Verifying Curve25519 Software

Ming-Hsien Tsai Institute of Information Science, Academia Sinica

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang

Sep 19-20, 2014 Clarke Symposium

Cryptography Software

- Primitive operations are typically small
- Executed very often
- Serious optimization in low-level assembly is feasible and worth the effort
- Correctness may not be guaranteed
- Bug attack
 - Elliptic-curve implementation in OpenSSL 0.9.8g [BBPV12]

In This Work

- Formal verification of the central hand-optimized assembly routine (ladderstep) of Curve25519 Diffie-Hellman key-exchange software [Ber06]
 - Two implementations [BDL+11] written in qhasm [Ber] (~1.5K LOC)
 - Speed-record holder
- A hybrid methodology

Hybrid Methodology

Hybrid Methodology

Algorithm 2 Single Curve25519 Montgomery Ladderstep

function LADDERSTEP $(X_1, X_2, Z_2, X_3, Z_3)$

$$T_{1} \leftarrow X_{2} + Z_{2}$$

$$T_{2} \leftarrow X_{2} - Z_{2}$$

$$T_{7} \leftarrow T_{2}^{2}$$

$$T_{6} \leftarrow T_{1}^{2}$$

$$T_{5} \leftarrow T_{6} - T_{7}$$

$$T_{3} \leftarrow X_{3} + Z_{3}$$

$$T_{4} \leftarrow X_{3} - Z_{3}$$

$$T_{9} \leftarrow T_{3} \cdot T_{2}$$

$$T_{8} \leftarrow T_{4} \cdot T_{1}$$

$$X_{3} \leftarrow (T_{8} + T_{9})$$

$$Z_{3} \leftarrow (T_{8} - T_{9})$$

$$X_{3} \leftarrow X_{3}^{2}$$
 $Z_{3} \leftarrow Z_{3}^{2}$
 $Z_{3} \leftarrow Z_{3} \cdot X_{1}$
 $X_{2} \leftarrow T_{6} \cdot T_{7}$
 $Z_{2} \leftarrow 121666 \cdot T_{5}$
 $Z_{2} \leftarrow Z_{2} + T_{7}$
 $Z_{2} \leftarrow Z_{2} \cdot T_{5}$
return $(X_{2}, Z_{2}, X_{3}, Z_{3})$

end function

Algorithm 2 Single Curve25519 Montgomery Ladderstep

function LADDERSTEP $(X_1, X_2, Z_2, X_3, Z_3)$

$$T_{1} \leftarrow X_{2} + Z_{2}$$

$$T_{2} \leftarrow X_{2} - Z_{2}$$

$$T_{7} \leftarrow T_{2}^{2}$$

$$T_{6} \leftarrow T_{1}^{2}$$

$$T_{5} \leftarrow T_{6} - T_{7}$$

$$T_{3} \leftarrow X_{3} + Z_{3}$$

$$T_{4} \leftarrow X_{3} - Z_{3}$$

$$T_{9} \leftarrow T_{3} \cdot T_{2}$$

$$T_{8} \leftarrow T_{4} \cdot T_{1}$$

$$X_{3} \leftarrow (T_{8} + T_{9})$$

$$Z_{3} \leftarrow (T_{8} - T_{9})$$

$$X_{3} \leftarrow X_{3}^{2}$$
 $Z_{3} \leftarrow Z_{3}^{2}$
 $Z_{3} \leftarrow Z_{3} \cdot X_{1}$
 $X_{2} \leftarrow T_{6} \cdot T_{7}$
 $Z_{2} \leftarrow 121666 \cdot T_{5}$
 $Z_{2} \leftarrow Z_{2} + T_{7}$
 $Z_{2} \leftarrow Z_{2} \cdot T_{5}$
return $(X_{2}, Z_{2}, X_{3}, Z_{3})$

end function

Algorithm 2 Single Curve25519 Montgomery Ladderstep

function LADDERSTEP $(X_1, X_2, Z_2, X_3, Z_3)$

$$T_{1} \leftarrow X_{2} + Z_{2}$$

$$T_{2} \leftarrow X_{2} - Z_{2}$$

$$T_{7} \leftarrow T_{2}^{2}$$

$$T_{6} \leftarrow T_{1}^{2}$$

$$T_{5} \leftarrow T_{6} - T_{7}$$

$$T_{3} \leftarrow X_{3} + Z_{3}$$

$$T_{4} \leftarrow X_{3} - Z_{3}$$

$$T_{9} \leftarrow T_{3} \cdot T_{2}$$

$$T_{8} \leftarrow T_{4} \cdot T_{1}$$

$$X_{3} \leftarrow (T_{8} + T_{9})$$

$$Z_{3} \leftarrow (T_{8} - T_{9})$$

255-bits variables

$$X_{3} \leftarrow X_{3}^{2}$$
 $Z_{3} \leftarrow Z_{3}^{2}$
 $Z_{3} \leftarrow Z_{3} \cdot X_{1}$
 $X_{2} \leftarrow T_{6} \cdot T_{7}$
 $Z_{2} \leftarrow 121666 \cdot T_{5}$
 $Z_{2} \leftarrow Z_{2} + T_{7}$
 $Z_{2} \leftarrow Z_{2} \cdot T_{5}$
return $(X_{2}, Z_{2}, X_{3}, Z_{3})$

end function

Arithmetic operations in F_p (p = 2^{255} -19)

