

Software Model Checking: Locks and MLoCs

Aarti Gupta

Ph.D. from CMU SCS – Thanks Ed!

Acknowledgements: NEC Labs America

Gogul Balakrishnan, Malay Ganai, Franjo Ivančić, Vineet Kahlon, Naoto Maeda, Nadia Papakonstantinou, Sriram Sankaranarayanan, Chao Wang, Varvel group in NEC Japan

Verification Research at NEC Labs

Layered approach

Constraint solvers

Verification and analysis methods

Modeling techniques

Application domains (so far)

Software programs, multi-threaded programs

Hardware/embedded/hybrid systems

API Usage Bugs

SLAM [Ball & Rajamani 01] Blast [Henzinger *et al.* 02]

SatAbs [Clarke et al. 04]

F-Soft-CEGAR [JIGG 05]

Does not scale for finding memory-safety bugs

- null pointer derefs
- array buffer overflows
- string usage bugs
- uninitialized variables

If concrete model is missing alias information CEGAR loop makes no progress

Precision

Number of alias predicates blows up

Harder to get proof

Scalability

Precise memory & pointer models

[AGGI+ 04, ISGG+ 05]

Scalability: Finding Bugs using Search

Bounded Model Checking (BMC)

Unroll transition relation T to depth n

Software Bounded Model Checking

Unroll program n blocks

[Biere *et al.* 99]

[Clarke et al. 04 (CBMC), AGGIY 04]

Satisfiability of $f_n(M, p) \equiv$ Property violation at depth n

SAT solver searches space *relevant* to property p
State sets are not saved

Critical for scalability

Finding Proofs: Scalability and Precision

 $((p=0) \land (pLen = -1)) \lor ((p!=0) \land (pLen > 1))$

allows disjunctions
scalability challenge
path-sensitive – has precision

Numeric abstract domains: Astrée [Cousot&Cousot 77, Blanchet+ 03]

(pLen \ge -1)

no disjunctions (generally)

scales well

path-insensitive – loses precision at merge

Precision: Path-Sensitive Analysis

Takes branch conditions into account

May not get proof otherwise

[HSIG 10]

Q: Scalability + Path-sensitivity?

A: Lazy path sensitivity

Balancing Precision and Scalability

Satisfiability Modulo Path Programs (SMPP)

[HSIG 10]

Satisfiability Modulo Theories (SMT)

[Ganzinger et al. 04, Barrett et al. 09]

F-Soft Verifier

CEGAR loop makes no progress

Number of predicates blows up

Precision

Scalability

In Practice

Bugs can be deep from main()

Challenges

Verifier runs out of time/memory

Missing code for functions (libraries)

Code with deep recursion (e.g. parsers)

Strategy

Start from an intermediate function foo()

Issue: How to supply the environment for foo()?

Handling MLoCs 8

In Practice

From top

Start from an intermediate function foo()

Approximate environment model

From bottom

Depth cutoff for bounding scope

Approximate cutoff model

Modeling Strategy

Light-weight static analysis

infers *likely* pre- and post-conditions, stubs

Depth Cutoff with Design Constraints

[IBGS+ 11]

Modular assume-guarantee verification links multiple levels in call-graph

Handling MLoCs 9

Staging the Analyses

Build-analyzer (works on makefiles): MLoC C/C++

Design constraint inference: compilable units, 100s KLoC, ~10 min (1 hr timeout)

foreach-entry-function: 10s KLoC (checked in parallel)

In-house NEC Product: Varvel

Software Factory: since Nov '10

In 2013, Varvel applied on 65 projects, total: 40.5 MLoC, size: 1K to 20 MLoCs

10 Handling MLoCs

false bugs mainly due to

calling environment

Concurrent Programs: Additional Challenges

```
void Alloc_Page( ){
  pt_lock(&plk);
  if (pg_count >= LIMIT) {
       pt_wait(&pg_lim, &plk);
       incr(pg_count);
       pt unlock(&plk);
       a = sh;
  } else {
       pt_lock(&count_lock);
       pt unlock(&plk);
       page = alloc page();
       sh = 5;
       if (page)
           incr(pg_count);
       pt_unlock(&count_lock);
   end-if
```


shared variables

synchronizations

interleavings

Data Race Detection: Staging the Analyses

CoBe: <u>Concurrency Bench</u>

Found ~25 critical data race bugs in 5 industry projects, 9 – 379 KLoC Soon to be deployed in NEC's Software Factory

Static Race Detection 12

Research Framework

Layered approach

Constraint solvers

Verification and analysis methods

Modeling techniques

Application domains (so far)

Software programs, multi-threaded programs

Hardware/embedded/hybrid systems

Future domains of interest

Distributed systems (Networks, Mobile, Cloud)

Cyber-physical systems

Biological systems

Beyond verification applications

Synthesis, security, reliability

Precision—Scalability Space

Verifier Design Dimensions: (D, P, AR)

D = disjunctive state sets !D = conjunctive state sets P = proofs

!P = bugs only

AR = abstraction-refinement

!AR = no refinement