
When Model Checking Met Deduction

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

Sep 19, 2014



Alan Turing

It is of course important that some efforts be made to verify the
correctness of assertions that are made about a routine. There are
essentially two types of method available, the theoretical and the
experimental. In the extreme form of the theoretical method a watertight
mathematical proof is provided for the assertion. In the extreme form of
the experimental method, the routine is tried out on the machine with a
variety of initial conditions and is pronounced fit if the assertions hold in
each case.

Alan Turing (quoted by D. MacKenzie in Risk and Reason)

N. Shankar Model checking meets Deduction 2/10



Floyd, Hoare, and Dijkstra

Skip {P}skip{P}
Assignment {P[e/y ]}y := e{P}

Conditional
{C ∧ P}S1{Q} {¬C ∧ P}S2{Q}

{P}C ? S1 : S2{Q}

Loop
{P ∧ C}S{P}

{P}while C do S{P ∧ ¬C}

Composition
{P}S1{R} {R}S2{Q}
{P}S1; S2{Q}

Consequence
P ⇒ P ′ {P ′}S{Q ′} Q ′ ⇒ Q

{P}S{Q}

N. Shankar Model checking meets Deduction 3/10



Cook Completeness and Clarke Incompleteness [Apt’81]

N. Shankar Model checking meets Deduction 4/10



The Role of Fixpoints

Dijkstra’s predicate transformer semantics is key to the
completeness argument.

Verifying {P}S{Q} reduces to showing
1 {wlp(S)(Q)}S{Q}, which is always valid, and
2 P =⇒ wlp(S)(Q).

wlp(while C do S)(Q) = νX .(¬C ∧ Q) ∨ (C ∧ wlp(S)(X )).

Incompleteness is related to the undecidability of the Halting
problem over finite interpretations for the given class of
programs.

N. Shankar Model checking meets Deduction 5/10



Fixpoints to Model Checking

Temporal logics have a fixpoint characterization.

EFp = µY .p ∨ EXY

EGp = νY .p ∧ EXY

For finite-state systems, the states can be classified in a
bounded number of steps.

With symbolic representations (Binary Decision Diagrams,
Difference-Bounded Matrices), the image computations and
equivalence checks can be done using logic operations.

Predicate abstraction allowed logic to sneak in even further
through finite-state over-approximations of infinite-state
behavior.

Bounded model checking, k-induction, and interpolation lean
more heavily on deduction than model checking.

N. Shankar Model checking meets Deduction 6/10



Bradley’s Algorithm

Bradley’s algorithm works by Conflict Directed Reachability
(CDR) captured by the abstract system below.1

Given a transition system M = 〈I ,N〉, let M[X ] = I t N[X ],
where N[X ] is the image and N−1[X ] is the preimage.

The state of the algorithm, initially n = 0, Q0 = I , C0 = ∅,
consists of

1 Inductive candidates (sets of clauses) Q0, . . . ,Qn:

1 Q0 = I
2 Qi v Qj u P for i < j ≤ n
3 N[Qi ] v Qi+1

2 Counterexample candidates (sets of cubes) C0, . . . ,Cn, where
each Ci is a set of symbolic counterexamples: for each (cube)
R ∈ Ci

1 R = ¬P and i = n, or there is an S in Ci′ , R v N−1[S ],
where i ′ = n if i = n, and i ′ = i + 1, otherwise.

2 Qj v ¬R for all j < i .
3 R u Qi is nonempty, i.e., Qi 6v ¬R.

1Thanks to Aaron Bradley, Dejan Jovanović, and Bruno Dutertre for feedback.

N. Shankar Model checking meets Deduction 7/10



Abstract Conflict Directed Reachability

Fail: If C0 is nonempty, ¬P is reachable.

Succeed: If Qi = Qi+1 for some i < n, we have an inductive
weakening of P.

Extend: If Ci is empty for each i ≤ n, add Qn+1 such that
M[Qn] v Qn+1 and Cn+1 = ∅, if Qn+1 v P, and
Cn+1 = {¬P}, otherwise.
Refine: Check N[Qi ] v ¬R for some R in Ci+1, where Ci is
empty, for j ≤ i :

1 Strengthen: If the query succeeds, find an R̂ weakening R
that is relatively inductive: M[Qi u ¬R̂] v ¬R̂: conjoin ¬R̂ to
each Qj for 1 ≤ j ≤ i + 1, move any S ∈ Ci+1 such that
Qi+1 v ¬S (including R) to Ci+2 if i + 1 < n.

2 Reverse: If the query fails with counterexample s, weaken s to
S such that S v N−1[R] and add S to Ci .

Propagate: Whenever Qi is strengthened, strengthen Qi+1

with Q where M[Qi ] v Q, move any R ∈ Ci+1 such that
Qi+1 v ¬R to Ci+2 if i + 1 < n.

N. Shankar Model checking meets Deduction 8/10



Model Checking Becomes Deduction

Automated verification through model checking of temporal
formulas was very successful for essentially finite-state
systems.

Many systems could be reduced to tractable finite-state
systems through abstraction, composition, and a little
deduction.

In the Handbook article, deductive is interpreted (narrowly) as
syntax-directed, and model checking (broadly) as based on
semantic unfolding.

“Bounded model checking”, k-induction, and interpolation, as
practised, are really deductive approaches.

Techniques like Bradley’s CDR are squarely deductive, but
owe a lot to model checking.

Ed’s contributions have radically advanced verification as a
whole, and not merely model checking.

N. Shankar Model checking meets Deduction 9/10



“Happy Retirement, Ed”

We obviously have a long way to go, so it’s good that Ed will soon
have few other distractions.

N. Shankar Model checking meets Deduction 10/10


