A unified theory of terminal-valued and edge-valued decision diagrams

Gianfranco Ciardo Andrew S. Miner

Department of Computer Science Iowa State University

September 20, 2014

Work supported in part by the National Science Foundation under grant CCF-1442586

 QQ

イロト イ押ト イヨト イヨト

Many types of decision diagrams

Extending the domain from \mathbb{B}^L to $\mathcal{X}=\mathcal{X}_L\times\cdots\times\mathcal{X}_1$ is straightforward

Can we unify terminal and edge valued decision diagrams? Can we achieve more elegance, simplicity, and generality?

Why can MTBDDs encode any partial function $\mathbb{B}^L \to \mathbb{Z} \cup \{ \infty \}$? Why can't EVBDDs (in their original definition) do that? Why can EV⁺MDDs (our canonical definition) do that? This is why we introduced $EV^{+}MDDs$, but what is the key issue?

Why can EV⁺MDDs have range \R but EV*MDDs must have range $\R^{\geq 0}$? Can EV∗MDDs encode CTMC generators, not just rate matrices?

What are the advantages/disadvantages of terminal vs. edge valued DDs? Which decision diagram encoding should I use for a particular application?

KED KARD KED KED E VOOR

ET-monoid

Semigroup (S, \odot) : set S is closed w.r.t. the associative binary operator \odot Monoid (S, \odot) : semigroup where S contains identity element e Group: monoid (S, \odot) where every element of S has an inverse in S Total order \succ : transitive, antisymmetric, and total binary relation

Definition

4 FFF

 $419C$

A few ET-monoids $(S, \mathcal{S}_E, \mathcal{S}_T, \odot, \succeq)$

- \bullet ($\mathbb{B}, \{0\}, \{1\}, \vee, \text{any}$)
- \bullet ($\mathbb{B}, \{1\}, \{0\}, \wedge, \text{any}$)
-

 \bullet ($\mathbb{B}, \mathbb{B}, \emptyset, \oplus, \textit{any}$) \oplus is exclusive–or, 0 is the identity

- \bullet $(\mathbb{Z}, \mathbb{Z}, \emptyset, +, \succeq)$ $a \succeq b$ if $|a| < |b|$ or $|a| = |b|$ and $a \ge 0 \ge b$
- \bullet $(\mathbb{Z}, \{0\}, \mathbb{Z} \setminus \{0\}, +, \succeq)$ 0 is the identity and the most desirable
- \bullet (Z \cup { ∞^+ }, Z, { ∞^+ }, +, \succ)
- \bullet ($\mathbb{Z} \cup {\infty^-}$, $\mathbb{Z}, {\infty^-}$, +, \succ)
- \bullet ($\mathbb{Z} \cup {\infty^+}, \infty^-, \mu$, $\mathbb{Z}, {\infty^+}, \infty^-$, $+, \succ$) $\qquad \mu$ means "undefined"
- substitute $\mathbb Z$ with $\mathbb Q$ or $\mathbb R$ in the above four
- $(\mathbb{R}, \mathbb{Z}, \{n+\sqrt{2}:n\in\mathbb{Z}\}, +, \succeq)$
- \bullet $(\mathbb{Z}, \mathbb{N}, \emptyset, +, <)$ 0 is the identity and the most desirable
- \bullet (Z \cup {∞⁺}, N, {∞⁺}, +, \leq)
- subst[i](#page-4-0)tut[e](#page-13-0) $\mathbb Z$ with $\mathbb Q$ [or](#page-3-0) $\mathbb R$ $\mathbb R$ a[n](#page-5-0)d $\mathbb N$ with $\mathbb Q^{\geq 0}$ or $\mathbb R^{\geq 0}$ in [th](#page-0-0)e [ab](#page-0-0)[ov](#page-13-0)[e t](#page-0-0)[wo](#page-13-0)

