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Proposed System Structure
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Traditional BDD Representation
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Shared-Nothing Implementation
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Network

Only Way to Achieve True Scalability
m Large number of low-cost nodes
m Single resource shared by many users

Distribute Data Structures Across Processors

Must find alternative to pointer-based representation



Ref-Based BDD Representation
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Storing a Ref
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m Entry describing node stored according to its hash signature
m Unique table distributed across workers according to hash



Dereferencing a Ref
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m Hash signature in Ref enables retrieval of components



Data Flow Execution Model
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Concept

m Computation expressed as dynamically generated network
of operators

m Operator has fixed number of operands + destination

m When all operands available, operator fires
® Perform computation
e Send one or more operands to other operators
e Generate one or more operators
® Disappear
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Implementing ITE

Hashed placement

Arbitrary placement

Request
m Compute (f A g) V (=f A h)
m Send result r to dest

OQutcomes

m Early termination if special
case or result found in
memo table

m Otherwise,upto 9
operations + 2 recursive
calls



Implementation

Client Worker

Data Flow BDD

CUDD | Ref-Based Data Flow

Router
BDD Sockets

Data Flow BDD combination of:

m General-purpose data flow on top of sockets interface

m Ref-based BDD
® Can also execute with standard, depth-first traversal

Client Interface

m Any combination of data flow, sequential, CUDD
® [somorphic results
11— ® For testing and performance comparison



Some Results
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N-Queens Problem
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More Results

N-Queens Problem
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Implications

For BDDs

m Scale to much larger sizes

m Allow sharing across multiple runs and users
® View as dynamically constructed, distributed database

For Parallel Computation
m Execution model to support dynamic graph algorithms

m Combines data flow + distributed hash table
® Actions triggered by message passing
® Locate objects by hash function

m Features
® Overcome latency with high throughput
® Scalable to arbitrary number of processors
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