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Alan Turing

It is of course important that some efforts be made to verify the
correctness of assertions that are made about a routine. There are
essentially two types of method available, the theoretical and the
experimental. In the extreme form of the theoretical method a watertight
mathematical proof is provided for the assertion. In the extreme form of
the experimental method, the routine is tried out on the machine with a
variety of initial conditions and is pronounced fit if the assertions hold in
each case.

Alan Turing (quoted by D. MacKenzie in Risk and Reason)
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Floyd, Hoare, and Dijkstra

Skip {P}skip{P}
Assignment {P[e/y ]}y := e{P}

Conditional
{C ∧ P}S1{Q} {¬C ∧ P}S2{Q}

{P}C ? S1 : S2{Q}

Loop
{P ∧ C}S{P}

{P}while C do S{P ∧ ¬C}

Composition
{P}S1{R} {R}S2{Q}
{P}S1; S2{Q}

Consequence
P ⇒ P ′ {P ′}S{Q ′} Q ′ ⇒ Q

{P}S{Q}
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Cook Completeness and Clarke Incompleteness [Apt’81]
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The Role of Fixpoints

Dijkstra’s predicate transformer semantics is key to the
completeness argument.

Verifying {P}S{Q} reduces to showing
1 {wlp(S)(Q)}S{Q}, which is always valid, and
2 P =⇒ wlp(S)(Q).

wlp(while C do S)(Q) = νX .(¬C ∧ Q) ∨ (C ∧ wlp(S)(X )).

Incompleteness is related to the undecidability of the Halting
problem over finite interpretations for the given class of
programs.

N. Shankar Model checking meets Deduction 5/10



Fixpoints to Model Checking

Temporal logics have a fixpoint characterization.

EFp = µY .p ∨ EXY

EGp = νY .p ∧ EXY

For finite-state systems, the states can be classified in a
bounded number of steps.

With symbolic representations (Binary Decision Diagrams,
Difference-Bounded Matrices), the image computations and
equivalence checks can be done using logic operations.

Predicate abstraction allowed logic to sneak in even further
through finite-state over-approximations of infinite-state
behavior.

Bounded model checking, k-induction, and interpolation lean
more heavily on deduction than model checking.
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Bradley’s Algorithm

Bradley’s algorithm works by Conflict Directed Reachability
(CDR) captured by the abstract system below.1

Given a transition system M = 〈I ,N〉, let M[X ] = I t N[X ],
where N[X ] is the image and N−1[X ] is the preimage.

The state of the algorithm, initially n = 0, Q0 = I , C0 = ∅,
consists of

1 Inductive candidates (sets of clauses) Q0, . . . ,Qn:

1 Q0 = I
2 Qi v Qj u P for i < j ≤ n
3 N[Qi ] v Qi+1

2 Counterexample candidates (sets of cubes) C0, . . . ,Cn, where
each Ci is a set of symbolic counterexamples: for each (cube)
R ∈ Ci

1 R = ¬P and i = n, or there is an S in Ci′ , R v N−1[S ],
where i ′ = n if i = n, and i ′ = i + 1, otherwise.

2 Qj v ¬R for all j < i .
3 R u Qi is nonempty, i.e., Qi 6v ¬R.

1Thanks to Aaron Bradley, Dejan Jovanović, and Bruno Dutertre for feedback.
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Abstract Conflict Directed Reachability

Fail: If C0 is nonempty, ¬P is reachable.

Succeed: If Qi = Qi+1 for some i < n, we have an inductive
weakening of P.

Extend: If Ci is empty for each i ≤ n, add Qn+1 such that
M[Qn] v Qn+1 and Cn+1 = ∅, if Qn+1 v P, and
Cn+1 = {¬P}, otherwise.
Refine: Check N[Qi ] v ¬R for some R in Ci+1, where Ci is
empty, for j ≤ i :

1 Strengthen: If the query succeeds, find an R̂ weakening R
that is relatively inductive: M[Qi u ¬R̂] v ¬R̂: conjoin ¬R̂ to
each Qj for 1 ≤ j ≤ i + 1, move any S ∈ Ci+1 such that
Qi+1 v ¬S (including R) to Ci+2 if i + 1 < n.

2 Reverse: If the query fails with counterexample s, weaken s to
S such that S v N−1[R] and add S to Ci .

Propagate: Whenever Qi is strengthened, strengthen Qi+1

with Q where M[Qi ] v Q, move any R ∈ Ci+1 such that
Qi+1 v ¬R to Ci+2 if i + 1 < n.
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Model Checking Becomes Deduction

Automated verification through model checking of temporal
formulas was very successful for essentially finite-state
systems.

Many systems could be reduced to tractable finite-state
systems through abstraction, composition, and a little
deduction.

In the Handbook article, deductive is interpreted (narrowly) as
syntax-directed, and model checking (broadly) as based on
semantic unfolding.

“Bounded model checking”, k-induction, and interpolation, as
practised, are really deductive approaches.

Techniques like Bradley’s CDR are squarely deductive, but
owe a lot to model checking.

Ed’s contributions have radically advanced verification as a
whole, and not merely model checking.
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“Happy Retirement, Ed”

We obviously have a long way to go, so it’s good that Ed will soon
have few other distractions.
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