast and SatAbs, including our F-Soft project at NEC. Btw, I will be indicating references to our work in blue, to distinguish them from other related work.
However, we were also interested in other kinds of bugs. We found that the CEGAR loop does not scale for finding memory safety bugs such as …
For memory safety, predicates representing aliasing relationships are important to track. If the concrete model is missing alias information., then the CEGAR loop makes no progress, because the spurious counterexample cannot help discover the new predicates ((since the alias relationships that are needed to rule out this counterexample are not even present in the concrete model)). However, when you do add this aliasing information in the concrete model, the number alias predicates to track blows up, making it hard to get proofs. What is needed here is the precision in the concrete models AND scalability of analysis. 



Scalability: Finding Bugs using Search   
Bounded Model Checking (BMC)     [Biere et al. 99] 

Unroll transition relation T to depth n      

Software Bounded Model Checking    [Clarke et al. 04 (CBMC), AGGIY 04] 

Unroll program n blocks   
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T 
Depth n 

T 
Depth n-1 

initial 
state 

T 
Depth 1 

T 
Depth 2 

property p 

SAT solver searches space relevant to property p 
State sets are not saved Critical for scalability 

fn(M, p) 

Satisfiability of fn(M, p) ≡ 
Property violation at depth n 

Precision vs. Scalability 

Presenter
Presentation Notes
Given these large models, we definitely needed scalable analysis. One way to achieve that is to make the problem simpler. This is what is accomplished by the bounded version of model checking or BMC. Instead of performing a fixed point computation, BMC performs a bounded analysis by unrolling the transition relation to depth n. When applied to programs, software bounded model checking corresponds to unrolling the program to n blocks, as shown in this picture. A formula is created over the unrolled model and the given property, where the formula is satisfiable iff there is a property violation. This can be checked using standard SAT solvers. Here the states are not saved which is a plus and we leverage the ability of a SAT solver to search the space relevant to the property p. Both of these are critical for achieving scalability and this technique is successful in practice for detecting bugs. But finding bugs may not be enough – we also need to see how to scale for finding proofs.



Finding Proofs: Scalability and Precision 
Predicate abstractions: SLAM, Blast, SatAbs 

 
 
 
 

Numeric abstract domains: Astrée  [Cousot&Cousot 77, Blanchet+ 03] 
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((p=0) Λ (pLen = -1)) ∨ 
((p!=0) Λ (pLen > 1)) 

(pLen ≥ -1) 

Precision vs. Scalability 

allows disjunctions 
scalability challenge 

no disjunctions (generally) 
scales well 

pLen > 1 
L := 1 
bLen := 0 

p = 0 

pLen := -1 

p != 0 

mode != 0 

off := 1 off := 0 

L > pLen p != 0 
&& bLen > pLen 

mode = 0 

L ≤ pLen 
bLen := L – off 
L := L * 2 

1 

4 

5 

6 

9 

10 

7 

14 Precision: Path-Sensitive Analysis 
Takes branch conditions into account 
May not get proof otherwise 

 

path-sensitive – has precision 

path-insensitive – loses precision at merge 

Q: Scalability + Path-sensitivity? A: Lazy path sensitivity 
[HSIG 10] 

Presenter
Presentation Notes
For proofs we can’t avoid the fixpoint computation. What we have seen here so far is that the fixed point computation can be done using predicate abstractions and this has been used in several tools. Let’s look at the predicate stored at this control location 6. As this is a merge point after a conditional, the formula involves a disjunction of the contributions from the two transitions into the merge point. In general predicate abstraction allows disjunctions and this blows up due to contributions over all the paths during the fixpoint computation – and this is a scalability challenge. 
An alternative is to use something called numerical abstract domains such as those used in the Astree analyzer. Let’s see one instance of this in this example. Without disjunctions it would compute the overapproximation of the state sets at the merge point, in this example as pLen >= -1. Without the blowup of the disjunctions this scales well. The theory of abstract interpretations describes how to derive such overapproximations with many abstract domains such as intervals which constrain variables to a range, octagons that describe linear relationships between unit variables and polyhedra that allow linear constraints between an arbitrary number of variables.



