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Proposed System Structure 
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Traditional BDD Representation 

Based on Pointers 
 Node represented by 

address 
 Location of information 

about node 

 
All data within single 
address space 
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Shared-Nothing Implementation 

Only Way to Achieve True Scalability 
 Large number of low-cost nodes 
 Single resource shared by many users 

Distribute Data Structures Across Processors 
 

Must find alternative to pointer-based representation 
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Ref-Based BDD Representation 

“Ref” Encodes 
 Node type 
 Constant, Variable, 

Function 

 Top-level variable 
 Hash of components 
 Uniquifier 
 To resolve hash collisions 
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Storing a Ref 

 Entry describing node stored according to its hash signature 
 Unique table distributed across workers according to hash 
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Dereferencing a Ref 

 Hash signature in Ref enables retrieval of components 
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Data Flow Execution Model 

Concept 
 Computation expressed as dynamically generated network 

of operators 
 Operator has fixed number of operands + destination 
 When all operands available, operator fires 
 Perform computation 
 Send one or more operands to other operators 
 Generate one or more operators 
 Disappear 
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Implementing ITE 

Request 
 Compute (f ∧ g) ∨ (¬f ∧ h) 
 Send result r to dest 

Outcomes 
 Early termination if special 

case or result found in 
memo table 

 Otherwise, up to 9 
operations + 2 recursive 
calls 

Hashed placement 

Arbitrary placement 
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Implementation 

Data Flow BDD combination of: 
 General-purpose data flow on top of sockets interface 
 Ref-based BDD 
 Can also execute with standard, depth-first traversal 

Client Interface 
 Any combination of data flow, sequential, CUDD 
 Isomorphic results 
 For testing and performance comparison 
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Some Results 

 With help from 
Hemanth Kini 

 Boolean function 
representing all legal 
configurations 

 Peak nodes = 23M 
 Total ITEs = 233M 
 Total OPs = 837M 
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More Results 

 Require 8 processors 
to have enough 
memory 

 Peak nodes = 95M 
 Total ITEs = 1.1B 
 Total OPs = 3.9B 
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Implications 

For BDDs 
 Scale to much larger sizes 
 Allow sharing across multiple runs and users 
 View as dynamically constructed, distributed database 

For Parallel Computation 
 Execution model to support dynamic graph algorithms 
 Combines data flow + distributed hash table 
 Actions triggered by message passing 
 Locate objects by hash function 

 Features 
 Overcome latency with high throughput 
 Scalable to arbitrary number of processors 
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