
The Lean Theorem Prover

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

(Lean’s principal developer is Leonardo de Moura,
Microsoft Research, Redmond)

September 2014



.

Automated theorem proving and formal verification

Automated theorem proving: want powerful, fast methods
Formal verification: want secure guarantees

These pull in different directions.



.

Automated theorem proving

Domain general
fast satisfiability methods
equational theorem proving
first-order theorem proving (resolution, tableau)

Domain specific
integer / linear arithmetic
nonlinear real arithmetic
numerical methods
algebraic methods

Combination methods aim to get the best of both worlds.



.

Interactive theorem proving

Some systems: Mizar, HOL, Isabelle, Coq, HOL-light, ACL2, PVS,
Agda, …

The user works interactively with the system to construct a formal
proof.

Design space:
Logic: first-order, simple types, dependent types
Classical vs. constructive
Interaction with computation (internal vs. external)



.

Lean

Aims to bring the two worlds together:
An interactive theorem prover with powerful automation.
An automated reasoning tool that

produces proofs,
has a rich language,
can be used interactively, and
is built on a verified mathematical library.



.

Lean

The Lean theorem prover is being developed by
Leonardo de Moura (Microsoft Research)
Soonho Kong (CMU, a student of Ed’s!)

The Lean standard library is being developed by
Jeremy Avigad (CMU)
Floris van Doorn (CMU)
Leonardo de Moura (Microsoft Research)

Contributors
Cody Roux (Draper)
Robert Lewis (CMU)
Parikshit Khanna (Indian Institute of Technology, Kanpur)



.

The logical framework

Lean’s default logical framework is a version of the Calculus of
Constructions with:

an impredicative, proof-irrelevant type Prop of propositions
a non-cumulative hierarchy of universes, Type 1, Type 2, …
above Prop
universe polymorphism
inductively defined types

Features:
The core is constructive.
Can comfortably import classical logic.
Can work in homotopy type theory.



inductive nat : Type :=
zero : nat,
succ : nat → nat

namespace nat

notation `ℕ` := nat

theorem zero_or_succ_pred (n : ℕ) :
n = 0 ∨ n = succ (pred n) :=

induction_on n
(or.inl rfl)
(take m IH, or.inr
(show succ m = succ (pred (succ m)),
from congr_arg succ pred_succ⁻¹))



inductive decidable (p : Prop) : Type :=
inl : p → decidable p,
inr : ¬p → decidable p

theorem em (p : Prop) {H : decidable p} :
p ∨ ¬p :=

induction_on H
(λ Hp, or.inl Hp)
(λ Hnp, or.inr Hnp)

theorem and_decidable [instance] {a b : Prop}
(Ha : decidable a) (Hb : decidable b) :

decidable (a ∧ b)

theorem has_decidable_eq [instance] [protected] :
decidable_eq ℕ



.

The elaborator

Can handle:
Dependent type theory
Implicit arguments, higher-order unification
Overloading
Coercions
Type classes

Features:
No other proof system handles all of these.
The elaborator uses nonchronological backtracking.
It is really fast.



.

The implementation

Written in C++, for performance.
Functional data structures for backtracking, parallelization.
Small kernel (7,000 lines of C++ code).
Lua bindings, for user-defined tactics and parser extensions.



.

The user interface

Features:
text files, with unicode symbols
emacs
a “Lean server” tracking changes and answering queries
flycheck checks in the background, highlights errors
the ninja build system maintains dependencies
the Lean server provides type information, goals
robust autocompletion

For a demo, see: https://asciinema.org/a/12277

https://asciinema.org/a/12277


.

Short term goals

A release in early 2015, with:
A stable kernel and elaborator.
A stable user interface.
A basic tactic language.
Some automation (e.g. the term simplifier)
The beginnings of a standard library:

basic data types: nat, int, lists, …
algebraic structures: orderings, equivalence relations, groups,
rings, catergories, …

See: https://github.com/leanprover/lean

https://github.com/leanprover/lean


.

Long terms goals

A powerful system for
reasoning about complex systems,
reasoning about mathematics, and
verifying claims about both.


