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Cryptography Software
• Primitive operations are typically small 

• Executed very often 

• Serious optimization in low-level assembly is feasible and 
worth the effort 

• Correctness may not be guaranteed 

• Bug attack 

• Elliptic-curve implementation in OpenSSL 0.9.8g 
[BBPV12]
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In This Work
• Formal verification of the central hand-optimized 

assembly routine (ladderstep) of Curve25519 Diffie-
Hellman key-exchange software [Ber06] 

• Two implementations [BDL+11] written in qhasm 
[Ber] (~1.5K LOC) 

• Speed-record holder 

• A hybrid methodology
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Cryptographic software must be more than correct, it
must avoid leaks of secret information through side chan-
nels. For example, if the execution time of cryptographic
software depends on secret data, this can be exploited by
an attacker in a so-called timing attack. As a consequence,
countermeasures against side-channel attacks have also been
formalized. For example, Bayrak et al. [8] use SAT solving
for the automated verification of power-analysis countermea-
sures. Molnar et al. [30] describe a tool for static analysis of
control-flow vulnerabilities and their automatic removal.

Availability of software. To maximize reusability of our
results we placed the tools and software presented in this
paper into the public domain. They are available at http:
//cryptojedi.org/crypto/#verify25519.

Organization of this paper. Section 2 gives the necessary
background on Curve25519 elliptic-curve Di�e-Hellman key
exchange. Section 3 reviews the two di↵erent approaches for
assembly implementations of arithmetic in the field F2255�19

used in [13]. Section 4 gives the necessary background on
verification techniques and describes the tools we use for
verification. Section 5 details our methodology. Section 6
presents and discusses our results. We conclude the paper
and point to future work in Section 7.

2. CURVE25519
To establish context, we briefly review the basics of elliptic-

curve cryptography. For more information see, for exam-
ple, [6, 27]. Let Fq be the finite field with q elements. For
coe�cients a1, a2, a3, a4, a6 2 Fq, an equation of the form

E : y2 + a1xy + a3y = x

3 + a2x
2 + a4x+ a6

defines an elliptic curve E over Fq (if certain conditions hold,
cf. [27], Chapter 3). The set of points (x, y) 2 Fq ⇥ Fq that
fulfill the equation E, together with a “point at infinity”,
form a group of size ` ⇡ q, which is usually written ad-
ditively. Addition under this group law is e�ciently com-
putable through a few operations in the field Fq. Given a
point P on the curve and a scalar k 2 Z it is easy to do a
scalar multiplication k · P ; the number of group additions
required for a such a scalar multiplication is linear in the
length of k (i.e., logarithmic in k).
In contrast, for a su�ciently large finite field Fq, a suit-

ably chosen curve, and random points P and Q, computing
the discrete logarithm logP Q, i.e., finding k 2 Z such that
Q = k · P , is hard. More specifically, for elliptic curves
used in cryptography, the best known algorithms takes time
⇥(
p
`). Elliptic-curve cryptography is based on this di↵er-

ence in the complexity for computing scalar multiplication
and computing discrete logarithms. A user who knows a
secret k and a system parameter P computes and publishes
Q = k · P . An attacker who wants to break security of the
scheme needs to obtain k, i.e., compute logP Q.

Curve25519 is an elliptic-curve Di�e-Hellman key exchange
protocol proposed by Bernstein in 2006 [11]. It is based on
arithmetic on the elliptic curve E : y2 = x

3 + 486662x2 + x

defined over the field F2255�19.

2.1 The Montgomery ladder
Curve25519 uses a so-called di↵erential-addition chain pro-

posed by Montgomery [31] to multiply a point, identified
only by its x-coordinate, by a scalar. This computation

is highly regular, performs one ladder step per scalar bit,
and is relatively easy to protect against timing attacks; the
whole loop is often called Montgomery ladder. An overview
of the structure of the Montgomery ladder and the oper-
ations involved in one ladder-step are given respectively in
Algs. 1 and 2. The inputs and outputs xP , X1, X2, Z2, X3, Z3,
and temporary values Ti are elements in F2255�19. The per-
formance of the computation is largely determined by the
performance of arithmetic operations in this field.