Algorithm 2 Single Curve25519 Montgomery Ladderstep

function LADDERSTEP $(X_1, X_2, Z_2, X_3, Z_3)$

$$T_{1} \leftarrow X_{2} + Z_{2}$$

$$T_{2} \leftarrow X_{2} - Z_{2}$$

$$T_{7} \leftarrow T_{2}^{2}$$

$$T_{6} \leftarrow T_{1}^{2}$$

$$T_{5} \leftarrow T_{6} - T_{7}$$

$$T_{3} \leftarrow X_{3} + Z_{3}$$

$$T_{4} \leftarrow X_{3} - Z_{3}$$

$$T_{9} \leftarrow T_{3} \cdot T_{2}$$

$$T_{8} \leftarrow T_{4} \cdot T_{1}$$

$$X_{3} \leftarrow (T_{8} + T_{9})$$

$$Z_{3} \leftarrow (T_{8} - T_{9})$$

$$T_{9} \equiv T_{3}T_{2} \pmod{p}$$

255-bits variables

$$X_{3} \leftarrow X_{3}^{2}$$
 $Z_{3} \leftarrow Z_{3}^{2}$
 $Z_{3} \leftarrow Z_{3} \cdot X_{1}$
 $X_{2} \leftarrow T_{6} \cdot T_{7}$
 $Z_{2} \leftarrow 121666 \cdot T_{5}$
 $Z_{2} \leftarrow Z_{2} + T_{7}$
 $Z_{2} \leftarrow Z_{2} \cdot T_{5}$
return $(X_{2}, Z_{2}, X_{3}, Z_{3})$

end function

Arithmetic operations in F_p (p = 2^{255} -19)

Multiplication (Radix-2⁵¹)

• Compute $R \equiv XY \pmod{p}$

$$X = x_4 2^{204} + x_3 2^{153} + x_2 2^{102} + x_1 2^{51} + x_0$$

$$Y = y_4 2^{204} + y_3 2^{153} + y_2 2^{102} + y_1 2^{51} + y_0$$

$$R = r_4 2^{204} + r_3 2^{153} + r_2 2^{102} + r_1 2^{51} + r_0$$

- The naive approach has three steps
 - Multiply
 - Reduce
 - Delayed carry
- The efficient implementation merges Multiply and Reduce

Specification of Multiplication

```
\{0 \le x_0, x_1, x_2, x_3, x_4 < 2^{52} \&\& 0 \le y_0, y_1, y_2, y_3, y_4 < 2^{52} \}
                                        Multiply
                                          Reduce
                                    Delayed-Carry
    R \equiv XY \pmod{p} \&\&
    0 \le r_0 < 2^{52} \&\&
   0 \le r_1 < 2^{52} \&\&
    0 \le r_2 < 2^{52} \&\&
    0 \le r_3 < 2^{52} \&\&
   0 \le r_4 < 2^{52}
```

Specification of Multiplication

```
\{0 \le x_0, x_1, x_2, x_3, x_4 < 2^{52} \&\& 0 \le y_0, y_1, y_2, y_3, y_4 < 2^{52} \}
                                       Multiply
                                         Reduce
                                   Delayed-Carry
    R \equiv XY \pmod{p} \&\&
   0 \le r_0 < 2^{52} \&\&
   0 \le r_1 < 2^{52} \&\&
   0 \le r_2 < 2^{52} \&\&
   0 \le r_3 < 2^{52} \&\&
                                     Not proven!
   0 \le r_4 < 2^{52}
```

```
\left\{egin{array}{l} P \end{array}
ight. 
ight.
```

```
\left\{egin{array}{l} P \end{array}
ight. \ Multiply \ \left\{egin{array}{l} R_1 \end{array}
ight. \ Reduce \ \left\{egin{array}{l} R_2 \end{array}
ight. \ Delayed-Carry \ \left\{egin{array}{l} Q \end{array}
ight. \end{array}
ight.
```

```
\left\{ egin{array}{ll} P \end{array} \right\} Multiply \left\{ egin{array}{ll} R_1 \end{array} \right\}
```

```
\left\{ egin{array}{l} R_1 \end{array} 
ight. 
ight. Reduce \left\{ egin{array}{l} R_2 \end{array} 
ight. 
ight. 
ight.
```

```
\left\{egin{array}{l} R_2 \end{array}
ight. 
ight. \ \left. egin{array}{l} Q \end{array}
ight. 
ight. 
ight.
```

```
\{P\}
                           Multiply
\{P\}
                           \{R_1\}
Multiply
\{R_1\}
                           \{R_1\}
Reduce
                           Reduce
\{R_2\}
                           \{R_2\}
Delayed-Carry
                           \{R_2\}
                           Delayed-Carry
```


