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Ensuring Correctness

@ Cyber Physical Systems (CPS): hybrid states
@ e.g. automotive systems, robotic systems etc.

@ Correctness: hard to achieve

@ Testing: not exhaustive
@ Thorough Verification:

o Not always feasible due to complexity
@ Source code may not be available
@ Assumptions made may not hold at run time

@ Monitoring: a Complementary Approach
e Provides additional level of safety;
@ Monitor takes outputs of the systems,
Checks if the system computation is correct.



Probabilistic Systems

@ System behavior probabilistic due to

@ Noise in the sensors etc.
e Other uncertainties (e.g., failures)

@ System state is only partially observable

Example: A Train Velocity and Braking System modeled
with Prob. Hybrid Automata

q-1
V(k+1)=0.1353(K)+0.8647+(25+2.5*sin(K)}+n, V(k+1)=v(k)-0.5"max{0,i-3}+n,
]
i=0 >0 Velocity System
q,=3
. — o Notes: n,~N(0,1)
Observation model V(k+1)=v(k)-0.5"max{0,i~3}+n, n,~N(0,0.1)




System Modeling

Two Approaches:

@ Discretize the state space and model it as
a Hidden Markov Chain (HMC)

@ Use Extended HMC with hybrid states



Hidden Markov Chains (HMC)

@ AHMC H = (G, O, ry) where
e G = (S,R,¢) is a Markov chain;
@ S - countable set of states

@ R C S x S - transition relation

@ ¢ : R— (0, 1] assigns probabilities to transitions
e O : S— X where X is a countable set of outputs;
e ry c Sis the start state
@ Define Prob. 7 . on measurable sets of state sequences,

@ Prob. 7, ;. on measurable sets of output sequences.



A HMC Example




Accuracy Measures and Monitorability

Given a HMC H, a property automaton .A and a monitor M,
which observes outputs at runtime and raises alarms,

@ Acceptance Accuracy (AA) is Prob. a good computation is
accepted by M. 1-AA: false alarms.

@ Rejection Accuracy (RA) is Prob. a bad computation is
rejected by M. 1-RA: missed alarms

H is Monitorable w.r.t. A, if AA— 1 and RA — 1 are achievable.

E.g. H is monitorable, w.r.t. O v

3/4 Sy

3/4




Conservative Threshold Monitors

@ Given H and A, a Threshold Monitor M at runtime acts as
follows:

1. After the system outputs sequence a, M estimates the
cond. prob. AccPr(«) that the computation generating « is
correct;

2. If AccPr(«) < atr, raises an alarm.

@ Every "bad" computation is rejected, i.e. RA=1.

@ While atr — 0, we have AA — 1.



Timely Monitoring

Assume A specifies a safety property,

@ Define random variable M TIME(air) to represent the time
taken by a monitor to raise an alarm after failure.

@ His exponentially converging monitorable (ECM) w.r.t. A, if
AccPr(«) converges to 0 exponentially w.r.t. length(«) (in a
probabilistic sense), for a. generated by a bad computation.

Theorem

If H is exponentially converging monitorable w.r.t. A,
E(MTIME (atr)) = O(log(3)) ~ O(log(1-4z))-

atr




Implementation of Threshold Monitors:

- Perform state estimation on H x A using particle filters.

Example: A Car Braking System

Braking System R
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V(k+1)=26.5+n_3
clk+1)=c(k)

| vk 1)=v(k)
ckr)=c(k)+1
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V(k+1)=v(k)-brake_coeff+n_4 Noises:
cfk+1)=c(k) n_1~N(0,1)

n_2-N(0.3)
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Property Automaton
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Observation model

2(K)=v(k)}*n_6




Experiment Result

Plot of E[MTIME atr)] vs. log ..
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@ Upper bound on AccPr(): AccProbY(a) =1 — P[d_3];

@ Lower bound (no timeout transitions): AccProbt(a) =
1~ Pld_s] — 'z (Pld—1] + Pld_z] + 0.9P[d_4])
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Current and Future Work

@ Implement the monitors on a real system, such as a
robotic system

@ Optimize particle filter algorithms
@ Developing modular monitors

@ Generating system model automatically



Thank you!