Balancing Precision and Scalability 
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SAT-encoded program graph 

Satisfying 
assignment 

Path program 

Precise analysis 
with proof generalization 

Learning  

SAT-encoded Boolean abstraction 

Satisfying 
assignment 

Theory model 

Theory solver 
with proof generalization 

Learning  

Precision Scalability 

Satisfiability Modulo Theories (SMT) 

[Ganzinger et al. 04, Barrett et al. 09] 

Satisfiability Modulo Path Programs (SMPP) 
[HSIG 10] 

Presenter
Presentation Notes
To recap what we just saw: we started with a SAT encoded program graph where each satisfying assignment corresponds to a path program. We performed precise analysis with proof generalization where the proof showed correctness of a larger set of programs, which we learned and blocked from further consideration. This allows us both precision from path sensitivity along a path program, combined with learning which gives us the scalability. We call this technique Satisfiability modulo path programs abbreviated SMPP. In spirit it is similar to Satisfiability Modulo Theory Solvers. In an SMT solver one starts with a SAT encoded Boolean abstraction where each satisfying assignment corresponds to a theory model that can be checked by a theory solver – again proof generalization in theory solvers is used for learning to block a larger set of theory models. SMPP raises learning this to deal with path programs as analyzable objects.



F-Soft Verifier 

7 

Concrete Model Abstract Model 

Spurious 
Counterexample 

Refined Model CEGAR  
Loop 

Abstract 
Counterexample 

Proof 

Concrete (true) 
Counterexample 

 Bounded  
Model Checking 

(F-Soft BMC) 

Precision vs. Scalability 

CEGAR loop makes no progress Number of predicates blows up 

Scalability Precision 

Abstract Domain 
Analysis 

(F-Soft SMPP) 

Presenter
Presentation Notes
We started with F-Soft having the CEGAR loop, but quickly recognizing the precision and scalability challenges, as a result of which we ended up not using this loop. Instead, for finding bugs we use bounded model checking which generates the true counterexample. And for proofs, we use abstract domains with satisfiability modulo path programs. The information from abstract domains can also be used in bounded model checking and the bounded model checker can also do proofs by induction which I didn’t talk about. (FIX ABSTRACT MODEL)



Function Calls 

In Practice 
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main() 

foo() 

Error block 

Bugs can be deep from main() 

Challenges 
Verifier runs out of time/memory 
Missing code for functions (libraries)  
Code with deep recursion (e.g. parsers) 

 

Strategy 
Start from an intermediate function foo() 
  
Issue: How to supply the environment for foo()? 
  

 
 

 

 
 

 
 

 

Handling MLoCs 

Presenter
Presentation Notes
The main issue in practice is that bugs can be deep and far from the start of the program. The challenges here are that the verifier may time out or mem-out, there can be missing code along the way, or there may be code with deep recursion. So a strategy is to start the verification from an intermediate function foo. The main issue is how to supply the calling environment when you start from foo.



In Practice 
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Environment Model 

main() 

foo() 

bar() 

Error block 

Cutoff Model 

From top 
Start from an intermediate function foo() 
Approximate environment model 

From bottom 
Depth cutoff for bounding scope  
Approximate cutoff model  

Modeling Strategy 
Light-weight static analysis 
 infers likely pre- and post-conditions, stubs 
 

 

Modular assume-guarantee verification 
links multiple levels in call-graph 
 

 

 

 
 

 

 

 
 
 
 

 

[IBGS+ 11] 

Handling MLoCs 

Depth Cutoff with Design Constraints 

Assume pre-foo 

Assert pre-bar 

Function Calls 

Presenter
Presentation Notes
We do that by capturing the calling environment through an approximate model. However, this is not enough. If foo has a deep call graph, even if the error block is at a shallow depth, again we may run out of time or memory. So we similarly cut off the bottom at some depth to bound the scope from foo. We similarly use an approximate cutoff model. The modeling strategy for the top and the bottom models is the same – we use a light weight static analysis to infer likely pre and post conditions, and to infer stubs automatically. 



