Tractability and Intractability in Model Checking

Rupak Majumdar

Max-Planck Institute for Software Systems

A Puzzle

Move #1

Move #2

Perform Moves #1 and #2 any number of times. Keep all the coins at the end.

How much money can you make?

\$1000?

\$100?

\$1 MILLION?

MORE MONEY THAN BILL GATES?

Not Infinite...

Each move decreases the value in lexicographic ordering So no matter what you do, the process will terminate

Not Infinite...

Each move decreases the value in lexicographic ordering So no matter what you do, the process will terminate

Three Cups

Three Cups

$(a, b, 0) \rightarrow (a, 0, 2b) \rightarrow (a-1, 2b, 0) \rightarrow * (0, 2^a.b, 0)$

 $(a, 0, 0) \rightarrow * (0, 2^a, 0)$

Four Cups

(a, b, 0, 0) →* $(a, 0, 2^b, 0)$ → $(a-1, 2^b, 0, 0)$

 $(a, 0, 0, 0) \rightarrow * (0, 2^{a}, 0, 0)$

Knuth's Up Arrow

$$a ^{0} = 1$$

 $a ^{0} (b + 1) = a ^{(a ^{ b)})$
 $2 ^{5} = 2 ^{65536} ^{10^{20033}}$

Bill Gates has < \$10^10

Knuth's Up Arrow

a ^^(0) b = a . b

 $a^{n}(n) b = a^{n}(n-1) (a^{n}(n) (b-1))$

(Ackermann, non-primitive recursive)

N Cups

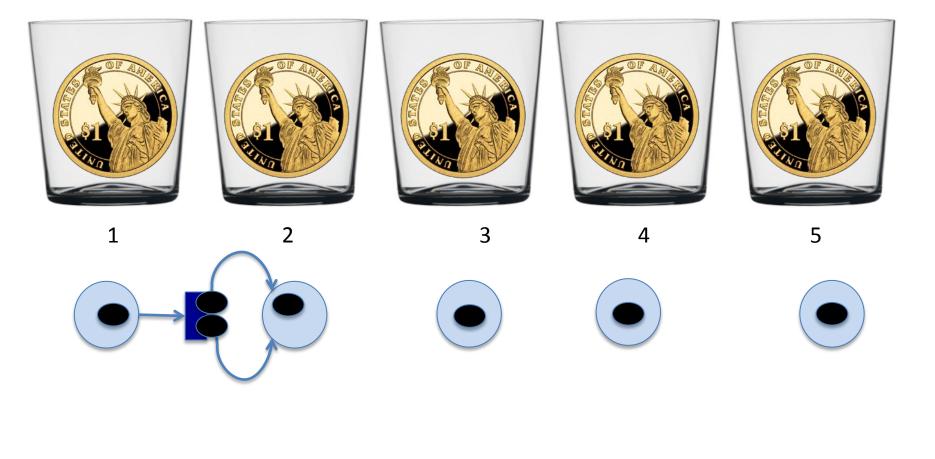
...

$(a, 0, ..., 0) \rightarrow * (0, 2^{(N-2)} a, 0, ..., 0)$

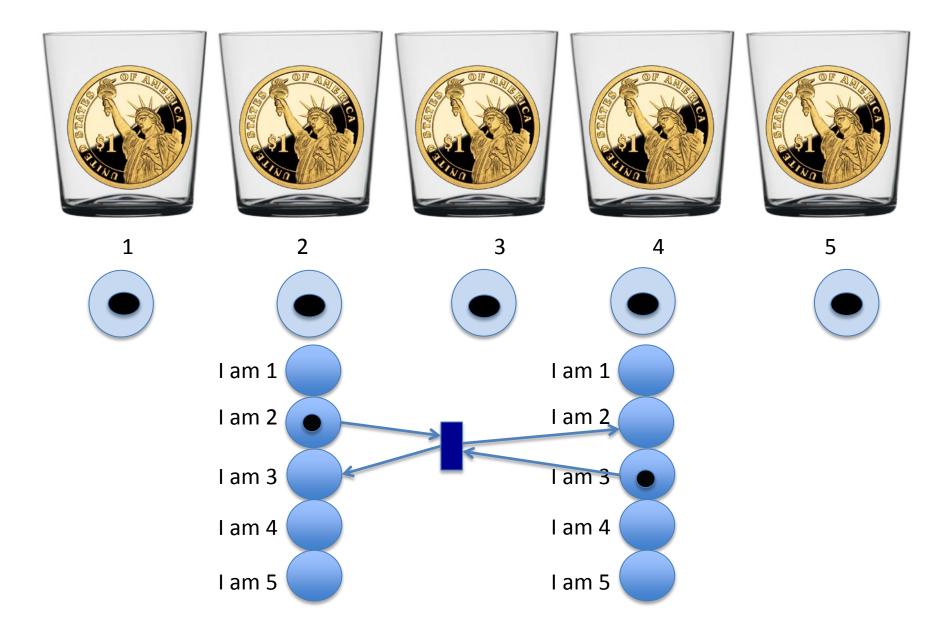
Where is Model Checking?

Finite state spaces defined by simple transitions can be very large!

Decidable != Practical


Undecidable != Impractical

Oh and One More Thing...


Theorem: There is a family of Petri nets with finite but non-primitive recursive reachable state space

[Mayr & Meyer 1981]

Petri Net?

Move #2?

Thank You