Monitoring Cyber Physical Systems in a Timely Manner

A. Prasad Sistla,

joint work with M. Zefran, Y Feng, and Y Ben

University of Illinois at Chicago

- Cyber Physical Systems (CPS): hybrid states
 - e.g. automotive systems, robotic systems etc.
- Correctness: hard to achieve
- Testing: not exhaustive
- Thorough Verification:
 - Not always feasible due to complexity
 - Source code may not be available
 - Assumptions made may not hold at run time
- Monitoring: a Complementary Approach
 - Provides additional level of safety;
 - Monitor takes outputs of the systems, Checks if the system computation is correct.

Probabilistic Systems

- System behavior probabilistic due to
 - Noise in the sensors etc.
 - Other uncertainties (e.g., failures)
- System state is only partially observable

Example: A Train Velocity and Braking System modeled with Prob. Hybrid Automata

Two Approaches:

- Discretize the state space and model it as a Hidden Markov Chain (HMC)
- Use Extended HMC with hybrid states

Hidden Markov Chains (HMC)

- A HMC $H = (G, O, r_0)$ where
 - $G = (S, R, \phi)$ is a Markov chain;
 - S countable set of states
 - $R \subseteq S \times S$ transition relation
 - ϕ : $R \rightarrow (0, 1]$ assigns probabilities to transitions
 - $O : S \rightarrow \Sigma$ where Σ is a countable set of outputs;
 - $r_0 \in S$ is the start state
- Define Prob. $\mathcal{F}_{G,s}$ on measurable sets of state sequences,
- Prob. $\mathcal{F}_{H,s}$ on measurable sets of *output* sequences.

" \diamond *v*" denotes paths in which *v* appears eventually.

$$\begin{aligned} \mathcal{F}_{G,s}(\Diamond v) &= \frac{1}{2} \\ \mathcal{F}_{H,s}(\Box \Diamond b) &= \frac{1}{2} \end{aligned}$$

Accuracy Measures and Monitorability

Given a HMC H, a property automaton A and a monitor M, which observes outputs at runtime and raises alarms,

- Acceptance Accuracy (AA) is Prob. a good computation is accepted by *M*. 1-*AA*: false alarms.
- Rejection Accuracy (RA) is Prob. a bad computation is rejected by *M*. 1-*RA*: missed alarms

H is Monitorable w.r.t. A, if $AA \rightarrow 1$ and $RA \rightarrow 1$ are achievable.

E.g. *H* is monitorable, w.r.t. $\Diamond v$

Conservative Threshold Monitors

• Given *H* and *A*, a Threshold Monitor *M* at runtime acts as follows:

1. After the system outputs sequence α , *M* estimates the cond. prob. *AccPr*(α) that the computation generating α is correct;

2. If $AccPr(\alpha) < atr$, raises an alarm.

- Every "bad" computation is rejected, i.e. RA = 1.
- While $atr \rightarrow 0$, we have $AA \rightarrow 1$.

Assume A specifies a safety property,

- Define random variable *MTIME(atr)* to represent the time taken by a monitor to raise an alarm after failure.
- H is exponentially converging monitorable (ECM) w.r.t. A, if AccPr(α) converges to 0 exponentially w.r.t. length(α) (in a probabilistic sense), for α generated by a bad computation.

Theorem

If H is exponentially converging monitorable w.r.t. A, $E(MTIME(atr)) = O(log(\frac{1}{atr})) \sim O(log(\frac{1}{1-AA})).$

Implementation of Threshold Monitors:

- Perform state estimation on $H \times A$ using particle filters.

Example: A Car Braking System

Experiment Result

Plot of E[MTIME(atr)] vs. log $\frac{1}{atr}$.

• Upper bound on AccPr(): AccProb^U(α) = 1 – P[d₌₃];

• Lower bound (no timeout transitions): $AccProb^{L}(\alpha) = 1 - P[d_{=3}] - \frac{0.1}{1 - 0.9^{2}}(P[d_{=1}] + P[d_{=2}] + 0.9P[d_{=4}])$

- Implement the monitors on a real system, such as a robotic system
- Optimize particle filter algorithms
- Developing modular monitors
- Generating system model automatically

Thank you!