
On the Probabilistic Symbolic
Analysis of Software

Corina Pasareanu
CMU-SV

NASA Ames

Probabilistic Symbolic Execution
• Quantifies the likelihood of reaching a target event

– e.g., goal state or assert violation
– under uncertainty conditions from the environments

• Example
– check that the probability of an unmanned aerial vehicle

turning too fast is less than 10^-6
– analyze the vehicle's control software
– under suitable probabilistic profiles built from the telemetry

data of hundreds of hours of operation from previous
versions or similar systems

• Simulation
– traditionally used
– very expensive

• Probabilistic symbolic execution

– complements simulation
– for increased assurance at reduced cost

Probabilistic Software Analysis

• Traditional approaches are based on
probabilistic model checking, e.g. PRISM

• Models
– difficult to maintain
– abstract away details that impact chances of

executing target events

• We aim to perform the analysis at code level

Probabilistic Software Analysis

• Traditional approaches are based on
probabilistic model checking, e.g. PRISM

• Models
– difficult to maintain
– abstract away details that impact chances of

executing target events

• We aim to perform the analysis at code level

Probabilistic Symbolic Execution
• Bounded symbolic execution

– generates symbolic constraints over program paths
• Quantification procedure, e.g., model counting

– quantifies the probability of satisfying the constraints
– when target event (success or fail) reached or bound reached,

estimate the number of inputs that satisfy the conditions to reach that
event

• Applications
– Computing reliability: when software is involved in contributing to a

system-level event
– Analysis of cyber-physical systems
– Quantitative information flow analysis for security
– Program understanding and debugging
– Certification …

Probabilistic Symbolic Analysis

PCs

UP

Sym Exe Probability
Computation

Program
Prsuccess
Prfail
Prgrey

Usage Profiles
what are they?
• probabilistic characterizations of software interactions with

external environment
– users, physical world, other components

• assign to each valid combination of inputs the probability
to occur during execution

 <c1,p1> <c2,p2> …
who creates them?
• monitoring usage of previous versions/similar systems
• expert/domain knowledge
• physical phenomena, e.g. wind effect
we assume they are given

Example Usage Profile

• Arbitrary UPs – handled through discretization
• UPs can be seen as “pre-conditions”

Example
// domain of x is [0..100]
public static void test(int x){
 if(x > 50)
 x++;
 if(Verify.getBoolean()) { //T1
 if(x > 61)
 println("success");
 else
 assert false;
 } else { //T2
 if(x <= 81)
 println("success");
 else
 assert false;
 }
 }

0

1 2

3 4

Succ.
0.4

Fail
0.1

Succ.
0.3

Fail
0.2

Succ.
0.5

Fail
0.5

x>50&
x>60
(0.8)

x>50&
x>80
(0.6)

x>50&
x≤80
(0.4)

5 6

x>50
(0.5)

x≤50
(0.5)

x>50&
x≤60
(0.2)

x≤50&
x≤60
(1)

x≤50&
x≤80
(1)

T1 T2 T1 T2

Scheduler: resolves non-deterministic choices to maximize probability of success

Example

0

1 2

3 4

Succ.
0.4

Fail
0.1

Succ.
0.3

Fail
0.2

Succ.
0.5

Fail
0.5

x>50&
x>60
(0.8)

x>50&
x>80
(0.6)

x>50&
x≤80
(0.4)

5 6

x>50
(0.5)

x≤50
(0.5)

x>50&
x≤60
(0.2)

x≤50&
x≤60
(1)

x≤50&
x≤80
(1)

T1 T2

Max: Prsuccess =0.9

T1 T2

Statistical Symbolic Execution
• Approximate algorithms

– Monte-Carlo sampling of symbolic paths based on conditional
probabilities in the symbolic execution tree

– Reinforcement learning to iteratively computing schedulers
– Pruning of already explored paths

Comparison with classical Monte-Carlo simulation
• For each explored path

– We compute the full count associated with the PC; we need to
explore each path only once; our approach enables aggressive
pruning

– Simulation needs to sample many many times along the same
paths to achieve the desired confidence

• Usage profiles
– Summarize hundreds of hours of operation/simulation

Summary
• White-box methodology for finite domains using

model counting, with explicit measure of
confidence [ICSE 2013]

• Dealing with floating-point numbers and
arbitrarily complex constraints [PLDI 2014]

• Statistical techniques for increased scalability
[FSE 2014]

• Synthesis of tree-like schedulers for
multithreading [ASE 2014]

• Improved support for data structures

Future Work
• Infer usage profiles from telemetry data
• Compute admissible input distributions to guarantee

certain probabilistic safety properties
– ACASX: airborne collision avoidance system

• So far we have studied memory-less schedulers
– May not be enough for computing maximal properties for

bounded properties
– History dependent schedulers are more powerful

• Parallel sampling
– Preliminary implementation
– Some overhead due to thread contention
– Reduce analysis time by 30%

Collaborators

• Antonio Filieri (University of Stuttgart, Germany)

• Kasper Luckow (Aalborg University, Denmark)

• Willem Visser and Jaco Geldenhuys (University of Stellenbosch, South
Africa)

• Marcelo d'Amorim and Mateus Borges (Federal University of
Pernambuco, Brazil)

• Matt Dwyer (University of Nebraska, Lincoln, USA)

http://ti.arc.nasa.gov/profile/pcorina/probabilistic/

http://ti.arc.nasa.gov/profile/pcorina/probabilistic/
http://ti.arc.nasa.gov/profile/pcorina/probabilistic/

“Rare event”
// domain of x is [0..100]
void testMethod (int x) {
 if (Verify.getBoolean()) {
 if (x < 2) {
 ... println(" success ");
 return ;
 } else {
 if (Verify.getBoolean())
 if (Verify.getBoolean())
 ... // repeat 500 times
 if (x > 5) {
 ... println(" success ");
 return ;
 }
 }
 }
 assert false ;
}

Prsuccess =0.96

Hard to compute with approximate techniques
Pruning helps

	On the Probabilistic Symbolic Analysis of Software
	Probabilistic Symbolic Execution
	Probabilistic Software Analysis
	Probabilistic Software Analysis
	Probabilistic Symbolic Execution
	Probabilistic Symbolic Analysis
	Usage Profiles
	Example Usage Profile
	Example
	Example
	Statistical Symbolic Execution
	Summary
	Future Work
	Collaborators
	“Rare event”

