
Cloud BDDs

http://www.cs.cmu.edu/~bryant

Randal E. Bryant
Carnegie Mellon University

x2

0 1

x3

x1

– 2 –

Ed’s PhD Students
* Will Klieber
* Sicun Gao
Himanshu Jain
Nishant Sinha
* Pankaj Chauhan
* Muralidhar Talupur
* Anubhav Gupta
Alex Groce
* Sagar Chaki
* Dong Wang
* Sergey Berezin
Wilfredo Marrero
* Yuan Lu
* Marius Minea

Vicky Hartonas-Garmhausen
Somesh Jha
Sergios Campos
* Xudong Zhao
* David E. Long
* Jerry. R. Burch
* Ken L. McMillan
M.C. Browne
* David L. Dill
Bud Mishra
A. Prasad Sistla
Christos N. Nikolaou
E. Allen Emerson

– 3 –

Proposed System Structure

C1

C2

Cm

Clients

X1

X2

Xk

Routers

S1

S2

Sn

Workers

m ≈ 100 k ≈ 20 n ≈ 1000

BDD
Database

– 4 –

Traditional BDD Representation

Based on Pointers
 Node represented by

address
 Location of information

about node

All data within single
address space

x9

x8

x10

0 1

0x743210

0x579268

0x617290
0x617290

0x579268

8

0x743210:

index

Hptr

Lptr

– 5 –

Shared-Nothing Implementation

Only Way to Achieve True Scalability
 Large number of low-cost nodes
 Single resource shared by many users

Distribute Data Structures Across Processors

Must find alternative to pointer-based representation

CPU

Mem.

CPU

Mem.

CPU

Mem.

CPU

Mem.

Network

– 6 –

Ref-Based BDD Representation

“Ref” Encodes
 Node type
 Constant, Variable,

Function

 Top-level variable
 Hash of components
 Uniquifier
 To resolve hash collisions

x9

x8

x10

0 1

F8.ed4c70.2

V10

F9.71a09b.1

C0 C1

h

F9.71a09b.1

V10

8
ed4c70

index

tref

eref

– 7 –

Storing a Ref

 Entry describing node stored according to its hash signature
 Unique table distributed across workers according to hash

S1

S2

Sn

BDD Servers

h

F9.71a09b.1

V10

8 ed4c70

mod n

Si

Ref F8.ed4c70.2

Index 8

TRef V10

ERef F9.71a09b.1

i
index

tref

eref

– 8 –

Dereferencing a Ref

 Hash signature in Ref enables retrieval of components

S1

S2

Sn

BDD
Servers

mod n

F8.ed4c70.2

Si

i

Ref F8.ed4c70.2

Index 8

TRef V10

ERef F9.71a09b.1

– 9 –

Data Flow Execution Model

Concept
 Computation expressed as dynamically generated network

of operators
 Operator has fixed number of operands + destination
 When all operands available, operator fires
 Perform computation
 Send one or more operands to other operators
 Generate one or more operators
 Disappear

*

+

2

3

5

dest

– 10 –

Implementing ITE

Request
 Compute (f ∧ g) ∨ (¬f ∧ h)
 Send result r to dest

Outcomes
 Early termination if special

case or result found in
memo table

 Otherwise, up to 9
operations + 2 recursive
calls

Hashed placement

Arbitrary placement

f’, g’, h’

f, g, h

v, f’ v, g’ v, h’

r1 r0
v

f’, g’, h’

r

dest r

ITE Arg Check

ITE Lookup

Extract Extract Extract

Recurse Recurse

Canonize Arg. Check

Canonize Lookup

ITE Memoize

ITE Recurse

f1, f0 g1, g0 h1, h0

f1, g1, h1 f0, g0, h0

– 11 –

Implementation

Data Flow BDD combination of:
 General-purpose data flow on top of sockets interface
 Ref-based BDD
 Can also execute with standard, depth-first traversal

Client Interface
 Any combination of data flow, sequential, CUDD
 Isomorphic results
 For testing and performance comparison

Sockets

Data Flow Ref-Based
BDD

CUDD

Data Flow BDD

Client Worker

Router

– 12 –

Some Results

 With help from
Hemanth Kini

 Boolean function
representing all legal
configurations

 Peak nodes = 23M
 Total ITEs = 233M
 Total OPs = 837M

N-Queens Problem
N = 14

0

500

1000

1500

2000

2500

3000

3500

4000

4500

CUDD Local D01 D02 D04 D08 D16

– 13 –

More Results

 Require 8 processors
to have enough
memory

 Peak nodes = 95M
 Total ITEs = 1.1B
 Total OPs = 3.9B

N-Queens Problem
N = 15

0

2000

4000

6000

8000

10000

12000

14000

CUDD Local D01 D02 D04 D08 D16

– 14 –

Implications

For BDDs
 Scale to much larger sizes
 Allow sharing across multiple runs and users
 View as dynamically constructed, distributed database

For Parallel Computation
 Execution model to support dynamic graph algorithms
 Combines data flow + distributed hash table
 Actions triggered by message passing
 Locate objects by hash function

 Features
 Overcome latency with high throughput
 Scalable to arbitrary number of processors

	Cloud BDDs
	Ed’s PhD Students
	Proposed System Structure
	Traditional BDD Representation
	Shared-Nothing Implementation
	Ref-Based BDD Representation
	Storing a Ref
	Dereferencing a Ref
	Data Flow Execution Model
	Implementing ITE
	Implementation
	Some Results
	More Results
	Implications