Staging the Analyses 
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In-house NEC Product: Varvel 
Software Factory: since Nov ’10  

In 2013, Varvel applied on 65 projects, total: 40.5 MLoC, size: 1K to 20 MLoCs 

Build-analyzer (works on makefiles): MLoC C/C++ 

Design constraint inference: compilable units, 100s KLoC, ~10 min (1 hr timeout) 

Depth-cutoff +  
model building 

foreach-entry-function: 10s KLoC (checked in parallel) 

F-Soft SMPP 
Proofs 

F-Soft BMC 
Bugs 

10 min timeout 
discharges ~80% properties 

2 min timeout 
Bugs post-processed 

~40% true bugs 

~1 min 

 false bugs mainly due to  
calling environment 

Handling MLoCs 

Presenter
Presentation Notes
So lets see how these parts come together on a million line program. A build analyzer works directly on makesfile to create compilable units from the MLoCs. The design constraint inference, that is the light-weight static analysis, works on these compilable units of 100s of kLoCs. It typically takes 10 mins or so with a one hour timeout. After this, we perform verification for each entry function – these are of the order of 10s of kLoCs, but could be larger and these are done in parallel. For each entry function, we perform depth cutoff and model building, which typically takes 1 minute or less, after which we apply our proof engine. With a 10 minute timeout, this typically discharges about 80% of all instrumented properties. The remaining properties are sent to the BMC engine to find bugs. The reported bugs are post-processed and about 40% of them are true bugs. The false bugs at the end are mainly due to lack of calling context. So here there is room to improve the calling environment using techniques beyond lightweight static analysis, such as statistical or inductive learning from test observations.
This staging is part of an in-house NEC product called Varvel which has been deployed in a centralized repository of all projects called the Software factory. In 2013 it was applied on 65 projects with about 40 MLoCs with projects in size from 1k to 20MLoCs.



Concurrent Programs: Additional Challenges 
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    void Alloc_Page( ){ 

   pt_lock(&plk); 

   if (pg_count  >= LIMIT) { 

       pt_wait(&pg_lim, &plk); 

       incr(pg_count); 

       pt_unlock(&plk); 

       a = sh; 

   } else { 

       pt_lock(&count_lock); 

       pt_unlock(&plk); 

       page = alloc_page(); 

       sh = 5; 

       if (page) 

           incr(pg_count); 

       pt_unlock(&count_lock); 

    end-if 

  } 

} 

void Dealloc_Page( ){ 
   pt_lock(&plk); 
   if (pg_count  == LIMIT) { 
       sh = 2;  
       decr(pg_count); 
       b = sh; 
       pt_notify(&pg_lim, &plk); 
       pt_unlock(&plk); 
   } else { 
       pt_lock(&count_lock); 
       pt_unlock(&plk); 
       decr(pg_count); 
       sh = 4; 
       pt_unlock(&count_lock); 
    end-if 
  } 
} 

shared variables 

synchronizations 

interleavings 

Synchronization and Recursion 

Presenter
Presentation Notes
Here we have two threads in a program with shared memory. The shared variables are shown in red. They also synchronize with each other through the synchronization operations shown in purple such as lock and unlock, and wait, notify. And finally you need to deal with the interleavings or thread schedules for the two threads which can be exponential. 

(Note on complexity)
If there are n threads with m instructions in each thread, when these threads are run concurrently how many possible interleavings in instruction execution are possible?
There are (nm)! ways to order the full set of nm instructions. This is a product of m! ways to order the instructions in each individual thread (i.e., a factor of (m!)^n), times the requested number of ways to interleave the threads. We conclude that there are
(nm)!/((m!)^n)
ways to interleave the threads.