Algorithm 1 Curve25519 Montgomery Ladder

Input: scalar k, and x-coordinate xP of a point P on E.
Output: (XkP , ZkP ) fulfilling xkP = XkP /ZkP

t = dlog2 k + 1e
X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i t� 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2) ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3) ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return (X2, Z2)

Algorithm 2 Single Curve25519 Montgomery Ladderstep

function ladderstep(X1, X2, Z2, X3, Z3)

T1  X2 + Z2

T2  X2 � Z2

T7  T

2
2

T6  T

2
1

T5  T6 � T7

T3  X3 + Z3

T4  X3 � Z3

T9  T3 · T2

T8  T4 · T1

X3  (T8 + T9)
Z3  (T8 � T9)

X3  X

2
3

Z3  Z

2
3

Z3  Z3 ·X1

X2  T6 · T7

Z2  121666 · T5

Z2  Z2 + T7

Z2  Z2 · T5

return (X2, Z2, X3, Z3)

end function

The biggest di↵erence between the two Curve25519 im-
plementations of Bernstein et al. presented in [13, 14] is
the representation of elements of F2255�19. Both implemen-
tations have the core part, the Montgomery ladder step, in
fully inlined, hand-optimized assembly. These core parts are
what we target for verification in this paper.

3. ARITHMETIC IN F2255�19 FOR AMD64
Arithmetic in F2255�19 means addition, subtraction, mul-

tiplication and squaring of 255-bit integers modulo the prime
p = 2255 � 19. No mainstream computer architecture o↵ers
arithmetic instructions for 255-bit integers directly, so op-
erations on such large integers must be constructed from
instructions that work on smaller data types. The AMD64
architecture has instructions to add and subtract (with and
without carry/borrow) 64-bit integers, and the MUL instruc-
tion returns the 128-bit product of two 64-bit integers, al-
ways in general-purpose registers rdx (higher half) and rax

(lower half).
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Arithmetic operations in Fp (p = 2255-19) 

255-bits variables
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T9 ≡ T3T2 (mod p) 



Multiplication (Radix-251)
• Compute R ≡ XY  (mod p) 

!

!

• The naive approach has three steps 

• Multiply 

• Reduce 

• Delayed carry 

• The efficient implementation merges Multiply and Reduce

6

X = x42204 + x32153 + x22102 + x1251 + x0

Y = y42204 + y32153 + y22102 + y1251 + y0

R = r42204 + r32153 + r22102 + r1251 + r0



Specification of Multiplication

7

{ 0 ≤ x0, x1, x2, x3, x4 < 252 && 0 ≤ y0, y1, y2, y3, y4 < 252 } 
Multiply 
Reduce 

Delayed-Carry 
{ 
    R ≡ XY (mod p) && 
    0 ≤ r0 < 252 &&  
    0 ≤ r1 < 252 && 
    0 ≤ r2 < 252 && 
    0 ≤ r3 < 252 && 
    0 ≤ r4 < 252  

}



Specification of Multiplication
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{ 0 ≤ x0, x1, x2, x3, x4 < 252 && 0 ≤ y0, y1, y2, y3, y4 < 252 } 
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Delayed-Carry 
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    0 ≤ r2 < 252 && 
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}

Not proven!



Specification of Multiplication 
Revisited

8

{ P } 
Multiply 
{ R1 } 
Reduce 
{ R2 } 
Delayed-Carry 
{ Q }
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Good!



Specification of Multiplication 
Revisited

8

{ P } 
Multiply 
{ R1 } 
Reduce 
{ R2 } 
Delayed-Carry 
{ Q }

{ P } 
Multiply 
{ R1 }

{ R1 } 
Reduce 
{ R2 }

{ R2 } 
Delayed-Carry 
{ Q }

Good!
Not enough!



Simple but Failed
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{ 0 ≤ xp[0], xp[8], xp[16] < 254 && r11.r1 = 2 * xp[0]@128 * xp[8]@128 } 
!
rax = *(uint64 *)(xp + 0) 
rax <<= 1 
(uint128) rdx rax = rax * *(uint64 *)(xp + 16) 
r2 = rax 
r21 = rdx 
!
{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 }

xp[n] is a shorthand of *(uint64*)(xp + n)

read memory
shift left

128-bit multiplication

x@n: extension of x to n bits



Simple but Failed

9

{ 0 ≤ xp[0], xp[8], xp[16] < 254 && r11.r1 = 2 * xp[0]@128 * xp[8]@128 } 
!
rax = *(uint64 *)(xp + 0) 
rax <<= 1 
(uint128) rdx rax = rax * *(uint64 *)(xp + 16) 
r2 = rax 
r21 = rdx 
!
{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 }