A few more ET-monoids $(S, \mathcal{S}_E, \mathcal{S}_T, \odot, \succeq)$

- $(\mathbb{Q},\mathbb{Q}^{>0},\emptyset,\cdot,\succeq)$ a \succeq b if $|\ln a|\!<\!|\ln b|$ or $|\ln a|\!=\!|\ln b|$ and $a\!\geq\!1\!\geq\!b$
- \bullet (Q, Q^{>0}, {0}, \cdot , \succeq) 1 is the identity and the most desirable
- $(\mathbb{Q}\cup\{\infty^+\},\mathbb{Q}^{>0},\{\infty^+\},\cdot,\succeq)$
- $(\mathbb{Q}\cup\{\infty^+,\mu\},\mathbb{Q}^{>0},\{0,\infty^+\},\cdot,\succeq)$
- substitute ${\mathbb Q}$ with ${\mathbb R}$ and ${\mathbb Q}^{>0}$ with ${\mathbb R}^{>0}$ in the above four
- \bullet $(\mathbb{Q}, \mathbb{N} \setminus \{0\}, \emptyset, \cdot, \leq)$ 1 is the identity and the most desirable
- \bullet (Q, N \ {0}, {0}, \cdot , \leq)
- \bullet (Q \cup { ∞^+, μ^+ }, N \ {0}, { ∞^+ }, \cdot , <)
- \bullet ($\mathbb{Q} \cup {\infty^+, \mu^+}, \mathbb{N} \setminus {\{0\}, \{0, \infty^+\}, \cdot, \leq}$)
- $(\mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R}^{>0}$ $(a, b) \odot (c, d) = (a + bc, bd)$ \succ is such that the identity (0, 1) is the most desirable

KED KARD KED KED E VOOR

ETDDs: edge-and-terminal valued decision diagrams

First, a non-canonical version of an ETDD (forest):

Definition

Given domain $\mathcal{X} = \mathcal{X}_L \times \cdots \mathcal{X}_1$ and ET-monoid $M = (\mathcal{S}, \mathcal{S}_F, \mathcal{S}_T, \odot, \succeq),$ an ordered, ET-valued decision diagram (ETDD) over (X, M) is an acyclic, node-labeled, and edge-labeled multi-graph where:

- Each node p is at a level $p.W = k$, with $L > k > 0$
- \bullet Only terminal node Ω is at level 0
- Node p at level $k > 0$ has $n_k = |\mathcal{X}_k|$ edges; for $i_k \in \mathcal{X}_k$, $p[i_k] = \langle a, q \rangle$ means edge i_k has value $a \in \mathcal{S}_F \cup \mathcal{S}_T$ and points to node q at level $h < k$; let $p[i_k]$. val = a and $p[i_k]$. node = q
- There is a non-empty set of root edges \mathcal{R} ; for any root edge $\langle a_\star, p_\star \rangle \in \mathcal{R}$, $a_\star \in \mathcal{S}_E \cup \mathcal{S}_T$ and p_\star is a node at level k_\star , $L \geq k_\star \geq 0$
- For any edge $\langle a, q \rangle$, including a root edge, if $a \in S_T$, then $q = \Omega$
- Every node in the graph is reachable from some root edge

As usual, no duplicate or redundant nodes

Our general setting also requires constraints on edge values and nodes:

- If (S_E, \odot) is a group and $S_T = \emptyset$, force p[0]. val = e (e.g., EVBDDs)
- If not, canonicity is surprisingly elusive, we need to use desirability
	- e.g., ET-monoid $(\mathbb{Q}\cup\{\infty^+,\infty^-,\mu^+,\mu^-\},\mathbb{Z}\setminus\{0\},\{0,\infty^+,\infty^-\},\cdot,\geq)$

Edge normalization \Rightarrow use the **representative** for the equivalence class Node nor[m](#page-8-0)alizati[o](#page-6-0)n \Rightarrow divide the node by [its](#page-6-0) **mo[st](#page-7-0) [de](#page-0-0)[sir](#page-13-0)[ab](#page-0-0)[le](#page-13-0) [d](#page-0-0)[ivis](#page-13-0)or** Ω

∢ □ ▶ ⊣ n □ ▶

Ciardo, Miner (ISU) [Unifying decision diagrams](#page-0-0) September 20, 2014 8 / 14

Canonicity

Definition

An ETDD is (fully) reduced if its edges and non-terminal nodes are normalized and contains no duplicate nodes

Theorem

Given a nonempty, finite set of vectors $\mathcal{V} \subseteq \mathcal{X} \to \mathcal{S}_{\mathsf{F}} \cup \mathcal{S}_{\mathsf{T}}$, there exists a reduced ETDD with root edges R such that $V(L, R) = V$

