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Goals for Mechanistic Modeling 

• Understand 
• Control 
• Treat 

Molecular 
mechanisms of 
cellular decisions 

T cell differentiation Mast cell degranulation IL-17 signaling 



Challenges for Modeling  
(both mental and computational) 

• Large number of components and interactions 
• Rapidly evolving list of important components and interactions 
• Feedback and feedforward loops 
• Involvement of multiple processes 

– Signaling 
– Gene regulation / protein expression 
– Metabolism 
– Cell processes 

• Growth 
• Proliferation 
• Death 
• … 

• Cell populations 
– Heterogeneity 
– Multi-scale integration 



Rule-Based Modeling: An Intermediate Level 
Abstraction for Systems Biology 

Reaction Networks 

Site Dynamics 
(Rule-Based Modeling) 

Molecular Dynamics 
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Combinatorial Complexity 
a simple model can produce many species and reactions 
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Blinov et al. 
(2006) Biosystems 

Contact Map 
 Protein Domain Structure 

 Site Modifications 
 Protein-Protein contacts 

Hlavacek, Faeder,  et al., Biotechnol. Bioeng. (2003)  
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Illustrates the practical necessity of RBM



Combinatorial complexity in a more 
realistic model of EGFR signaling 

ErbB1:ErbB1 has > 5.5x1010 states 

ErbB3:ErbB1 has > 3.8x109 states 

Creamer et al. (2012) BMC Syst. Biol. [TGen group] 







Large Scale TCR Signaling Model 

Chylek, Hu, & Hlavacek 



Subway Map of Cell Signaling 

Hanahan and Weinberg, 2000 



Logical model of peripheral T cell differentiation 



Logical model of peripheral T cell differentiation 



Model predicts timing of Ag stimulation key to 
the outcome 

Model Experiment 



High antigen dose scenario 

Foxp3 

IL-2 

PTEN 

CD25 

PI3K 

mTORC1 

mTORC2 

High Ag dose 

Update round 

# Property Probability 
estimate 

Success 
count 

Sample 
size 

Elapsed 
time [s] 

P1 F29 (FOXP3 == 1);     F10 (FOXP3 == 1 & F19 (FOXP3 == 0))  0.237494 2857 12032 120 

P2 F10 G2 (FOXP3 == 1)  0.0415313 10970 264160 2704 

P3 F10 G1 (FOXP3 == 1)  0.119089 830 6976 73 

P4 F20 G9 (FOXP3 == 0 & IL2 == 1 & PTEN == 0 & CD25 == 1 & PI3K 
== 1 & MTORC1 == 1 & MTORC2 == 1)  0.996124 256 256 2 

Simulation:  
average element trajectories 

Magnitude of transient is 0.1-0.15, which means that a 
maximum of 15% trajectories have Foxp3=1 in the same 
round. 
How often Foxp3 increases to 1? How often it remains 0? 
Probability of Foxp3 becoming 1 is higher than the peak 
value in simulations -> Foxp3 transiently increases on a 
larger number of trajectories. 
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BEST 0.001 0.99 1 1: estimate = 0.0014834, successes = 15, samples = 10784means that 0.001 is the half-width of the Bayesian interval and 0.99 is its coverage probability. For this particular example the actual probability must be around 10^{-3} so I should have used a smaller half-width, say 0.0001. However, that would have required a sample size of about 1,000,000. I guess we don’t care too to know with high precision if a probability is very small.specify a threshold θ and an acceptable probability of error for the null hypothesis p>θ (the alternative hypothesis is p≤θ). The sequential estimation algorithm, given a coverage probability and a half-interval width δ, returns a Bayesian confidence interval of width at most 2δ and a point estimate for the probability that the BLTL formula is true (p)



 
 
Markus Dittrich 
Jacob Czech 
Tom Bartol 
Terry Sejnowski 
Ivet Bahar 
Bing Liu 
Bob Murphy 
Devin Sullivan 
 
 

  
William Hlavacek 
Lily Chylek 

Yale 
Thierry Emonet 
Michael Sneddon 

Faeder Lab 
  current 
     John Sekar 
     Jose Juan Tapia 
     Robert Sheehan 
     Cihan Kaya 
  alumni 
     Dipak Barua 
     Qingyang Ding 
     Leonard Harris 
     Justin Hogg 
     Jintao Liu 
     Natasa Miskov-Zivanov 
     Yang Yang 
 
Liz Marai 
John Wenskovitch 
Adam Smith 
Wen Xu 
Yao Sun 

Dan Zuckerman 
Rory Donovan 

Byron Goldstein 
Ambarish Nag 
Michael Monine Jason Haugh 

Peter Setlow 
Barbara Setlow 
Xuan Yi 

Thierry Emonet 
Michael Sneddon 

Penelope Morel 
Larry Kane 
Michael Turner 
William Hawse 

Sarah Gaffen 
Abhishek Garg 

NIH-NIGMS P41, P50, R01 
NIH-NIAID R01 
NSF Expeditions, EMT 
NIH-NCRR CTSI 
DOD MURI 

bionetgen.org 

rulebender.org 

mcell.org 

nfsim.org 

Edmund Clarke 
Haijun Gong 
Paolo Zuliani 

Michael Blinov 


	Model Checking Cell Decision Processes
	Goals for Mechanistic Modeling
	Challenges for Modeling �(both mental and computational)
	Rule-Based Modeling: An Intermediate Level Abstraction for Systems Biology
	Combinatorial Complexity�a simple model can produce many species and reactions
	Combinatorial complexity in a more realistic model of EGFR signaling
	Slide Number 7
	Slide Number 8
	Large Scale TCR Signaling Model
	Subway Map of Cell Signaling
	Logical model of peripheral T cell differentiation
	Logical model of peripheral T cell differentiation
	Model predicts timing of Ag stimulation key to the outcome
	High antigen dose scenario
	Slide Number 15