Need more heuristics to reduce the complexity

xp[n] is a shorthand of *(uint64*)(xp + n)

read memory
shift left

128-bit multiplication

x@n: extension of x to n bits



Heuristic 1 
- Split Conjunctions -
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{ P } 
Code 
{ Q1 && Q2 }

{ P } 
Code 
{ Q1 }

{ P } 
Code 
{ Q2 }



Heuristic 2 
- Delayed Extension -
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R = (x0@256 * y0@256) 264 + …

R = (x0@128 * y0@128)@256 264 + …

R is a 256-bit vector 
x0 and y0 are 64-bit vectors



Heuristic 3 
- Match Code -
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{ P } 
rh.r1 = 19x0y1 
rh.rl += 19x1y0 
{ rh.rl = 19(x0y1 + x1y0) }

{ P } 
rh.rl = 19x0y1 
rh.rl += 19x1y0 
{ rh.rl = 19x0y1 + 19x1y0 }



Heuristic 4 
- Over-approximation -
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{ 0 ≤ xp[0], xp[8], xp[16] < 254 && r11.r1 = 2 * xp[0]@128 * xp[8]@128 } 
!
rax = *(uint64 *)(xp + 0) 
rax <<= 1 
(uint128) rdx rax = rax * *(uint64 *)(xp + 16) 
r2 = rax 
r21 = rdx 
!
{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 }



Heuristic 4 
- Over-approximation -

13

{ 0 ≤ xp[0], xp[8], xp[16] < 254 && r11.r1 = 2 * xp[0]@128 * xp[8]@128 } 
!
rax = *(uint64 *)(xp + 0) 
rax <<= 1 
(uint128) rdx rax = rax * *(uint64 *)(xp + 16) 
r2 = rax 
r21 = rdx 
!
{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 }



Heuristic 4 
- Over-approximation -

13

{ 0 ≤ xp[0], xp[8], xp[16] < 254 && r11.r1 = 2 * xp[0]@128 * xp[8]@128 } 
!
rax = *(uint64 *)(xp + 0) 
rax <<= 1 
(uint128) rdx rax = rax * *(uint64 *)(xp + 16) 
r2 = rax 
r21 = rdx 
!
{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 }

Success: done 
Fail: prove the original one



Experimental Results
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Table 1: Verification of the qhasm code.
File Name Description # of limb # of MC Time

radix-264 representation

fe25519r64 mul-1 r = x ⇤ y (mod 2255 � 19), a buggy version 4 1 0m8.73s

fe25519r64 add r = x+ y (mod 2255 � 19)

Operations of
Algorithm 2

4 0 0m3.15s

fe25519r64 sub r = x� y (mod 2255 � 19) 4 0 0m16.24s

fe25519r64 mul-2 r = x ⇤ y (mod 2255 � 19), a fixed version of
fe25519r64 mul-1

4 19 73m55.16s

fe25519r64 mul121666 r = x ⇤ 121666 (mod 2255 � 19) 4 2 0m2.03s

fe25519r64 sq r = x ⇤ x (mod 2255 � 19) 4 15 3m16.67s

ladderstepr64 The implementation of Algorithm 2 4 14 0m3.23s

fe19119 mul r = x ⇤ y (mod 2191 � 19) 3 12 8m43.07s

mul1271 r = x ⇤ y (mod 2127 � 1) 2 1 141m22.06s

radix-251 representation

fe25519 add r = x+ y (mod 2255 � 19)

Operations of
Algorithm 2

5 0 0m16.35s

fe25519 sub r = x� y (mod 2255 � 19) 5 0 3m38.62s

fe25519 mul r = x ⇤ y (mod 2255 � 19) 5 27 5658m2.15s

fe25519 mul121666 r = x ⇤ 121666 (mod 2255 � 19) 5 5 0m12.75s

fe25519 sq r = x ⇤ x (mod 2255 � 19) 5 17 463m59.5s

ladderstep The implementation of Algorithm 2 5 14 1m29.05s

mul25519
r = x ⇤ y (mod 2255 � 19), a 3-phase implementation 5 3 286m52.75s

mul25519-p2-1 The delayed carry phase of r = x ⇤ y (mod 2255 � 19) 5 1 2723m16.56s

mul25519-p2-2 The delayed carry phase of r = x ⇤ y (mod 2255 � 19) with two sub-phases 5 2 263m35.46s

muladd25519 r = x ⇤ y + z (mod 2255 � 19) 5 7 1569m11.06s

re15319 r = x ⇤ y (mod 2153 � 19) 3 3 2409m16.89s

corresponding qhasm code fe25519r64 */fe25519 *. We are
able to reproduce a known bug in an old version of F2255�19

multiplication (fe25519r64 mul-1). A counterexample can
be found in seconds with a pair of precondition and postcon-
dition for the reduction phase. Verification time of squaring
is less than that of multiplication because (1) squaring is
simpler than multiplication which requires more low-level
multiplication operations, and (2) multiplication is verified
without the fourth heuristic to be introduced later in this
section, but squaring is verified with the heuristic.