Definition

An ETDD is scalar–independent if, for any nodes p, q with $p.W = q.W = k$, if $\mathbf{v}(p) = a \odot \mathbf{x}$ and $\mathbf{v}(q) = b \odot \mathbf{x}$ for vector $\mathbf{x} : \mathcal{X}_k \times \cdots \times \mathcal{X}_1 \to \mathcal{S}_F \cup \mathcal{S}_T$ and scalars $a, b \in \mathcal{S}_F$ then $p = q$

Theorem

Every reduced ETDD is scalar–independent

Theorem

Given an ET-monoid $M = (S, S_E, S_T, \odot, \geq)$, an ETDD G over (X, M) with root edges \mathcal{R}_G , and a **reduced** ETDD H over (\mathcal{X}, M) with root edges \mathcal{R}_H , if $V(L, \mathcal{R}_G) = V(L, \mathcal{R}_H)$, then G is homomorphic to H...

The reduced ETDD encoding is minimal (for a given $\mathcal X$ and M)

Theorem

...if G is scalar-independent with no redundant nodes, it is isomorphic to H

Any normalization that guarantees scalar independence works equally well

 Ω

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B$

Applying desirability to sequences left-to-right vs. right-to-left works equally well

Using EVBDDs with $p[0].\text{val} = 0$ vs. min $\{p[i_k].\text{val}:i_k \in \mathcal{X}_k\}=0$ works equally well

4 **D** F

 Ω

Definition

Given $M_G = (\mathcal{G}, \mathcal{G}_E, \mathcal{G}_T, \odot, \succeq_G)$ and $M_H = (\mathcal{H}, \mathcal{H}_E, \mathcal{H}_T, \oplus, \succeq_H)$, M_G is homomorphic to M_H via function $f: \mathcal{G} \to \mathcal{H}$ if

- $a \in \mathcal{G}_E$ and $b \in \mathcal{G}_E \cup \mathcal{G}_T \Rightarrow f(a \odot b) = f(a) \oplus f(b)$
- **a** $a \in \mathcal{G}_F \Rightarrow f(a) \in \mathcal{H}_F$ $t \in \mathcal{G}_T \Rightarrow f(t) \in \mathcal{H}_F \cup \mathcal{H}_T$

If f is one-to-one, M_G is lossless–homomorphic to M_H via f Otherwise, M_H is lossy-homomorphic to M_H via f

 M_G is isomorphic to M_H via bijection f if M_G is homomorphic to M_H via f and M_H is homomorphic to M_G via f^{-1}

 QQ

イロト イ何 トイヨ トイヨ トーヨー

Implications for ETDDs over different ET-monoids

Theorem

If M_G is homomorphic to M_H via f, the reduced ETDD over (X, M_G) with root edges \mathcal{R}_G s.t. $V(L, \mathcal{R}_G) = V$, is homomorphic to the reduced ETDD over (X, M_H) with root edges \mathcal{R}_H s.t. $V(L, \mathcal{R}_H) = f(V)$

Compl.-edge BDDs ($\mathbb{B}, \mathbb{B}, \emptyset, \oplus, \geq$) never worse than BDDs ($\mathbb{B}, \{0\}, \{1\}, \vee, \geq$)

Lemma

If G is isomorphic to H via some f, the reduced ETDD over (X, G) is isomorphic to the reduced ETDD over (\mathcal{X}, H) encoding the same vector

Any isomorphic ET-monoid works equally well

Lemma

ET-monoid $M' = (S, \{e\}, S_E \cup S_T \setminus \{e\}, \odot, \succeq)$ is lossless–homomorphic to any ET-monoid $M = (S, S_E, S_T, \odot, \geq)$ via the identity function

A reduced ETDD is never worse than the equiv[ale](#page-11-0)n[t](#page-13-0) [r](#page-11-0)[ed](#page-12-0)[u](#page-13-0)[ced](#page-0-0) [M](#page-13-0)[T](#page-0-0)[M](#page-13-0)[D](#page-0-0)[D](#page-13-0) QQ

Ciardo, Miner (ISU) [Unifying decision diagrams](#page-0-0) September 20, 2014 13 / 14

Our ETDD framework unifies many types of decision diagrams

We found the key canonicity requirements in a general setting

Our general theorems provide results for popular decision diagram classes

We are still completing work on the time complexity of ETDD algorithms (complexity improves if ET-monoid has more structure, e.g., S_F is a group)

The current paper is already 53 pages so far :-(

KEL KALE KEL KEL KAR