Simple but Failed

xp[n] is a shorthand of *(uint64*)(xp + n) x@n: extension of x to n bits

Simple but Failed

xp[n] is a shorthand of *(uint64*)(xp + n) x@n: extension of x to n bits

Need more heuristics to reduce the complexity

Heuristic 1

- Split Conjunctions -

Heuristic 2 - Delayed Extension -

$$R = (x_0@256 * y_0@256) 2^{64} + \dots$$

$$R = (x_0@128 * y_0@128)@256 2^{64} + ...$$

R is a 256-bit vector x₀ and y₀ are 64-bit vectors

Heuristic 3 - Match Code -

```
{P}
rh.r1 = 19x_0y_1
rh.rl += 19x_1y_0
{rh.rl = 19(x_0y_1 + x_1y_0)}
```



```
{P}
rh.rl = 19x_0y_1
rh.rl += 19x_1y_0
{rh.rl = 19x_0y_1 + 19x_1y_0}
```

Heuristic 4 - Over-approximation -

```
\{ 0 \le xp[0], xp[8], xp[16] < 2^{54} \&\& r11.r1 = 2 * xp[0]@128 * xp[8]@128 \}

rax = *(uint64 *)(xp + 0)

rax <<= 1

(uint128) rdx rax = rax * *(uint64 *)(xp + 16)

r2 = rax

r21 = rdx

\{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 \}
```

Heuristic 4 - Over-approximation -

```
\{ 0 \le xp[0], xp[8], xp[16] < 2^{54} \&\& r11.r1 = 2 * xp[0]@128 * xp[8]@128 \}

rax = *(uint64 *)(xp + 0)

rax <<= 1

(uint128) rdx rax = rax * *(uint64 *)(xp + 16)

r2 = rax

r21 = rdx

\{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 \}
```

Heuristic 4 - Over-approximation -

```
\{ 0 \le xp[0], xp[8], xp[16] < 2^{54} \&\& r11.r1 = 2 * xp[0]@128 * xp[8]@128 \}

rax = *(uint64 *)(xp + 0)

rax <<= 1

(uint128) rdx rax = rax * *(uint64 *)(xp + 16)

r2 = rax

r21 = rdx

\{ r21.r2 = 2 * xp[0]@128 * xp[16]@128 \}
```

Success: done

Fail: prove the original one

Experimental Results

File Name	Description		# of $limb$	$\mid \# \text{ of } MC \mid$	Time
${\bf radix-2}^{64}\ {\bf representation}$					
fe25519r64_mul-1	$r = x * y \pmod{2^{255} - 19}$, a buggy version		4	1	0 m 8.73 s
fe25519r64_add	$r = x + y \pmod{2^{255} - 19}$	Operations of Algorithm 2	4	0	0 m 3.15 s
$fe25519r64_sub$	$r = x - y \pmod{2^{255} - 19}$		4	0	0 m 16.24 s
fe25519r64_mul-2	$r = x * y \pmod{2^{255} - 19}$, a fixed version of fe25519r64_mul-1		4	19	73m55.16s
fe25519r64_mul121666	$r = x * 121666 \pmod{2^{255} - 19}$		4	2	0m 2.03 s
$fe25519r64_sq$	$r = x * x \pmod{2^{255} - 19}$		4	15	3 m 16.67 s
ladderstepr64	The implementation of Algorithm 2		4	14	$0 \mathrm{m} 3.23 \mathrm{s}$
fe19119_mul	$r = x * y \pmod{2^{191} - 19}$		3	12	8m43.07s
mul1271	$r = x * y \pmod{2^{127} - 1}$		2	1	141m22.06s
${\bf radix-2}^{51}\ {\bf representation}$					
$ m fe25519_add$	$r = x + y \pmod{2^{255} - 19}$		5	0	0 m 16.35 s
$ m fe25519_sub$	$r = x - y \pmod{2^{255} - 19}$	Operations of	5	0	3 m 38.62 s
$ m fe25519_mul$	$r = x * y \pmod{2^{255} - 19}$	Algorithm 2	5	27	5658m2.15s
fe25519_mul121666	$r = x * 121666 \pmod{2^{255} - 19}$		5	5	0 m 12.75 s
$fe25519_sq$	$r = x * x \pmod{2^{255} - 19}$		5	17	463m59.5s
ladderstep	The implementation of Algorithm 2		5	14	1 m 29.05 s
mul25519	$r = x * y \pmod{2^{255} - 19}$, a 3-phase implementation		5	3	286m52.75s
mul25519-p2-1	The delayed carry phase of $r = x * y \pmod{2^{255} - 19}$		5	1	2723m16.56s
mul25519-p2-2	The delayed carry phase of $r = x * y \pmod{2^{255} - 19}$ with two sub-phases		5	2	263m35.46s
muladd25519	$r = x * y + z \pmod{2^{255} - 19}$		5	7	1569m11.06s
re15319	$r = x * y \pmod{2^{153} - 19}$		3	3	2409m16.89s

Future Work

- Automatic generation of mid-conditions
- Verification of our translator
- Better connection with Coq
- Verify other parts in Curve25519

Tools and software presented in this paper are available at http://cryptojedi.org/crypto/#verify25519

Thank you for your attention!