The rows mul25519-p2-1 and mul25519-p2-2 are the re-
sults of verifying the delayed carry phase of mul25519, a
3-phase implementation of multiplication. The result shows
that if we add an additional midcondition to the delayed
carry phase of mul25519, the verification time of the de-
layed carry phase can be reduced from 2723 minutes to
263 minutes. In general, inserting more midconditions al-
lows lower verification time, with a cost of more manual
e↵orts. Besides mul25519 and qhasm code in the ladder
step, we also successfully verified (1) a 3-phase implementa-
tion of multiplication with addition (muladd25519), and (2)
implementations of multiplication over di↵erent finite fields
(fe19119 mul, mul1271, and re15319).

Note that all postconditions for the radix-264 are equali-
ties. Since Boolector can not verify modular congruence
relations in the radix-264 representation, we have to estab-
lish them in Coq. On the other hand, Boolector success-
fully verifies the modular congruence relation Q51

delay carry

for the radix-251 representation. Our Coq proof for the
radix-251 representation is thus simplified. The reason why
some congruence relations is verified in the radix-251 rep-
resentation is because we are able to divide P51D further
into smaller fragments. A few extra carry bits can not only
reduce the time for execution but also verification.

We found the following heuristics are quite useful to ac-

celerate verification. We cannot verify many of the cases
without them. First, we split conjunctions of postcondi-
tions, i.e., translate (|Q0|)P (|Q1 ^Q2|) to (|Q0|)P (|Q1|) and
(|Q0|)P (|Q2|). This reduces the verification time of the mul-
tiply phase of mul25519 from one day to one minute. Sec-
ond, we delay bit-width extension. For example, consider

a formula a

256
= b ⇤ c where a has 256 bits and b, c have 64

bits. Instead of extending b and c to 256 bits before the
multiplication, we first extend b and c to 128 bits, compute
the multiplication, and then extend the result to 256 bits.
Third, the sequence of mathematical operations in anno-
tations should match as much as possible the sequence of
operations executed in a program. For example, if a pro-
gram calculates the value of a variable r by adding 19x0y2

first, then 19x1y1, and finally 19x2y0, the annotation is bet-
ter written as r = (19x0y2 + 19x1y1) + 19x2y0 instead of
r = 19(x0y2+x1y1+x2y0) or r = 19x0y2+(19x1y1+19x2y0).
If we really need to prove r = 19(x0y2 + x1y1 + x2y0), it
can be done in Coq very easily with rewrite tactics given
the fact that r = (19x0y2 + 19x1y1) + 19x2y0. Fourth, we
over-approximate Boolector specifications by automati-
cally reducing logical variables and weakening preconditions
such that the specifications become easier to be proven.
The validity of an over-approximated specification guaran-
tees the validity of the original one, but not vice versa.
This heuristic can be viewed as program slicing with over-
approximation. To be more specific, given a specification���
Q

1
0 ^Q

2
0 ^ · · · ^Q

n
0

���
P (|Q1|), our translator automatically

removes logical variables that do not appear in Q1; it re-
moves Q

i
0 if some variable in Q

i
0 neither appears in Q1

nor gets updated in P . For example, given a Hoare triple���r = r1 ^ r1 = r0 + x ^ x  251
��� r+=y (|r = r1 + y|), this heu-

ristic produces (|r = r1|) r+=y (|r = r1 + y|) where (1) r1 =
r0 + x is removed because the logical variable r0 does not
appear in the postcondition, and (2) x  251 is removed



Future Work

• Automatic generation of mid-conditions 

• Verification of our translator 

• Better connection with Coq 

• Verify other parts in Curve25519
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http://cryptojedi.org/crypto/#verify25519

Tools and software presented in this paper are available at

Thank you for your attention!

http://cryptojedi.org/crypto/#verify25519

