
Ed Clarke Symposium

David Brumley
Carnegie Mellon University

Presenter
Presentation Notes
Stand up straight. PPW

2

Ed’s mentorship and
help when I was a
student, and later
when I was a professor,
has been invaluable.

Thank you.
 Dawn Song

UC Berkeley

Model Checking for Security Applications
• Athena: an automatic checker for security

protocol analysis
– Work under Ed’s mentorship

• BitBlaze: automatic security analysis

of program binaries
– E.g., Blitz: Compositional Bounded Model Checking for

Real-World Programs

• WebBlaze: automatic security analysis and
construction for web applications
– E.g., first step towards building a formal foundation of

web security
3

Presenter
Presentation Notes
My work in model checking for security applications started with Athena, an automatic checker for security protocol analysis, under Ed’s mentorship when I was a student at CMU. This was the first automatic checker able to prove a number of security properties for security protocols and also able to generate counter examples for protocols with security violations. Ed’s mentorship was very influential to my early research development.

My work in the area later expanded to other application domains, including the project BitBlaze for automatic security analysis of program binaries; and WebBlaze for automatic security analysis and construction for web applications.

BitBlaze is the first unified binary analysis which enables advanced analysis such as symbolic execution on program binaries and provided novel solutions to a broad spectrum of different security applications ranging from vulnerability detection to in-depth malware analysis to automatic extraction of security models of binary programs. (David was a core member of the BitBlaze project when he was a student.) One of the most recent development was enabling compositional bounded model checking for real-world programs.

One of the applications in WebBlaze is to build the first formal model for the web. By applying model checking techniques on the formal models of web applications, we were able to automatically discover vulnerabilities in a number of widely-deployed web applications and protocols.

These are just a few examples as the tip of the iceberg. Model checking techniques have been shown to be very effective in addressing a wide range of different security problems. Ed was among the first to push forward this direction. Ed’s mentorship and influence has been really valuable to my work in this area.

Black Hat

format c:

White Hat

vs.

4

An epic battle

Presenter
Presentation Notes
First sentence: I love computer security. I love that it’s an epic battle between white vs black, us vs them, good vs. evil. It’s the only area of computer science that brings alive the notion of an adversary. In security, adversaries really exist.

Black Hat

format c:

White Hat

Bug

5

Exploit bugs

Black Hat

format c:

White Hat

Bug Fixed!

6

Fact:
Windows, Mac, and

Linux all have
100,000’s of
known bugs

7

Which bugs are exploitable?

8

Presenter
Presentation Notes
This answers what we are trying to do.

Highly Trained Experts
9

Presenter
Presentation Notes
This answers how it is done today.

White

Automatically
Check the World’s

Software for
Exploitable Bugs

10

Inspiration

11

If the property is a
security property, the

counter-example can be
an exploit

Verification

Correct
Safe paths

Incorrect
Exploit

Program

Correctness Property
Un-exploitability Property

12

Automated Exploit Generation[*]

* Automatic Exploit Generation, NDSS 2011, CACM 2014

13

A brief history

14

2005 Automatic Discovery of API-Level Exploits
[Ganapathy et al., Conference on Software Engineering]

2008 Automatic Patch-Based Exploit Generation
[Brumley et al., IEEE Security and Privacy Symposium]

2010 Automatic Generation of Control Flow Hijack Exploits for Commodity
Software [Heelan, MS Thesis]

2011 Automatic Exploit Generation
[Avgerinos et al., Network and Distributed System Security Symposium]

2011 Q: Exploit Hardening Made Easy
[Schwartz et al., USENIX Security Symposium]

2012 Unleashing Mayhem on Binary Code
[Cha et al., IEEE Security and Privacy Symposium]

And >150 papers on symbolic execution

Basic Execution

15

Process
Memory

Stack

Heap

Processor

Fetch, decode, execute

read and write

EIP

Un-exploitability
Attackers cannot

inject into EIP

Code

Presenter
Presentation Notes
What is the name of the register that contains the address of the current instruction?

