
Page 1 September 2014 EMC’2014

Dynamic
Software Model Checking

Patrice Godefroid

Microsoft Research

Page 2 September 2014 EMC’2014

Ed Clarke: A man, An idea…

• LASER’2011 summer school (Elba island, Italy)

Presenter
Presentation Notes
Three years ago, I was fortunate to be stuck on an island with Ed. Tough life.

Page 3 September 2014 EMC’2014

Ed Clarke: A man, An idea…

• LASER’2011 summer school (Elba island, Italy)

• Q from student: “career advice for young researcher?”

• Ed: “Pick an idea that excites you,
then devote your life to it.”

Presenter
Presentation Notes
At a panel during the summer school, a student asked Ed if he has any career advice for young researchers.

Ed replies was…

This is a simple yet profound statement.

In a way, this is what I have been doing myself for the last 20 years.

Page 4 September 2014 EMC’2014

Insight: Model Checking is Super Testing
• Simple yet effective technique for finding bugs

• In the software-engineering universe:

cost
(money)

coverage
(bugs)

testing

model checking

verification

Presenter
Presentation Notes
A key insight for me was that model checking is really super testing.

Page 5 September 2014 EMC’2014

Dynamic Software Model Checking

• How to apply model checking to analyze software?
– “Real” programming languages (e.g., C, C++, Java),
– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing

state-space exploration

state-space exploration

abstraction adaptation
(SLAM, Bandera,
FeaVer, BLAST,…)

Concurrency: VeriSoft, JPF, CMC, Bogor, CHESS,…
Data inputs: DART, EXE, SAGE,… Dynamic

Presenter
Presentation Notes
The main idea I have been working on for the last 20 years is SMC, and mostly dynamic SMC.

… can compute the product of OS processes to deal with nondeterminisn due to concurrency, or use symbolic execution to partition the input space of programs to deal with nondeterminism due to data inputs

Page 6 September 2014 EMC’2014

Example: SAGE @ Microsoft

• Problem: How to systematically explore efficiently the
state spaces of sequential programs to find bugs due to
malformed inputs?

• Motivation: security testing at Microsoft

• Software security bugs can be very expensive:
– Cost of each Microsoft Security Bulletin: $Millions
– Cost due to worms (Slammer, CodeRed, Blaster, etc.): $Billions

• Many security exploits are initiated via files or packets
– Ex: MS Windows includes parsers for hundreds of file formats

• Security testing: “hunting for million-dollar bugs”

Page 7 September 2014 EMC’2014

A Solution: Whitebox Fuzzing [NDSS’08]
• Idea: mix fuzz testing with dynamic test generation

– Dynamic symbolic execution to collect constraints on inputs
– Negate those, solve new constraints to get new tests
– Repeat  “systematic dynamic test generation” (= DART)
(Why dynamic ? Because most precise ! [PLDI’05, PLDI’11])

• Combine with a generational search (not DFS)
– Negate 1-by-1 each constraint in a path constraint
– Generate many children for each parent run
– Challenge all the layers of the application sooner
– Leverage expensive symbolic execution

• Implemented in the tool SAGE
– Optimized for large x86 trace analysis, file fuzzing

Gen 1
parent

Presenter
Presentation Notes
Recently, we have developed an alternative approach of ‘whitebox fuzzing’.

Why dynamic? Because most precise.

Page 8 September 2014 EMC’2014

The Search Space

void top(char input[4])

{

 int cnt = 0;

 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;

 if (input[2] == ‘d’) cnt++;

 if (input[3] == ‘!’) cnt++;

 if (cnt >= 4) crash();

}

If symbolic execution is perfect
 and search space is small,
 this is verification !

Presenter
Presentation Notes
Is this really model checking? Yes, because in the limit, if the exploration is exhasutive, it is verification.

Page 9 September 2014 EMC’2014

Since 2007: many new security bugs found
(missed by blackbox fuzzers, static analysis)
– Apps: image decoders, media players, document processors,…
– Bugs: Write A/Vs, Read A/Vs, Crashes,…
– Many triaged as “security critical, severity 1, priority 1”

(would trigger Microsoft security bulletin if known outside MS)
– Example: WEX Security team for Win7

• Dedicated fuzzing lab with 100s machines
• 100s apps (deployed on 1 billion+ computers)
• ~1/3 of all fuzzing bugs found by SAGE !

SAGE Results

Page 10 September 2014 EMC’2014

Impact of SAGE (in Numbers)
• 500+ machine-years

– Runs in the largest dedicated fuzzing lab in the world
– Largest computational usage ever for any SMT solver

• 100s of apps, 100s of bugs (missed by everything else)
– Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs
– Millions of dollars saved (for Microsoft and the world)

• “Practical Verification”:
– Eradicate all buffer overflows in all Windows parsers

• <5 security bulletins in all SAGE-cleaned Win7 parsers, 0 since 2011
• If nobody can find bugs in P, P is observationally equiv to “verified”!
• Reduce costs & risks for Microsoft, increase those for Black Hats

2000 2005 2010 2015

Blackbox Fuzzing Whitebox Fuzzing “Practical Verification”

Page 11 September 2014 EMC’2014

Conclusion: Ed Clarke

• A man

• An idea

• A community

• Changing the world
(Elba, 2011)

Thank you !
There is one thing stronger than all the armies in the world;
and that is an idea whose time has come. -- Victor Hugo

Presenter
Presentation Notes
I am fortunate to have been infected by Ed’s ideas early in my professional life.

NO: Success comes from articulating and developing the right idea at the right time.

Page 12 September 2014 EMC’2014

Example

void top(char input[4])

{

 int cnt = 0;

 if (input[0] == ‘b’) cnt++;

 if (input[1] == ‘a’) cnt++;

 if (input[2] == ‘d’) cnt++;

 if (input[3] == ‘!’) cnt++;

 if (cnt >= 4) crash();

}

input = “good”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Negate each constraint in path constraint
Solve new constraint  new input

Path constraint:

good

goo!

bood

gaod

godd

 I0=‘b’

 I1=‘a’

 I2=‘d’

 I3=‘!’

Gen 1  SAT

SMT
solver

	Dynamic Software Model Checking���Patrice Godefroid��Microsoft Research
	Ed Clarke: A man, An idea…
	Ed Clarke: A man, An idea…
	Insight: Model Checking is Super Testing
	Dynamic Software Model Checking
	Example: SAGE @ Microsoft
	A Solution: Whitebox Fuzzing [NDSS’08]
	The Search Space
	SAGE Results
	Impact of SAGE (in Numbers)
	Conclusion: Ed Clarke
	Example

