Ed Clarke’s Impact on
Automotive Systems

Prof. Raj Rajkumar
Carnegie Mellon University

Cyber-Physical Systems

9/26/2014

Cyber-Physical Systems as Stochastic Systems

* Due to uncertainties in the environment, faults, etc.

* Transient property specification:
= “What is the probability that the system shuts down within 0.1 ms”?

Hybrid Systems

* Hybrid systems combine continuous and discrete components.
* They suitably model automotive control systems.

Hybrid Systems

Differential
Dynamical i
Systems = —

Finite
Avutomata

9/26/2014

9/26/2014

Safety Verification of a Hybrid System

Continuous
Dynamics

O

Vehicle

gear ' }
P ot "
pronor. Vo
z Ak
| Throttle EngineRFH EngineRFM
-
Engine = VehicleSpeed
He - FlfResults

ot om0

up_th
ThresholdCalculatie -

Throttle

| Discrete
. Controller

Safety Verification of Hybrid System

gear ’ N
> "

ot

el
EngineRPM EngineRPM
i) = vehicleSpeed |
Engine Ne i n
7

s it possible that:

‘Turque

® Gear =1 and Speed > 50 mph?

® Throttle = 0% and d(Speed)/dt >0 ?

ThreshaoldCalculation BrakeTorgue’
Brake

Throttle ManeuversGU

WehicleSpeed

Safety Verification

-4— unsafe set
exemplary trajectory

X2
I——» initial set reachable set ! Model Checking

X1

Goal:
Show that UNSAFE states are NOT reachable.

When UNSAFE is reachable, ALWAYS report the problems and provide
DIAGNOSIS.

Fully automated.

Bounded Model Checking

Developed a bounded model checker for non-linear hybrid
systems

* Debug systems up to a bounded depth.

However, typically users ask to verify
models that are supposed to be correct!

9/26/2014

Can Hybrid Systems Be Verified?

Bounded model checking and reachable-set computation do
not suffice.

Bounds on time
Bounds on depth

In general, an undecidable problem.

Clarke & Co: But there is a way! |

Invariant Set ===>Safety

-4— unsafe set
exemplary trajectory

The dynamics
stays in Inv

L,
\ initial set\eachable set
X1

The initial set i i
e initial set is Invariant Set /nv

contained in /nv

9/26/2014

9/26/2014

Inductive Invariants

Suppose a region /nv of the state space satisfies:

* The system starts within /nv;
* Dynamics never takes the system outside of /nv;

Result

Decision solvers can be used for invariant-based verification

of hybrid systems.
The method is complementary to bounded model checking

debugging vs. verifying
« Possible to verify realistic designs now!

dReach Tool

Used for the safety verification of:
* Model-Level Properties
* Code-Level Properties

dReach’s Verification Techniques

* Visualization: Reachable Set Computation
* Debugging: Bounded Model Checking
 Certifying: Invariant-based Verification

The first model-checking tool that
can handle non-linear hybrid systems.

9/26/2014

Code in CMU’s Autonomous Cadillac SRX

* About 500K lines of C++ code in total. A very complex system:
perception, planning, behaviors, ...

* Hybrid system (combining continuous and discrete controls) in
nature.

* Control part: The implementation of control should be right.
* Logical part: The logical framework should not have bugs.
* Run-time errors: Division by zero, overflow, ...

Formal Studies of Programs
® Programs are state transformers:

* All the possible values for variables in a piece of code form
a state space

* They define a transitional system?
* Safety Properties

* Does there exist an E, such that after some n, E, € {Unsafe states}?

9/26/2014

Example: “Distance Keeper”

minGapIn m

if (d

(Y

- minSeparation m };

“Distance Keeper”: Code to Logic Formula

[sicung@borel test]$../main.native dk part.i
/\ [/\ [(minGapIn® := 8.0), (safetyZonelength® := 10.8), (distanceToSafetyPoint®

20.0), (minSeparation® := 10.8)], \/ [/\ [distanceToSafetyPoint® > safetyZonele
apInl := minSeparationQutsideSafetyZone®)], /\ [!(distanceToSafetyPoint® > safet

). \/ [/\ [distanceToSafetyPoint® > safetyZonelength®, (minGapInl := minSeparati
gth@) / minSeparationOutsideSafetyZone®) * (minSeparationOutsideSafetyZone® - mi [
> safetyZonelLength®), (minGapInl := minSeparation®)]]]], i{ue]

{
distanceToSafetyPoint: @,
minGapIn: 1,

minSeparation: @,
minSeparationQutsideSafetyZone: @,
safetyZonelength: @

}

9/26/2014

9/26/2014

The dReach Approach

C/C++ Code —

Logic
Formulas

+

Fast

Safety Property | Solvers
Invariants

> Safel

The Implementation

borel:sre

Flle Edit Tools Syntax Buffers Window Help T i
- dk_part.
rough. Adding a return st.
[sicungf /main.native test,

Body of function main falls-th

/dk_part.i

/\ [/\ [(defaultAcce - (frontBumperspeed mpse
1= 3.1415)], \/ [/\ [frontBumperSpeed mps@ , (frontB

umperSpeed mpAL :)1, /\ [!(frontB
05), frontBumperSpeed mpsl frontBum
[(minGapIn_m@ (distanceToSafe
desafetyZone m ©
(vehicleLength_m@

|ionOutsideSafety 1 0, (minGapIn ml
sidesafetyZone m 8)], distanceTo
yZoneLength mé + minSeparationOutsidi

i nceTosafetyPoint@

etyZoneLength me) / pa

(minSeparationOutsideSafetyZon
, /\ [!(distanceToSafetyPoin

File Edit
x6 is in: [- .664
x7 is in: [-1.174 , -0.8];

is unsatisfiable.

turned by the dReal solver.

umperSpeed mps@ < ©.
perspeed mpsell, /\
yPoin 0

20.0), t
(vehicleRespons
1€ 1, v [\

minSeparationOut
safetyPointe > safet

Version:

10

Conclusions

* To produce reliable automobile with any safety-critical automated
features, it is impossible to do without complete formal verification on

the code.

* Clarke & Co. have developed the technology that suits the verification
needs of this domain.

* |t is based on established theories of program verification and their
new powerful solvers for non-linear problem:s.

* Tools ready for use by developers of makers of automated vehicles.

Thank you, Ed!

9/26/2014

11