checking Debian for exploitable bugs

16

37,000 programs

209,000,00 test cases

2,606,000 crashes

14,000 unique bugs

152 new exploits

16 billion verification queries

* [ARCB, ICSE 2014, ACM Distinguished Paper], [ACRSWB, CACM 2014]

~$0.28/bug
~$21/exploit

Presenter
Presentation Notes
28 cents a bug
21 dollars an exploit.

mining data

Q: How long do per-path queries take on
average?
A: 3.67ms on average with 0.34 variance

Q: Should I optimize hard or easy formulae?
A: 99.99% take less than 1 second
and account for 78% of total time

17

optimize fast
queries

Presenter
Presentation Notes
> basicStat()

Q. How many programs do you have?
#program
 957

Q. How many SMT formulae have you queried and solved (within timeout)?
 #query
20223626

Q. Among those, how many are SAT? UNSAT?
 #sat #unsat
2544620 17679006

Q. How many programs yield *fresh* formulae that take at least 1 second to solve?
#program
 563

Q. How many *distinct* SMT formulae take at least 1 second to solve?
#formula
 18663

Q. What are the basic statistics on the TIME it took to solve these formulae?
bothtimesum sattimesum unsattimesum
 387213.9 95185.1 292028.8
bothtimemax sattimemax unsattimemax
 277.2653 107.1409 277.2653
bothtimeavg sattimeavg unsattimeavg
 0.01914661 0.03740641 0.0165184
bothtimevar sattimevar unsattimevar
 0.06179814 0.07019839 0.06053416

Q. What are the basic statistics on the number of VARIABLES in these formulae?
bothvarsmax satvarsmax unsatvarsmax
 111 89 111
bothvarsavg satvarsavg unsatvarsavg
 15.12656 16.42357 14.93987
bothvarsvar satvarsvar unsatvarsvar
 35.7964 53.92014 32.91078

Q. What are the basic statistics on the number of CLAUSES in these formulae?
bothclausesmax satclausesmax unsatclausesmax
 275990 275990 275990
bothclausesavg satclausesavg unsatclausesavg
 968.1475 669.0946 1011.192
bothclausesvar satclausesvar unsatclausesvar
 6801531 11601246 6095962

Q. What are the basic statistics on the number of AST Nodes in these formulae?
bothastnodesmax satastnodesmax unsatastnodesmax
 3354063 3354063 3354060
bothastnodesavg satastnodesavg unsatastnodesavg
 15234.39 11408.75 15785.04
bothastnodesvar satastnodesvar unsatastnodesvar
 1044798320 1788943562 935280428

Q. What are the basic statistics on the DEPTH of exploration when generating these formulae?
bothdepthmax satdepthmax unsatdepthmax
 19557 3587 19557
bothdepthavg satdepthavg unsatdepthavg
 283.9193 189.2816 297.5409
bothdepthvar satdepthvar unsatdepthvar
 129693.1 73239.32 136344.1

18

Π ∧ s != 42 Π ∧ s == 42

Π’ = (Π ∧ s != 42) ∨ (Π ∧ s == 42)

Merge

Π

f t

Path Merging[*]

* Veritesting, ICSE 2014

Execution Profile (Analysis Completes)

19

Vanilla
Symbolic

Execution
(e.g., KLEE)

With Path
Merging

19% 81%

64% 36%

SMT Solver Rest

17.8× less time
for same results

What Hat

Vision:
 Automatically

Check the World’s
Software for

Exploitable Bugs

20

We’re in the age of automated reasoning.
It seems wrong not to try.

Thank You Ed!
- David & Dawn

21

END

	Ed Clarke Symposium
	Slide Number 2
	Model Checking for Security Applications
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Which bugs are exploitable?
	Slide Number 9
	Slide Number 10
	Inspiration
	Slide Number 12
	Slide Number 13
	A brief history
	Basic Execution
	checking Debian for exploitable bugs
	mining data
	Slide Number 18
	Execution Profile (Analysis Completes)
	Slide Number 20
	Slide Number 21
	END

