Monitoring Cyber Physical Systems in a Timely Manner

A. Prasad Sistla,

joint work with M. Zefran, Y Feng, and Y Ben

University of Illinois at Chicago

- Cyber Physical Systems (CPS): hybrid states
	- e.g. automotive systems, robotic systems etc.
- **Correctness: hard to achieve**
- **o** Testing: not exhaustive
- **o** Thorough Verification:
	- Not always feasible due to complexity
	- Source code may not be available
	- Assumptions made may not hold at run time
- Monitoring: a Complementary Approach
	- Provides additional level of safety;
	- Monitor takes outputs of the systems, Checks if the system computation is correct.

Probabilistic Systems

- System behavior probabilistic due to
	- Noise in the sensors etc.
	- Other uncertainties (e.g., failures)
- System state is only partially observable

Example: A Train Velocity and Braking System modeled with Prob. Hybrid Automata

Two Approaches:

- Discretize the state space and model it as a Hidden Markov Chain (HMC)
- Use Extended HMC with hybrid states

Hidden Markov Chains (HMC)

- \bullet A HMC $H = (G, O, r_0)$ where
	- $G = (S, R, \phi)$ is a Markov chain;
		- *S* countable set of states
		- *R* ⊆ *S* × *S* transition relation
		- $\bullet \phi : R \to (0, 1]$ assigns probabilities to transitions
	- \bullet *O* : *S* \rightarrow Σ where Σ is a countable set of outputs;
	- $r_0 \in S$ is the start state
- **•** Define Prob. \mathcal{F}_{GS} on measurable sets of *state* sequences,
- **•** Prob. $F_{H,s}$ on measurable sets of *output* sequences.

 $\sqrt[n]{v}$ denotes paths in which *v* appears eventually.

$$
\mathcal{F}_{G,s}(\lozenge \mathsf{v}) = \frac{1}{2}
$$

$$
\mathcal{F}_{H,s}(\square \lozenge \mathsf{b}) = \frac{1}{2}
$$

Accuracy Measures and Monitorability

Given a HMC *H*, a property automaton A and a monitor *M*, which observes outputs at runtime and raises alarms,

- Acceptance Accuracy (AA) is Prob. a good computation is accepted by *M*. 1-*AA*: false alarms.
- Rejection Accuracy (RA) is Prob. a bad computation is rejected by *M*. 1-*RA*: missed alarms

H is Monitorable w.r.t. A, if $AA \rightarrow 1$ and $RA \rightarrow 1$ are achievable.

E.g. *H* is monitorable, w.r.t. \Diamond *v*

Conservative Threshold Monitors

Given *H* and A, a Threshold Monitor *M* at runtime acts as follows:

1. After the system outputs sequence α, *M* estimates the cond. prob. $AccPr(\alpha)$ that the computation generating α is correct;

- 2. If $AccPr(\alpha) < art$, raises an alarm.
- **•** Every "bad" computation is rejected, i.e. $RA = 1$.
- While $\textit{atr} \rightarrow 0$, we have $\textit{AA} \rightarrow 1$.

Assume A specifies a safety property,

- Define random variable *MTIME*(*atr*) to represent the time taken by a monitor to raise an alarm after failure.
- *H* is exponentially converging monitorable (ECM) w.r.t. A, if *AccPr*(α) converges to 0 exponentially w.r.t. *length*(α) (in a probabilistic sense), for α generated by a bad computation.

Theorem

If H is exponentially converging monitorable w.r.t. A*,* $E(MTIME(at)) = O(log(\frac{1}{\text{atr}})) \sim O(log(\frac{1}{1-AA})).$

Implementation of Threshold Monitors:

- Perform state estimation on $H \times A$ using particle filters.

Example: A Car Braking System

Experiment Result

Plot of $E[MTIME(at)]$ vs. $log \frac{1}{atr}$.

 \bullet Upper bound on *AccPr*(): $AccProb^U(\alpha) = 1 - P[d_{=3}]$;

Lower bound (no timeout transitions): $AccProb^L(\alpha)$ = $1 - P[d_{=3}] - \frac{0.1}{1 - 0.9^{2}}(P[d_{=1}] + P[d_{=2}] + 0.9P[d_{=4}])$

- Implement the monitors on a real system, such as a robotic system
- Optimize particle filter algorithms
- Developing modular monitors
- Generating system model automatically

Thank you!