
© 2014 Carnegie Mellon University

Model Checking Distributed
Software

Sagar Chaki
September 19, 2014

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Presenter
Presentation Notes
Title Slide
Title and Subtitle text blocks should not be moved from their position if at all possible.

2
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Model Checking and Me

1997 : Ed visits IIT Kharagpur
• Just finished 2nd year undergrad
• Couldn’t understand most of the talks

1998-99: Final year UG

• Developed symbolic model checker, read papers, found a typo

1999-2004: CMU PhD

• Some of the best years of my life
• Did not coin the term “CEGAR”
• Ed, Martha, Pankaj, Somesh, Orna, Helmut, Daniel, Joel, …

2004-Present: SEI

• Verifying Cyber Physical Systems
• Meetings & Lunch in my office responding to email

EMC (Era of Model
Checking)

16

18

23

33

3
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Motivation

Distributed algorithms have always been important
• File Systems, Resource Allocation, Internet, …

Increasingly becoming safety-critical
• Robotic, transportation, energy, medical

Prove correctness of distributed algorithm
implementations

• Pseudo-code is verified manually (semantic gap)
• Implementations are heavily tested (low coverage)

Model-Driven Verifying Compilation of Synchronous Distributed Applications,
Sagar Chaki, James Edmondson, Proc. of MODELS 2014, to appear

4
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Approach : Verification + Code Generation

Distributed
Application

Safety
Specification

Program in Domain Specific Language

Verification

Code
Generation

Binary

Debug Application,
Refine Specification

Success
Failure

Run on Physical
Device

Run within
simulator

The Verifying Compiler:
A Grand Challenge for
computing research

Tony Hoare

5
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Verification

Distributed
Application

Safety
Specification

Sequentialization (assuming
synchronous communication)

Single-Threaded C Program

Software Model Checking
(CBMC, BLAST etc.)

Failure Success

Program in Domain Specific Language

Automatic verification technique for finite
state concurrent systems.

• Developed independently by Clarke and
Emerson and by Queille and Sifakis in
early 1980’s.

• ACM Turing Award 2007

Specifications are written in propositional
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear
Temporal Logic (LTL), …

Verification procedure is an intelligent
exhaustive search of the state space of
the design

Model Checking

6
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Code Generation

Distributed
Application

Safety
Specification

Add synchronizer protocol

C++/MADARA Program

Compile
(g++,clang,MSVC, etc.)

Program in Domain Specific Language A database of facts: 𝐷𝐷 = 𝑉𝑉𝑉 ↦
𝑉𝑉𝑉𝑉𝑉

Node 𝑖 has a local copy: 𝐷𝐵𝑖

• update 𝐷𝐵𝑖 arbitrarily

• publish new variable mappings

• Immediate or delayed

• Multiple variable mappings
transmitted atomically

Implicit “receive” thread on each node

• Receives and processes variable
updates from other nodes

• Updates ordered via Lamport
clocks

Portable to different OSes (Windows,
Linux, Android etc.) and networking
technology (TCP/IP, UDP, DDS etc.)

Binary

MADARA Middleware

© 2014 Carnegie Mellon University

Case Study: Synchronous
Collision Avoidance

Presenter
Presentation Notes
Title Slide
Title and Subtitle text blocks should not be moved from their position if at all possible.

8
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Example: Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Reserve Reserve Reserve

X

Y

9
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Example: Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Reserve

Reserve

Reserve

X

Y

10
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Example: Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Potential
Collision

Reservation
Contention

Resolved based
on Node ID. No

collision
possible if no
over-booking.

