General and efficient
SAT-based ATPG framework

for multiple various faults
Its application to logic synthesis

Masahiro Fujita
University of Tokyo

(Joint research with Alan and Bob of UCB)
Here only considers combinational circuits

Long history with Ed

First met Ed at a conference (CHDL) in May, 1983

— Presented a paper on sort of model checking
hardware with Prolog implementation

— Following Japanese fifth generation computer
project

Ed approached me and said, “We are working on
somehow similar problem, but our approach is better’

Since then, we have been collaborating
— Have several jointly authored papers

| am not a student, pos-doc, long-time visitor. | am just
a frequent short-time visitor

Testing manufacturing faults

Make sure that manufactured chips behaves as
described in the design descriptions

Introduce fault models for efficient processing
— Ways for HW to fail can be pre-determined

Suppose there are m possibly faulty locations and
there are p ways of faults for each location

— Single fault assumption: total number of fault
combinations is m*p

— Multiple fault assumption: total number of fault
combinations is p™-1

Generation of complete test vectors for multiple faults
was (is) believed to be very difficult

How to represent faults “implicitly
as part of SAT problem ?

 Introduce circuits and variables that represent
faults into each possibly faulty location

e For stuck-at fault:

a — ad — P
Do s D—f
) Y% tc

1—/10
XANY inhibited —11
(X A Y never happens) T

--
[l

| b—_/" *
Circuit to model

Estuck—at 1 and O faults
C=((@b)*X)+Y iy=1: stuck-at 1 :

i x=1: stuck-at O

Multiple faults

e For each possibly faulty location, insert the circuit to
represent stuck-at faults

e If all of x, and y, are O, no fault in the circuit

— Can represent all fault combinations: 3Mm -1

o T Emm R S S B B M O R M

= - | b L X

 my ED‘Z{ » . y=1: stuck-at 1 :
!Dr|mary \h__ Primary : x=1" stuck-at O
Input output 1 ; :

e e e e o o o o o D S o o o o e .

e Circuit transformation can be defined in the same
way: AND -> (AND, OR, NAND, NOR, EOR, ...)

— Exponentially many transformations are considered

ATPG with SAT

X: Faults
In: Inputs

 Under some inputs, some faults can be detected

dIn. X .Faulty (In, X) = NoFault (In)

=> SAT solution is (in,,X,) Fault x; can be
detected by input in,

 There are many techniques based on circuit analysis for
much more efficient SAT-based ATPG

— But here we use this very simple one...

How to eliminate already detected faults

e Under some inputs, some faults can be detected
dIn. X .Faulty (In, X) # NoFault (In)

_ S Any solution for X corresponds
=> SAT solution is (Iny.x; ‘ to a detectable faulf

* Faults that cannot be detected by in,
31X .Faulty (in,, X) = NoFault (in,)

Under these faults,

circuit behave correctly

* When generating the next test vector, add the above
constraints

— Then we are targeting only remaining faults !

— Should continue until the resulting SAT becomes
UNSAT

The problem is essentially an incremental SAT

* (in, in,, ..., in) are complete test vectors for multiple
stuck-at faults

In.X.Faulty (In, X)) # NoFault (In) => SAT, solution is (in,,x,)

dIn. X .Faulty (In, X) = NoFault (In) A Faulty (in;, X') = NoFault (in,)
=> SAT, solution is (in,,X,)
dIn. X .Faulty (In, X) = NoFault (In) A Faulty (in,, X) = NoFault (in,)

~ Fautly (in,, X') = NoFault (in,) => SAT, solution is (in,,x3)

dIn. X .Faulty (In, X) = NoFault (In) A Faulty (in;, X') = NoFault (in,)

A Fautly (in,, X') = NoFault (in,) A ... A Fautly (in__,, X) = NoFault (in__,)
=> SAT, solution is (in,,X,)

dIn. X .Faulty (In, X) = NoFault (In) A Faulty (in;, X') = NoFault (in,)

A Fautly (in,, X') = NoFault (in,) A ... A Fautly (in__,, X) = NoFault (in__,)

A Fautly (in, X)) = NoFault (in,) => UNSAT

Recent findings

Numbers of complete test pattern for single and
multiple faults are not much different

— Need a little bit more test patterns for multiple faults

ATPG (automatic test pattern generation) is not so much
inefficient

— Entire process of ATPG for multiple faults can be
formulated as single incremental SAT problem

Test patterns generated guarantee 100% correctness

— Very small numbers of test patterns are sufficient for
typical fault models (always less than 5,000 !?)

— Why ? The ways for HW to fail is prefixed (but
exponentially many ways)

Formal analysis with (in,, in,, ..., in)

 If the circuit is correct with (in,, in,, ..., in_), itis
guaranteed to be correct for all input patters
e Why?

— The ways for circuits to be buggy/faulty are controlled
by X variables (parameter variables)

— Circuits cannot change themselves freely

— Instead must follow the possible values of X
— This dramatically reduced the ways to fail

— But multiple bugs are take care

— The ways to fail are exponentially many

A little bit surprise

e |f we start ATPG for multiple faults with the sets of test
vectors for single faults, we do not need many more
test vectors |

Tests Multiple SA (reading tests ssa)

Test : : Additional
Name SSA | Vars |Clauses COI‘;ﬂICt Tests Té:;e Tests
s1423 25 | 36689 | 57739 | 1519 25 | 0.09 0
s1196 | 117 |150946 | 246265, 798 116 | 0.3 -1
s1238 | 130 |[186570/389819 | 2882 | 130 | 1.53 0
s1488 | 108 |171621 270965, 368 107 | 0.35 -1
s1494 | 110 | 173752280337 | 187 107 | 0.32 -3
sb378 | 102 |428024 729438 | 10954 | 102 | 3.56 0
s38417 | 120 |37247125492811/ 159859 | 130 [154.03 10
s35932 | 30 [1473112]21750300 30896 | 44 |99.46 14

ATPG with SAT for logic synthesis

X: Circuit transformation (Faults)
In: Inputs

 Under some inputs, some faults can be detected

dIn. X .Faulty (In, X) # NewSpec (In)

Circuit with New spec to

transformation be satisfied

=> SAT solution is (iny,X,) Under input in,, transformation

X, behaves differently from spec

* Then how can we come up with transformations by
which we can realize the spec ?

— Key observation: Redundant faults

12

By the way

International Test Conference (ITC) has been organized
for more than 30 years

It has been dealing with “hardware” testing in general

But like to extend the scope to include “software”
testing as well

Please consider submitting papers to ITC 2015, which
will be Disneyland (Los Angeles) Hotel in September

