Ansgar Fehnker

- □ 2001 to 2004 PostDoc ECE/SCS
 - Hybrid System verification and CEGAR
- □ 2004 to 2011 NICTA Sydney
 - MC for static analysis: Goanna
 - MC for Manet and Mesh
- 2011 to now University of the South Pacific
 - □ 12 Member countries
 - 14 campuses, main campus in Suva, Fiji.

- Goanna
 - □ Static Analysis Tool for C/C++
 - Combines model checking, path queries on parse tree and interval solving
 - Interprocedural (Function Summaries)
 - False positive elimination (SAT solving)
 - □ For any C/C++ code
 - □ Participant in SATE (NIST)
 - More on Goanna: redlizards.com

TOPOLOGY BASED MOBILITY MODELS FOR WIRELESS SYSTEMS

A. Fehnker, P. Höfner, M. Kamali, V. Metha

Mobility

- Wireless networks, Mesh, MANET, are designed to deal with mobile nodes.
- Protocols have to deal with nodes that join, disappear, or change neighbors.
- Incorporating mobility into models has been a challenge.

Mobility

- Formal state based models often
 - consider static topologies.
 - considered set topology changes.
 - ignored topology (considered an unspecified or non-deterministic topology)
- Aim: Creation of Mobility Models
 - to be used for Model Checking
 - independent of the protocol (re-use)
 - simple (not adding too much complexity)

- Idea
 - Model mobility as changes between topologies.
 - Transitions will be probabilistic.
 - Abstract from location, speed, or size of the node.
- Rationale
 - The topology is what the protocol usually sees.
 - Compatible with untimed, or timed automaton models for protocols.

- The mobile node is characterized by its neighbors (nodes within range)
- Space will be partitioned into regions with the same topology.

 Mobility is expressed as probability of moving from one region/topology to the next.

What are the probabilities?

Two step approach

1. Mobility simulation

Using a "traditional" simulator to estimate the transition probabilities between topologies.

2. Probabilistic mobility model

- Instantiate a probabilistic automaton model of mobility with obtained probabilities.
- Combine this model with a probabilistic automaton model of a protocol.
- Use a (statistical) model checker to analyse the impact of mobility on performance of the protocol.

Simulator

Implemented in C++.

 Computes a series of waypoints; each successive pair defines a line segment.

RWP: Next waypoint selected uniformly from area.

RW: Next waypoint is old plus value from2-D normal distribution. Reflect at boundary.

- Computes intersection of line segment with transmission ranges.
- Each intersection corresponds to a transition.
- Count transitions. Estimate probabilities

100000

waypoints

Simulation Results

- Some observations for the random walk model
 - The transition probabilities are independent of σ and the grid size;
 - The number of transitions per waypoint path grows linear with the range;
 - The transition probabilities of congruent transitions are the same;
 - The probabilities depend only locally on the set of nodes within range.

Simulation Results

- Some observations for the random walk model
 - \square The transition probabilities are independent of σ and the grid size;
 - The number of transitions per waypoint path grows linear with the range;
 - The transition probabilities of congruent transitions are the same;
 - The probabilities depend only locally on the set of nodes within range.
- One observation for the random waypoint model
 - □ Neither of the above observation holds

- We use statistical Uppaal.
 - Properties checked with 0.95 confidence.
 - The topology is modeled as a connectivity matrix.
 - Changes in topology are changes to the matrix.
 - Probabilities are obtained from a lookup table (obtained from simulator, as discussed)

 We combine probabilistic mobility model with existing protocol models to demonstrate the approach.

AODV

- An on-demand routing protocol
- A routing request is flooding the network, a routing reply to initiator will report the route.

LMAC

- A time synchronization (time division) protocol.
- All neighboring nodes and their neighbors, need to select different slot in a time frame. If not, collisions will occur.
- A new node listens to the neighbors and selects a time slot different from them and their neighbors.

Summary

- Developed a topology based model for mobility.
- Demonstrated how this model can be instantiated with probabilities obtained from a simulator.
 - Random way point model and random walk model in a grid.
 - Other models that give transition probabilities could be used as well.
- Demonstrated how the instantiated mobility model can be combined with existing probabilistic protocol models.
 - Note: AODV and LMAC are not the primary interest of this work. They were application examples.

Thanks

- □ 2001 to 2004 PostDoc ECE/SCS
 - Hybrid System verification and CEGAR
- □ 2004 to 2011 NICTA Sydney
 - MC for static analysis: Goanna (redlizards.com)
 - MC for Manet and Mesh
- 2011 to now University South Pacific
 - 12 Member countries
 - 14 campuses, main campus in Suva, Fiji.

Mobility Models

- Realistic Mobility Models
 - Replay traces obtained from real world
 - Application specific scenarios, with limited scope.
- Synthetic Models
 - Generate traces from mathematical model of motion
 - Usually based on a physical model of a moving node
 - More than a dozen different models
 - Random waypoint models
 - Random walk models
 - Manhattan models
 - Gravity mobility models
 - **....**

Common Models

- Random Waypoint Model (RWP)
 - Select the next waypoint uniformly from abounded,
 - Choose a speed with certain probability.
 - Choose a waiting time with a certain probability.
 - May include additional probabilistic choices.

Random Walk Models (RW)

- Select a direction uniformly.
- Choose a speed, and distance with certain probability.
- Choose a waiting time with a certain probability.
- Plus some rules what to do if the a boundary is hit.
- May include additional probabilistic choices.

Synthetic Models

- A note on synthetic models
 - Synthetic models do not, by definition, replay reality
 - Some might be more realistic than others
 - The purpose is to have a model
 - with well understood probabilistic behavior
 - that is compatible with chosen analysis method
 - with identifiable factors of motion
 - that has parameters that can be changed
 - and those changes have predictable influence on the behavior
 - It will be hard to find mobile nodes in reality, that move like a node in a synthetic model.

Simulation Results

Some observations for the random walk model

Simulation Results

Some observations for random waypoint model

Range and Topology

Different transmission ranges, allow for different topologies.

□ Possible topologies change at range 1, $\frac{1}{2}\sqrt{5}$, $\frac{5}{6}\sqrt{2}$, 1.25, $\sqrt{2}$,

Perpetual collision in LMAC

- Numbers denote a chosen time slot
- The central node receives only noise
- Mobile node can detect, and resolve collision.