Data Race Detection: Staging the Analyses 

CoBe: Concurrency Bench 
Found ~25 critical data race bugs in 5 industry projects, 9 – 379 KLoC 
Soon to be deployed in NEC’s Software Factory 
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Shared variable detection 
Lockset computation  

Precise pointer analysis [Kahlon 08] 

Lockset analysis 

Invariant generation 

Bounded model checking 

[KYSG 07] 

[KIG 05, KG 07] Lock history analysis 

[KSG 09, KSG13] 

[KGS 06] 

9 Linux device drivers 
0.6 KLoC – 26.1 KLoC 

~1 minute 
99 warnings 

+6 minutes 
24 warnings 

+11 hours 
21 bugs 

Static Race Detection 

Presenter
Presentation Notes
As we saw with sequential programs, it is critical to stage the analyses to do this at scale. Given a multi-thread program we first compute the shared variables and the locksets using our precise pointer analysis. For our experiments on 9 linux drivers ranging in size from less than 1K to 26KLoC a simple lockset analysis finished in less than a minute and gave 99 warnings. Using our lock history analysis and invariant generation, which took another 6 minutes, these warnings were reduced to 24. Finally we gave these warnings to a bounded model checker for multithreaded programs, this was able to find witnesses for 21 of these, but this did take a long time. 
This staged analysis is part of the CoBe tool which found 25 critical data race bugs in 5 industry projects from 9-about 400kLoC. This is soon to be deployed in NECs software factory.



Research Framework 
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Layered approach 
Constraint solvers 
Verification and analysis methods 
Modeling techniques 

Application domains (so far) 
Software programs, multi-threaded programs 
Hardware/embedded/hybrid systems 
 

Future domains of interest 
Distributed systems (Networks, Mobile, Cloud) 
Cyber-physical systems 
Biological systems 

Beyond verification applications 
Synthesis, security, reliability 

 

Modeling Techniques 
Abstraction/Refinement,  
Model transformations, 
Modular methodology 

Constraint Solvers 
SAT Solvers, SMT Solvers, 

LP Solvers, BDDs 

Verification Methods 
Model checking, BMC, 

Abstract Interpretation, 
Dataflow analysis 

HW SW System 

Presenter
Presentation Notes
The broad organization of my research is in three layers. The bottom layer comprises modern constraint solvers that perform the search for bugs or proofs. These are leveraged in various ways by different verification and analysis methods, some of which we saw today. The top most layer provides suitable modeling techniques for different application domains. Today I discussed the application of this framework to software, but I have also applied it to hardware, embedded and hybrid systems. 
Different application domains drive research in each of these layers. 
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Precision–Scalability Space 
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Scalability 

Astrée 

SLAM, Blast 

F-Soft-SMPP 

F-Soft-BMC CBMC 

F-Soft-CEGAR 

Precision 

Precision vs. Scalability 

(D, P, AR) 

(D, P, AR) 

(-- , !P, !AR) (-- , !P, !AR) 

(!D, P, !AR) 

(!D, P, !AR) 

precise modeling  
+ model simplification 

 model simplification 

lazy path sensitivity 

Verifier Design Dimensions: (D, P, AR) 

P = proofs 
!P = bugs only 

AR = abstraction-refinement 
!AR = no refinement 

D = disjunctive state sets 
!D = conjunctive state sets 

no states 
no CEGAR 

no disjunctions 
no CEGAR 

Presenter
Presentation Notes
It is helpful to see how these different verifiers stack up in the precision versus scalability space, based on their key characteristics indicated by the design dimensions of: disjunctive vs conjunctive state sets, whether they are generating proofs or only finding bugs, and whether they are using abstraction refinement or not. As we discussed, SLAM and Blast allow disjunctive state sets, through predicate abstraction refinement and provide proofs. F-Soft CEGAR version was similar, with some modeling enhancements for better precision and scalability. F-Soft BMC avoids saving states and the CEGAR loop, by focusing on bugs only. This is in the same space as CMBC for bounded model checking C programs, with additional model simplifications. Finally Astree uses abstract domains without disjunctions, can do proofs, but does not use a CEGAR loop. F-Soft SMPP adds precision to this through lazy path sensitivity. Our efforts, as always, are in pushing this frontier to more precision and scalability.
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