
On the Probabilistic Symbolic 
Analysis of Software 

Corina Pasareanu 
CMU-SV 

NASA Ames 
 



Probabilistic Symbolic Execution 
• Quantifies the likelihood of reaching a target event 

– e.g., goal state or assert violation 
– under uncertainty conditions from the environments 

• Example 
– check that the probability of an unmanned aerial vehicle 

turning too fast is less than 10^-6 
– analyze the vehicle's control software 
– under suitable probabilistic profiles built from the telemetry 

data of hundreds of hours of operation from previous 
versions or similar systems 

• Simulation  
– traditionally used 
– very expensive 

 
• Probabilistic symbolic  execution 

– complements simulation 
– for increased assurance at reduced cost 
 



Probabilistic Software Analysis 

• Traditional approaches are  based on 
probabilistic model checking, e.g. PRISM 

• Models 
– difficult to maintain  
– abstract away details that impact chances of 

executing target events 

• We aim to perform the analysis at code level 
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Probabilistic Symbolic Execution 
• Bounded symbolic execution 

– generates symbolic constraints over program paths 
• Quantification procedure, e.g., model counting 

– quantifies the probability of satisfying the constraints 
– when target event (success or fail) reached or bound reached, 

estimate the number of inputs that satisfy the conditions to reach that 
event 

• Applications 
– Computing reliability: when software is involved in contributing to a 

system-level event 
– Analysis of cyber-physical systems 
– Quantitative information flow analysis for security 
– Program understanding and debugging  
– Certification … 

 
 

 



Probabilistic Symbolic Analysis  
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Usage Profiles 
what are they? 
• probabilistic characterizations of software interactions with 

external environment 
– users, physical world, other components  

• assign to each valid combination of inputs the probability 
to occur during execution 

    <c1,p1> <c2,p2> … 
who creates them? 
• monitoring usage of previous versions/similar systems 
• expert/domain knowledge 
• physical phenomena, e.g. wind effect 
we assume they are given 



Example Usage Profile 

• Arbitrary UPs – handled through discretization 
• UPs can be seen as “pre-conditions” 



Example 
// domain of x is [0..100] 
public static void test(int x){ 
  if(x > 50) 
    x++; 
  if(Verify.getBoolean()) { //T1 
    if(x > 61) 
      println("success"); 
    else 
      assert false; 
  } else { //T2 
        if(x <= 81) 
          println("success"); 
        else 
          assert false; 
     } 
  } 
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Scheduler: resolves non-deterministic choices to maximize probability of success 
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Statistical Symbolic Execution 
• Approximate algorithms 

– Monte-Carlo sampling of symbolic paths based on conditional 
probabilities in the symbolic execution tree 

– Reinforcement learning to iteratively computing schedulers 
– Pruning of already explored paths 

Comparison with classical Monte-Carlo simulation 
• For each explored path 

– We compute the full count associated with the PC; we need to 
explore each path only once; our approach enables aggressive 
pruning 

– Simulation needs to sample many many times along the same 
paths to achieve the desired confidence 

• Usage profiles 
– Summarize hundreds of hours of operation/simulation 

 
 
 
 



Summary 
• White-box methodology for finite domains using 

model counting, with explicit measure of 
confidence [ICSE 2013] 

• Dealing with floating-point numbers and 
arbitrarily complex constraints [PLDI 2014] 

• Statistical techniques for increased scalability 
[FSE 2014] 

• Synthesis of tree-like schedulers for 
multithreading [ASE 2014] 

• Improved support for data structures 
 
 
 



Future Work 
• Infer usage profiles from telemetry data 
• Compute admissible input distributions to guarantee 

certain probabilistic safety properties 
– ACASX: airborne collision avoidance system 

• So far we have studied memory-less schedulers 
– May not be enough for computing maximal properties for 

bounded properties  
– History dependent schedulers are more powerful 

• Parallel sampling 
– Preliminary implementation 
– Some overhead due to thread contention 
– Reduce analysis time by 30% 
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“Rare event” 
// domain of x is [0..100] 
void testMethod (int x) {  
  if (Verify.getBoolean()) { 
    if (x < 2) { 
     ... println(" success ");     
     return ; 
    } else { 
     if (Verify.getBoolean()) 
     if (Verify.getBoolean()) 
      ... // repeat 500 times 
     if (x > 5) { 
      ... println(" success ");  
      return ; 
     }  
    }  
  } 
  assert false ; 
} 

Prsuccess =0.96 
 
Hard to compute with approximate techniques  
Pruning helps 
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