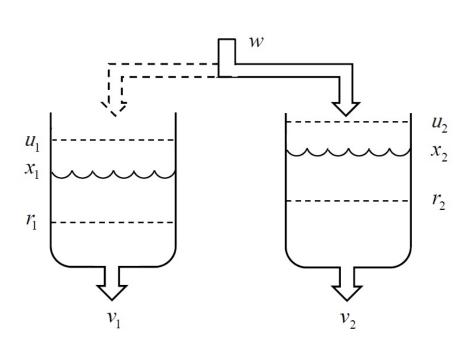
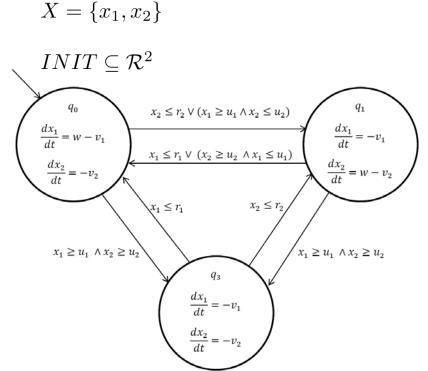
Approximate analysis of hybrid dynamics

P.S. Thiagarajan

Joint work with: Benjamin Gyori, Liu Bing, Soumya Paul, S. Ramanathan

Hybrid systems





Hybrid system

Hybrid automaton

Hybrid systems

- Hybrid systems are hard to analyze.
 - The solutions to the ODEs will not be available.
 - The way the continuous dynamics interacts with the guards is intractable.
- Restrict the mode dynamics (piecewise constant,..)?
- But in many situations, the mode dynamics are governed by ordinary differential equations.
 - Cyber-physical systems (automotive, avionics..), biopathways,..
- A possible strategy:
 - Approximate analysis based on numerical simulations.

Main result

- For a *rich* class of hybrid systems:
 - we approximate a hybrid system H as a Markov chain M such that:
 - Every trajectory of H satisfies a BLTL specification ϕ iff M meets the specification ϕ almost certainly. i.e with probability 1.

 $- Kr: Q \rightarrow 2^{AP}$

Main result

Instead of $H \models \varphi$ determine whether $M \models \varphi$

We can not construct M explicitly.

We can only check $M \models \varphi$ approximately by sampling the paths of M.

We can not directly sample the paths of M.

Instead we sample the paths of M indirectly. By sampling the trajectories of H through numerical simulations.

Set up a sequential hypothesis test and statistically model check whether $M \models \varphi$.

The SMC procedure

$$H_0: M \models_{\geq 1} \varphi$$

$$H_1: M \models_{< 1-\delta} \varphi$$

 δ is the (one sided) indifference region.

Also fix α , the false positives error. i.e. when H_0 is accepted while H_1 happens to be the case.

We will never accept H_1 when H_0 happens to be the case.

$$N = \lceil \frac{\log \alpha}{\log 1 - \delta} \rceil$$

$$\delta = 0.01, \ \alpha = 0.01; \ N = 459$$

A few case studies including the cardiac cell model (non-linear ODEs, 4 modes, 4 dimensional) perform well.

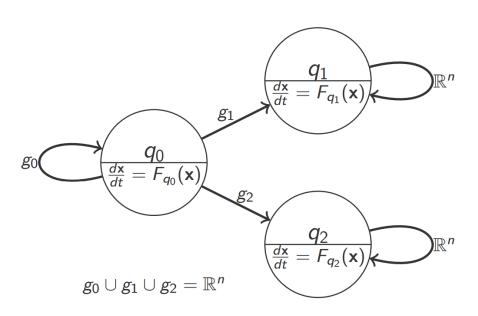
The class of systems

- The vector fields associated with each mode dynamics is a C¹ function. (polynomials, rational functions,)
- The state of the system is observed at discrete time-points.
- The number of mode changes within a unit interval of time (k, k + 1) is bounded [non-zeno].
 - The interval is so chosen that at most one mode transition takes place per unit interval.
- The set of initial states is a bounded open set; all the guards are open sets.

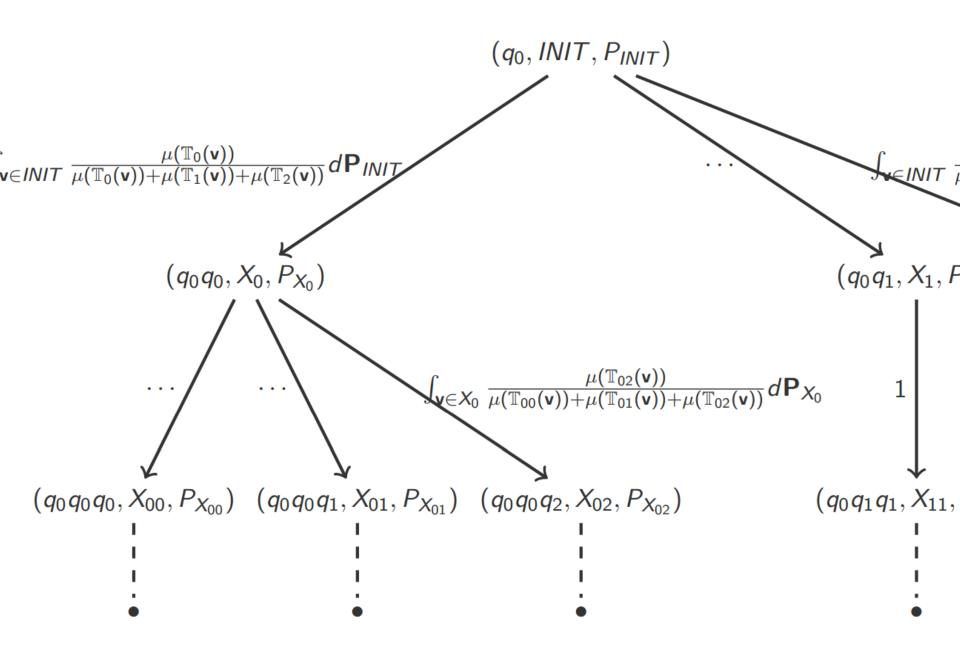
The stochasticity hypothesis.

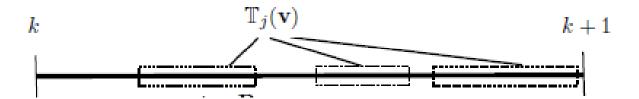
- Mode transitions are stochastic events.
- The probability of a mode transition is proportional to how "often" its guard gets enabled.
 - Our assumptions ensure that this make measure theoretic sense.

Approximating hybrid automata using Markov chain



A simple hybrid automaton





An extension

- Currently the atomic propositions are qualitative; Kr: $Q \rightarrow 2^{AP}$
- Quantitative atomic propositions are harder to handle.
 - -(x < 0.5)
- Must stick to ``smooth'' trajectories and rational mode switching time points.