Cloud BDDs

Randal E. Bryant
Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

Ed’'s PhD Students

* Will Klieber

* Sicun Gao
Himanshu Jain
Nishant Sinha

* Pankaj Chauhan
* Muralidhar Talupur
* Anubhav Gupta
Alex Groce

* Sagar Chaki

* Dong Wang

* Sergey Berezin
Wilfredo Marrero
*Yuan Lu

* Marius Minea

—_2_

Vicky Hartonas-Garmhausen

Somesh Jha
Sergios Campos
* Xudong Zhao

* David E. Long
*Jerry. R. Burch
*Ken L. McMillan
M.C. Browne

* David L. Dill
Bud Mishra

A. Prasad Sistla
Christos N. Nikolaou

E. Allen Emerson

Proposed System Structure

Clients Routers Workers
1
C S <>
2 | T | X2 2
Xk
Cm / \ Sn <>
m =100 k=20 n=1000

BDD
Database

Traditional BDD Representation

0x743210:
8 index ° 0x743210
0x579268 | Hptr 7
0x617290 | Lptr 0x614 Xq
0x579268
Based on Pointers
m Node represented by .
address /
m Location of information N\ e
about node 0 1

All data within single
address space

Shared-Nothing Implementation

Mem. Mem. Mem. Mem.

CPU CPU CPU CPU

Network

Only Way to Achieve True Scalability
m Large number of low-cost nodes
m Single resource shared by many users

Distribute Data Structures Across Processors

Must find alternative to pointer-based representation

Ref-Based BDD Representation

index /
8 > ed4c70 °
tref ’

F8.ed4c70.2

Vio—— h |— ,
F9.71a09b.1 —=0), m9-71a0 G
“Ref” Encodes V10
m Node type ,
® Constant, Variable, /
Function \ gt
m Top-level variable ~—’
co| o 1 |c1
m Hash of components

m Uniquifier
® To resolve hash collisions

Storing a Ref

BDD Servers

g ndexy ed4c70 | S
I
tref
vio —9 h |——|modn}l—> S
2
F9.71a09b.1
Ref |F8.ed4c70.2 ’Si
/
Index 8 .
TRef V10
ERef F9.71a09b.1 S
n

m Entry describing node stored according to its hash signature
m Unique table distributed across workers according to hash

Dereferencing a Ref

BDD
Servers
F8_.ed4c70.2 S
S i .
»| mod n —»
SZ

Ref |F8.ed4c70.2 /, S,

Index 8
TRef V10
ERef F9.71a09b.1

S

n

——

m Hash signature in Ref enables retrieval of components

Data Flow Execution Model

2 @)

dest
S o—> + [

5 @&—>

Concept

m Computation expressed as dynamically generated network
of operators

m Operator has fixed number of operands + destination

m When all operands available, operator fires
® Perform computation
e Send one or more operands to other operators
e Generate one or more operators
® Disappear

f,g,hl

ITE Arg Check -

.9, l

/

ITE Lookup -

lv, f’ lv, g’ lv, h’

Extract Extract Extract

lfb fo l91’ 9o lhr

ITE Recurse

Recurse
Iy

fi, 94 0y fo, 9o
r Recurse

Io

v
Y\

~

Canonize Arg. Check

Canonize Lookup

>

o

ITE Memoize

1h0

r

Implementing ITE

Hashed placement

Arbitrary placement

Request
m Compute (f A g) V (=f A h)
m Send result r to dest

OQutcomes

m Early termination if special
case or result found in
memo table

m Otherwise,upto 9
operations + 2 recursive
calls

Implementation

Client Worker

Data Flow BDD

CUDD | Ref-Based Data Flow

Router
BDD Sockets

Data Flow BDD combination of:

m General-purpose data flow on top of sockets interface

m Ref-based BDD
® Can also execute with standard, depth-first traversal

Client Interface

m Any combination of data flow, sequential, CUDD
® [somorphic results
11— ® For testing and performance comparison

Some Results

4500

4000

3500

3000

2500

2000

1500

1000

500

- 12 —

N =

14

N-Queens Problem

m With help from

Hemanth Kini

A

m Boolean function
representing all legal
configurations

— m Peak nodes = 23M
~ m Total ITEs = 233M
m Total OPs =837M

CubD

Local

DO1

D02

D04

D08

D16

More Results

N-Queens Problem

N =15 -
14000 .
12000 - .

m Require 8 processors
to have enough

10000 -

8000 -

memory
6000 - -
m Peak nodes = 95M
4000 - ~ m Total ITEs =1.1B

m Total OPs = 3.9B

2000 - -

CUDD Local D01 D02 D04 D08 D16
— 13—

Implications

For BDDs

m Scale to much larger sizes

m Allow sharing across multiple runs and users
® View as dynamically constructed, distributed database

For Parallel Computation
m Execution model to support dynamic graph algorithms

m Combines data flow + distributed hash table
® Actions triggered by message passing
® Locate objects by hash function

m Features
® Overcome latency with high throughput
® Scalable to arbitrary number of processors

— 14—

	Cloud BDDs
	Ed’s PhD Students
	Proposed System Structure
	Traditional BDD Representation
	Shared-Nothing Implementation
	Ref-Based BDD Representation
	Storing a Ref
	Dereferencing a Ref
	Data Flow Execution Model
	Implementing ITE
	Implementation
	Some Results
	More Results
	Implications