X

Y

11
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Collision Avoidance Protocol

NEXT

REQUEST If time to move to
next coordinate

WAITING

If no other node is
locking the next

coordinate

MOVE

If no other node
“with higher id” is
trying to lock the
next coordinate

Reached the next
coordinate

Moving to the
next coordinate

12
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Synchronous Collision Avoidance Code
MOC_SYNC;

CONST X = 4; CONST Y = 4;

CONST NEXT = 0;

CONST REQUEST = 1;

CONST WAITING = 2;

CONST MOVE = 3;

EXTERN int

MOVE_TO (unsigned char x,

 unsigned char y);

NODE uav (id) { … }

void INIT () { … }

void SAFETY { … }

NODE uav (id)

{

 GLOBAL bool lock [X][Y][#N];

 LOCAL int state,x,y,xp,yp,xf,yf;

 void NEXT_XY () { … }

 void ROUND () {

 if(state == NEXT) { …

 state = REQUEST;

 } else if(state == REQUEST) { …

 state = WAITING;

 } else if(state == WAITING) { …

 state = MOVE;

 } else if(state == MOVE) { …

 state = NEXT;

 } } }

INIT

{

 FORALL_NODE(id)

 state.id = NEXT;

 //assign x.id and y.id non-deterministically

 //assume they are within the correct range

 //assign lock[x.id][y.id][id] appropriately

 //nodes don’t collide initially

 FORALL_DISTINCT_NODE_PAIR (id1,id2)

 ASSUME(x.id1 != x.id2 || y.id1 != y.id2);

}

SAFETY {

 FORALL_DISTINCT_NODE_PAIR (id1,id2)

 ASSERT(x.id1 != x.id2 || y.id1 != y.id2);

}

13
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Synchronous Collision Avoidance Code

 if(state == NEXT) {

 //compute next point on route

 if(x == xf && y == yf) return;

 NEXT_XY();

 state = REQUEST;

 } else if(state == REQUEST) {

 //request the lock but only if it is free

 if(EXISTS_OTHER(idp,lock[xp][yp][idp] != 0)) return;

 lock[xp][yp][id] = 1;

 state = WAITING;

 } else if(state == WAITING) {

 //grab the lock if we are the highest

 //id node to request or hold the lock

 if(EXISTS_HIGHER(idp, lock[xp][yp][idp] != 0)) return;

 state = MOVE;

 }

 else if(state == MOVE) {

 //now we have the lock on (xp,yp)

 if(MOVE_TO()) return;

 lock[x][y][id] = 0;

 x = xp; y = yp;

 state = NEXT;

 }

14
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Tool Usage

Project webpage (http://mcda.googlecode.com)
• Tutorial (https://code.google.com/p/mcda/wiki/Tutorial)

Verification

• daslc --nodes 3 --seq --rounds 3 --seq-dbl --out tutorial-02.c tutorial-
02.dasl

• cbmc tutorial-02.c (takes about 10s to verify)

Code generation & simulation
• daslc --nodes 3 --madara --vrep --out tutorial-02.cpp tutorial-02.dasl
• g++ …
• mcda-vrep.sh 3 outdir ./tutorial-02 …

http://mcda.googlecode.com/
https://code.google.com/p/mcda/wiki/Tutorial

© 2014 Carnegie Mellon University

Demonstration: Synchronous
Collision Avoidance

Presenter
Presentation Notes
Title Slide
Title and Subtitle text blocks should not be moved from their position if at all possible.

© 2014 Carnegie Mellon University

Questions?

17
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0001371

18
Verifying Synchronous Distributed App
Sagar Chaki, June 11, 2014
© 2014 Carnegie Mellon University

Contact Information Slide Format

Sagar Chaki
Principal Researcher
SSD/CSC
Telephone: +1 412-268-1436
Email: chaki@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

mailto:chaki@sei.cmu.edu

	Model Checking Distributed Software
	Model Checking and Me
	Motivation
	Approach : Verification + Code Generation
	Verification
	Code Generation
	Case Study: Synchronous Collision Avoidance
	Example: Synchronous Collision Avoidance
	Example: Synchronous Collision Avoidance
	Example: Synchronous Collision Avoidance
	Collision Avoidance Protocol
	Synchronous Collision Avoidance Code
	Synchronous Collision Avoidance Code
	Tool Usage
	Demonstration: Synchronous Collision Avoidance
	Questions?
	Slide Number 17
	Contact Information Slide Format

